

Lifting based convex approaches to labeling problems

Laurent Condat,

GIPSA-lab, Grenoble, France

Puzzle: describe this hexagon with 5 linear inequalities

Thinking outside the box

[P. Parrilo]

Solution: the hexagon is the shadow of a 3-D polyhedron with 5 faces

Convex relaxations by lifting

higher dimensional model

simple convex model

Image segmentation / Potts problem

Image segmentation / Potts problem

Image segmentation / Potts problem

Other labeling problems

http://vision.middlebury.edu/stereo/eval/newEval/tsukuba/

Other labeling problems

[D. Cremers et al.]

Finding *x* is equivalent to finding the assignment array *z*

reformulate the initial problem with respect to z

Finding x is equivalent to finding the assignment array z

3 ingredients:

• $z_{:,n} \in \Delta, \forall n$

Finding *x* is equivalent to finding the assignment array *z*

- $Z_{:,n} \in \Delta, \forall n$
- loss term $\langle z, c \rangle$ where $c_{q,n} = \cos t$ of assigning label a_q to pixel of index n.

Finding x is equivalent to finding the assignment array z

3 ingredients:

- $z_{:,n} \in \Delta, \forall n$
- loss term $\langle z, c \rangle$ e.g. $c_{a,n} = ||y_n - a_a||^2$

Finding x is equivalent to finding the assignment array z

3 ingredients:

- $z_{:,n} \in \Delta, \forall n$
- $\langle Z, C \rangle$
- coarea formula: $per(\Omega_q) = TV(z_{q,:})$

Choice of the TV

L. C., "Discrete total variation: New definition and minimization," SIIMS, 2017.

Projection onto the simplex

Fast projection algorithms: L. Condat, "Fast projection onto the simplex and the I1 ball," Math. Prog., 2016

split the simplex constraint into nonnegativity and sum to one

$$r \in \mathbb{R}^{Q-1}$$
 s.t. $0 \le r_1 \le \cdots \le r_{Q-1} \le 1$

differentiate

$$s_k = r_k - r_{k-1}$$

$$s \in \Delta \equiv s$$

integrate

$$s \in \Delta$$
 \equiv $s_q \geq 0$, $\sum_{q=1}^{Q} s_q = 1$

N. Pustelnik and L. C., "Proximity operator of a sum of functions; application to depth map estimation," IEEE SPL, 2017

L. C, "A Convex Approach to K-means Clustering and Image Segmentation," EMMCVPR, 2017

The K-means problem

The K-means problem

Image quantization

Image quantization

Image quantization

quantization vs. segmentation

Result with penalization of the region perimeter

Discrete search space

We discretize the search space of the centroids: they must belong to a finite set $\{a_q\}_{q=1}^Q$ of Q candidates of \mathbb{R}^d .

Discrete search space

We discretize the search space of the centroids: they must belong to a finite set $\{a_q\}_{q=1}^Q$ of Q candidates of \mathbb{R}^d .

For color image quantization and segmentation, we choose the following *palette* of Q = 279 colors:

Lifted constraint of K classes

Lifted constraint of K classes

Nb. of active candidates is $K \equiv$

$$\sum_{q=1}^{Q} \max_{n \in \Omega} z_{q,n} \leq K$$

Lifted constraint of K classes

Nb. of active candidates is $K \equiv$

$$\sum_{q=1}^{Q} \max_{n \in \Omega} z_{q,n} \le K$$

Projection on the $\ell_{1,\infty}$ ball: code on my webpage

K-colors image segmentation

$$\underset{z \in \mathbb{R}^{M \times \Omega}}{\text{minimize}} \langle z, w \rangle + \lambda \sum_{q=1}^{Q} \mathsf{TV}(z_{q,:})$$

s.t.
$$z_{:,n} \in \Delta$$
, $\forall n \in \Omega$, and

$$\sum_{q=1}^{Q} \max_{n \in \Omega} z_{q,n} \leq K$$

Segmentation results

Summary

Lifting: generic principle to formulate convex relaxations Applications beyond labeling:

L. C. et al., "A convex lifting approach to image phase unwrapping," 2019

What's next?

- Try fast LP or ILP solvers
- Approaches without discretization
 L. C., "Atomic norm minimization for decomposition into complex exponentials," preprint, 2018.

