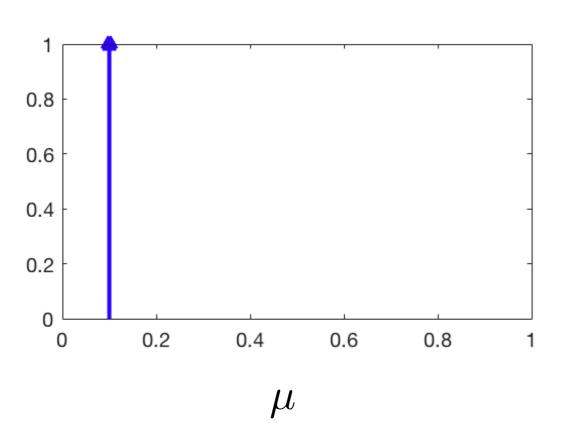


Optimal transport of measures in frequency domain

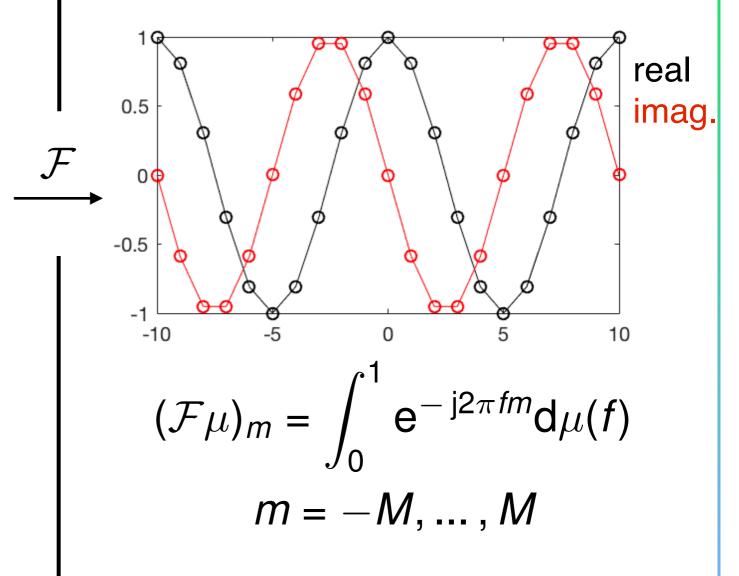
Laurent Condat

GIPSA-lab, CNRS, Univ. Grenoble Alpes Grenoble, France

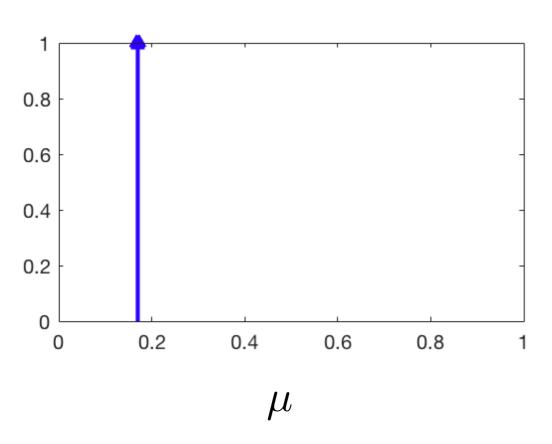
 $\mathcal{M} = \{ \text{signed Radon} \\ \text{measures on } \mathbb{T} = \mathbb{R} \backslash \mathbb{Z} \}$



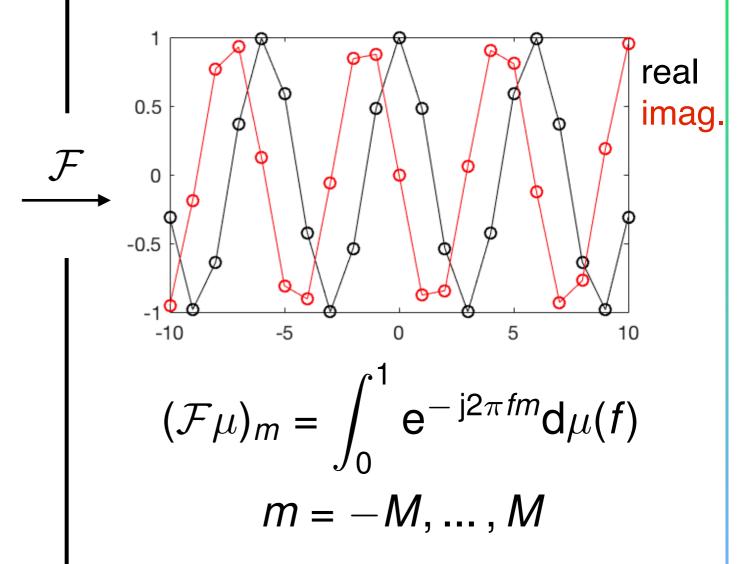
$$V = \{ (v_m)_{m=-M}^M \in \mathbb{C}^{2M+1} : \\ v_{-m} = v_m^* \}$$



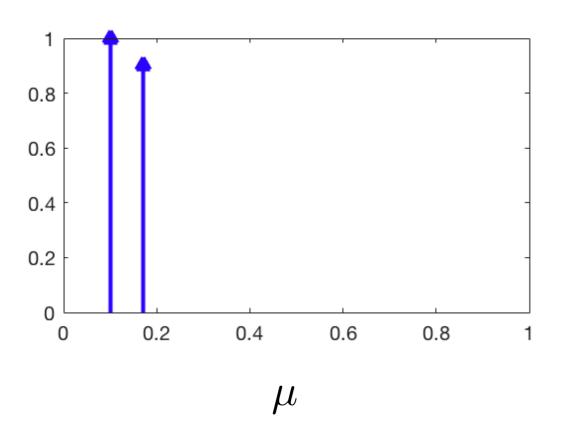
 $\mathcal{M} = \{ \text{signed Radon} \\ \text{measures on } \mathbb{T} = \mathbb{R} \backslash \mathbb{Z} \}$



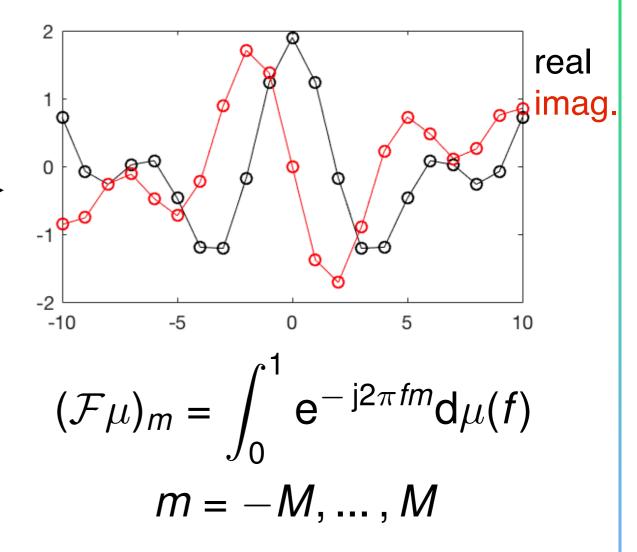
$$V = \{ (v_m)_{m=-M}^M \in \mathbb{C}^{2M+1} : \\ v_{-m} = v_m^* \}$$



 $\mathcal{M} = \{ \text{signed Radon} \\ \text{measures on } \mathbb{T} = \mathbb{R} \backslash \mathbb{Z} \}$

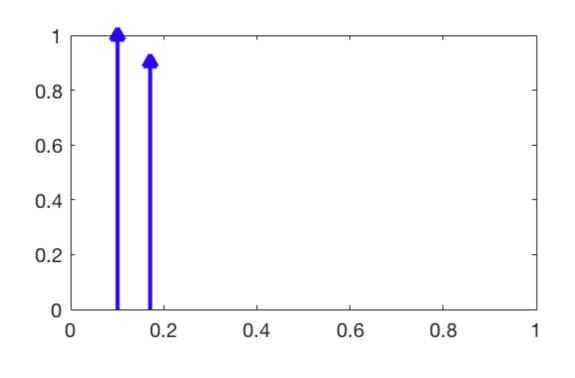


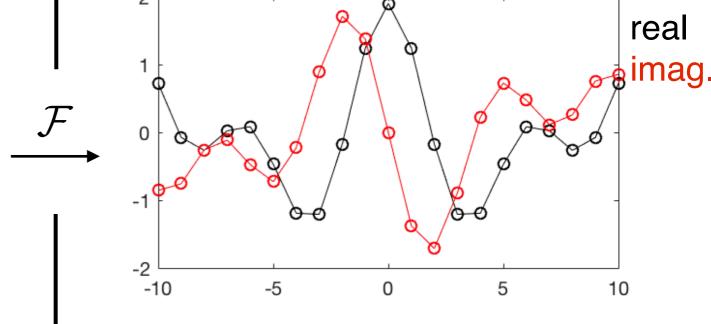
$$V = \{ (v_m)_{m=-M}^M \in \mathbb{C}^{2M+1} : \\ v_{-m} = v_m^* \}$$



 $\mathcal{M} = \{ \text{signed Radon} \\ \text{measures on } \mathbb{T} = \mathbb{R} \backslash \mathbb{Z} \}$

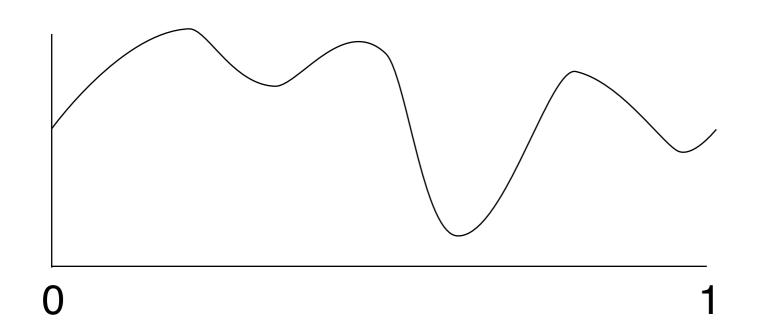
$$\mathbb{V} = \left\{ (v_m)_{m=-M}^M \in \mathbb{C}^{2M+1} \right.$$
$$v_{-m} = v_m^* \right\}$$





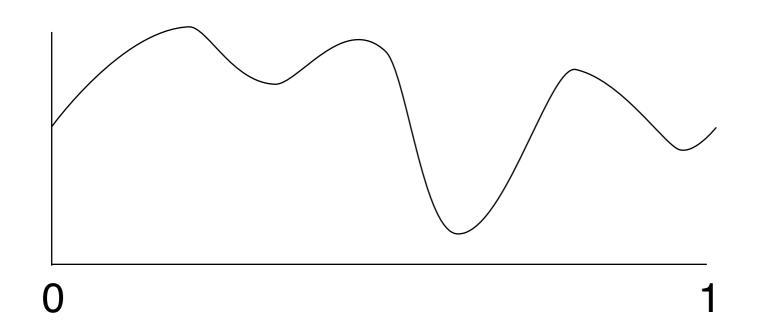
About existence, uniqueness, cardinality of μ given $\mathcal{F}\mu$, see [L. Condat, "Atomic norm minimization for decomposition into complex exponentials," preprint, 2018]

Global optimization



 $\underset{t \in \mathbb{T}}{\mathsf{minimize}} \, f(t)$

Global optimization



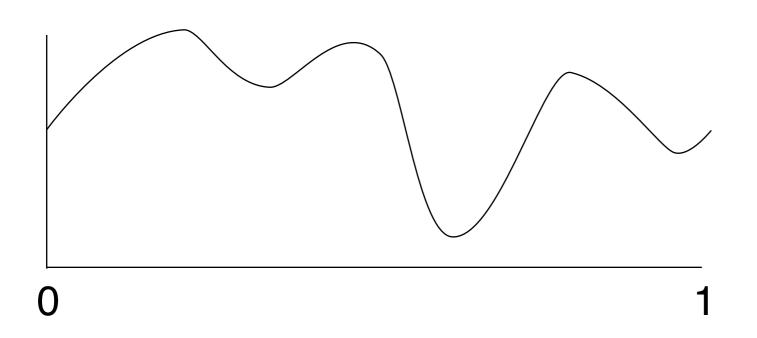
$$\min_{t \in \mathbb{T}} \mathsf{tet}(t)$$

=

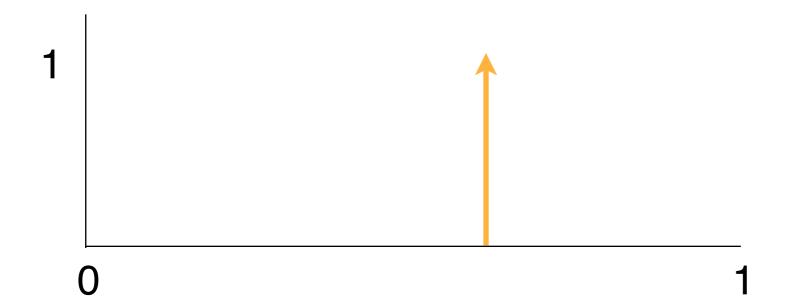
minimize proba. measure
$$\mu$$

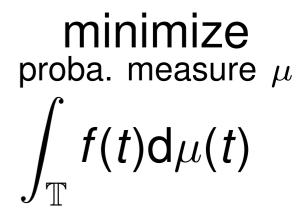
$$\int_{\mathbb{T}} f(t) \mathrm{d}\mu(t)$$

Global optimization



=





Global optimization with pairwise costs

$$f(t, t') \geq 0$$

Global optimization with pairwise costs

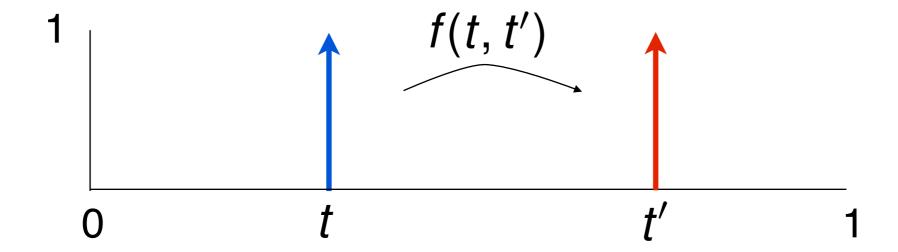
$$f(t, t') \geq 0$$

1

 t
 t'

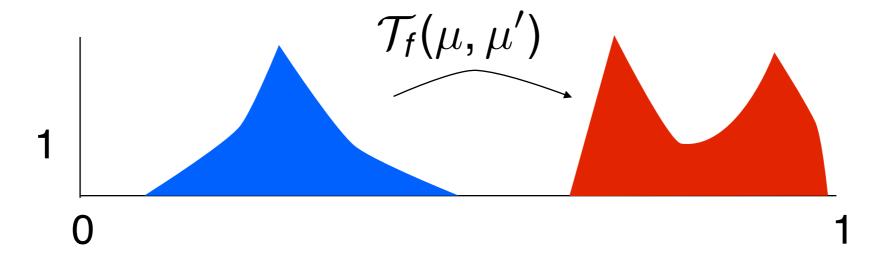
Global optimization with pairwise costs

 $f(t, t') \geq 0$: cost of transporting δ_t to $\delta_{t'}$



Optimal transport

Generalization to a pair of positive measures μ and μ' with same mass:

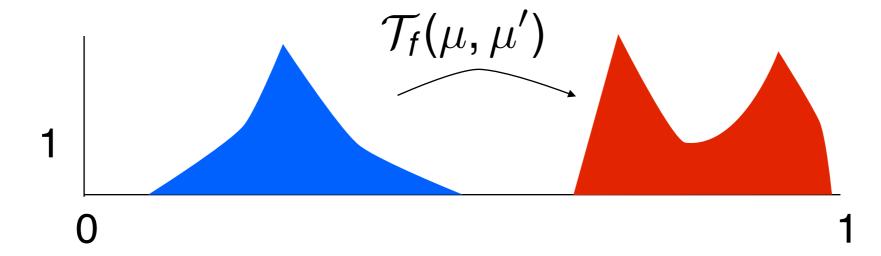


$$\mathcal{T}_f(\mu, \mu') = \inf_{\substack{\text{positive measure} \\ \nu \text{ on } \mathbb{T}^2}} \int_{\mathbb{T}^2} f(t, t') d\nu(t, t')$$

s.t. the marginals of ν are μ and μ'

Optimal transport

Generalization to a pair of positive measures μ and μ' with same mass:



$$\mathcal{T}_f(\mu, \mu') = \inf_{\substack{\text{positive measure} \\ \nu \text{ on } \mathbb{T}^2}} \int_{\mathbb{T}^2} f(t, t') d\nu(t, t')$$

s.t. the marginals of ν are μ and μ'

This is the largest convex function with $\mathcal{T}_f(c\delta_t, c\delta_{t'}) = cf(t, t')$, for every $c \geq 0$, $(t, t') \in \mathbb{T}^2$

Typical transport costs

$$f(t, t') = \{0 \text{ if } t = t', 1 \text{ else}\}$$

$$\mathcal{T}_f(\mu, \mu') = \frac{1}{2} \|\mu - \mu'\|_{\mathsf{TV}}$$
 is the Radon distance

$$f(t, t') = d(t, t')$$

$$\mathcal{T}_f(\mu, \mu')$$
 is the 1-Wasserstein distance

$$f(t, t') = d(t, t')^2$$

$$\mathbb{P}$$
 $\sqrt{\mathcal{T}_f(\mu,\mu')}$ is the 2-Wasserstein distance

Largest convex function with $\mathcal{T}_f(c\delta_t, c\delta_{t'}) \leq |c|f(t, t')$, for every $c \in \mathbb{R}$, $(t, t') \in \mathbb{T}^2$?

Largest convex function with $\mathcal{T}_f(c\delta_t, c\delta_{t'}) \leq |c|f(t, t')$, for every $c \in \mathbb{R}$, $(t, t') \in \mathbb{T}^2$?

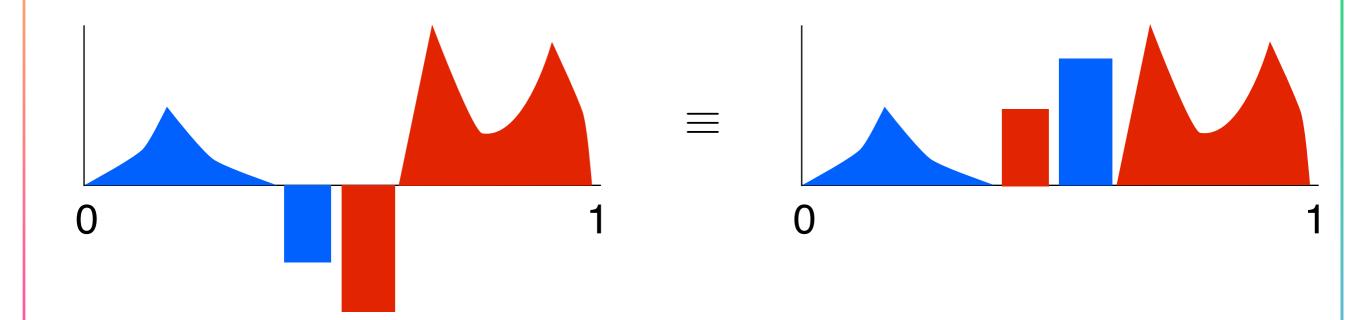
$$\forall (\mu, \mu') \in \mathcal{M}^2 \text{ with } \mu(\mathbb{T}) = \mu'(\mathbb{T}),$$

$$\mathcal{T}_f(\mu, \mu') = \inf_{\substack{\nu \text{ on } \mathbb{T}^2}} \int_{\mathbb{T}^2} f(t, t') \mathrm{d}|\nu|(t, t')$$

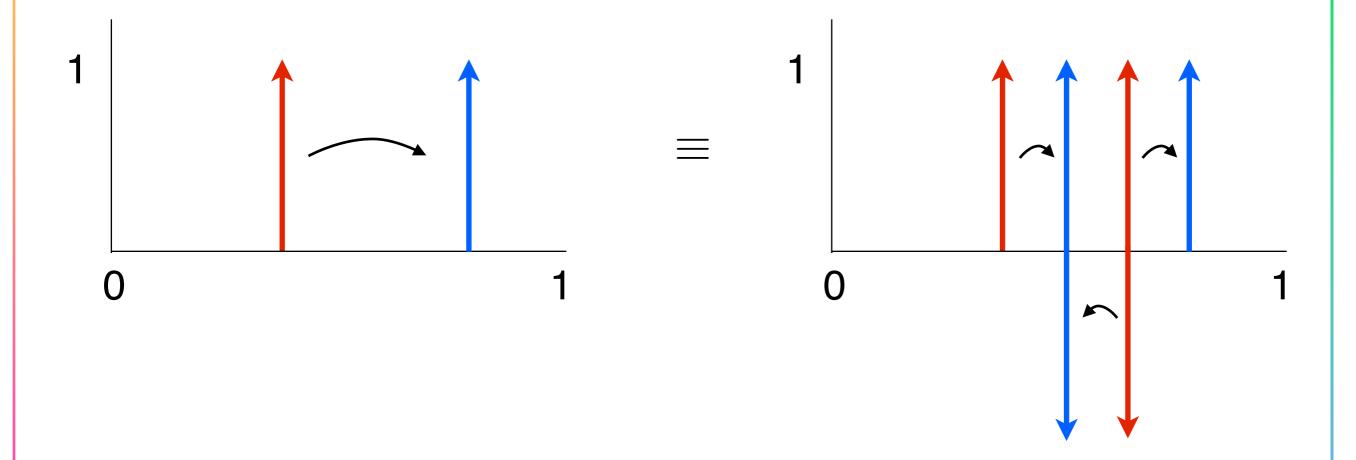
s.t. the marginals of ν are μ and μ'

If $f = \phi \circ d$ with ϕ increasing, concave, and $\phi(0) = 0$,

$$\mathcal{T}_f(\mu, \mu') = \mathcal{T}_f(\mu^+ + {\mu'}^-, {\mu'}^+ + {\mu}^-)$$



If $f = \phi \circ d$ with ϕ increasing and strictly convex, $\mathcal{T}_f = 0$!



Atomic norm

For every $v \in V$, its atomic norm defined as:

$$\|\mathbf{v}\|_{a} = \inf\{\|\mu\|_{\mathsf{TV}}: \mu \in \mathcal{M}, \mathcal{F}\mu = \mathbf{v}\}$$

Atomic norm

For every $v \in \mathbb{V}$, its atomic norm defined as:

$$\|\mathbf{v}\|_{a} = \inf\{\|\mu\|_{\mathsf{TV}}: \mu \in \mathcal{M}, \mathcal{F}\mu = \mathbf{v}\}$$

Finite dimensional SDP formulation:

$$\|v\|_a = \min_X \frac{2}{M+1} \operatorname{tr}(X) - v_0$$
 s.t. X is Toeplitz and $X \geq 0$ and $X = 0$

Atomic transport cost

 $\forall (v, v') \in \mathbb{V}^2$ with $v_0 = v'_0$, atomic transport cost:

$$\mathcal{T}_{a,f}(\mathbf{v},\mathbf{v}') = \min \left\{ \mathcal{T}_f(\mu,\mu') : (\mu,\mu') \in \mathcal{M}^2, \right.$$

$$\mathcal{F}\mu = \mathbf{v}, \ \mathcal{F}\mu' = \mathbf{v}' \right\}$$

Atomic transport cost

 $\forall (v, v') \in \mathbb{V}^2$ with $v_0 = v'_0$, atomic transport cost:

$$\mathcal{T}_{a,f}(\mathbf{v},\mathbf{v}') = \min \left\{ \mathcal{T}_f(\mu,\mu') : (\mu,\mu') \in \mathcal{M}^2, \right.$$

$$\mathcal{F}\mu = \mathbf{v}, \ \mathcal{F}\mu' = \mathbf{v}' \right\}$$

Limited to the concave case

Atomic Radon distance

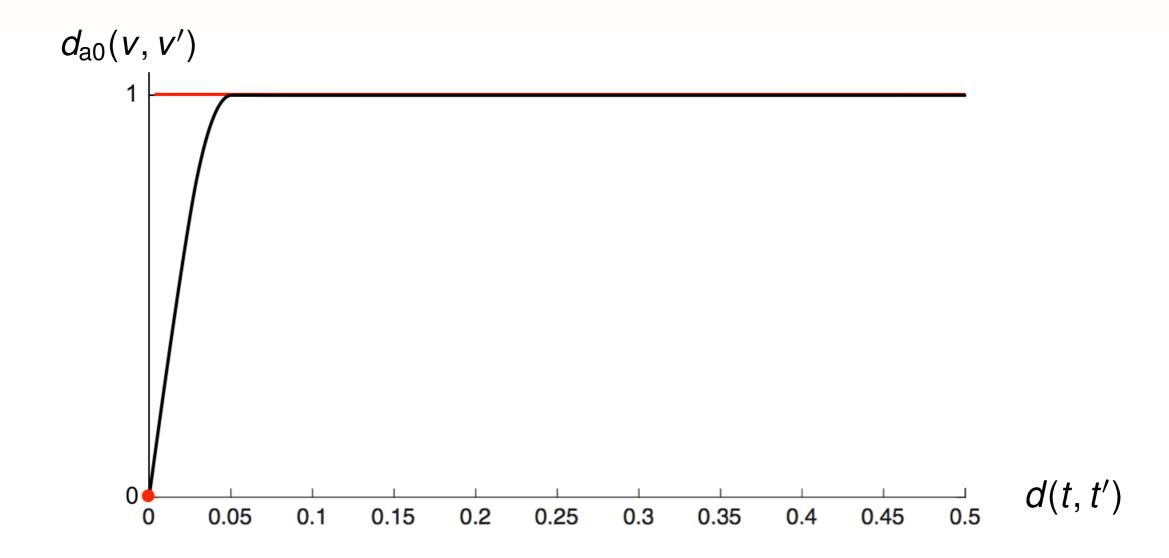
$$f(t, t') = \{0 \text{ if } t = t', 1 \text{ else}\}$$
 atomic Radon distance

$$\forall (v, v') \in \mathbb{V}^2 \text{ with } v_0 = v'_0,$$

$$d_{a0}(v, v') = \min \left\{ \frac{1}{2} \|\mu - \mu'\|_{TV} : (\mu, \mu') \in \mathcal{M}^2, \right.$$

 $\mathcal{F}\mu = v, \ \mathcal{F}\mu' = v' \right\}$
 $= \frac{1}{2} \|v - v'\|_{a}$

Atomic Radon distance



$$V = (e^{-j2\pi tm})_{m=-M}^{M}, \ V' = (e^{-j2\pi t'm})_{m=-M}^{M}, \ M = 10$$

Exact if
$$d(t, t') \geq \frac{1}{2M}$$

$$f(t, t') = d(t, t')$$
 atomic Wasserstein-1 distance

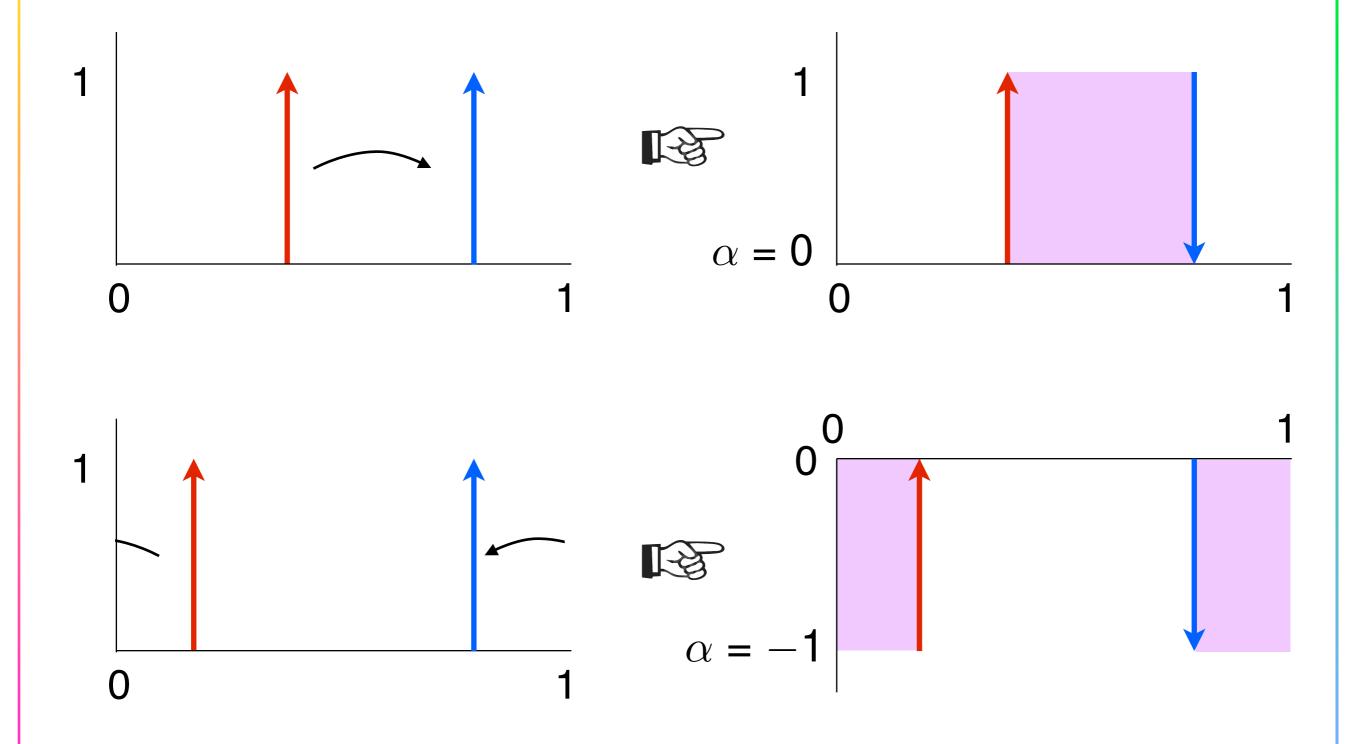
$$d_{a1}(\mathbf{v}, \mathbf{v}') = \min \left\{ \mathcal{T}_f(\mu, \mu') : (\mu, \mu') \in \mathcal{M}^2, \right.$$
$$\mathcal{F}\mu = \mathbf{v}, \ \mathcal{F}\mu' = \mathbf{v}' \right\},$$

$$f(t, t') = d(t, t')$$
 atomic Wasserstein-1 distance

$$d_{a1}(\mathbf{v}, \mathbf{v}') = \min \left\{ \mathcal{T}_f(\mu, \mu') : (\mu, \mu') \in \mathcal{M}^2, \right.$$
$$\mathcal{F}\mu = \mathbf{v}, \ \mathcal{F}\mu' = \mathbf{v}' \right\},$$

$$\mathcal{T}_f(\mu, \mu') = \min_{\alpha \in \mathbb{R}} \int_{\mathbb{T}} |F(t) - F'(t)| - \alpha |dt|$$

where F and F' are the cumulative functions of μ and μ'



$$f(t, t') = d(t, t')$$
 atomic Wasserstein-1 distance

$$d_{a1}(v, v') = \min \{ \mathcal{T}_f(\mu, \mu') : (\mu, \mu') \in \mathcal{M}^2,$$
 $\mathcal{F}\mu = v, \ \mathcal{F}\mu' = v' \},$ $= \min \{ ||\eta||_{\mathsf{TV}} : \eta \in \mathcal{M}, \ \mathcal{F}\eta = w, \ \text{with} \}$ $j2\pi m w_m = v_m - v'_m, \ m = -M, ..., M \}$

$$f(t, t') = d(t, t')$$
 atomic Wasserstein-1 distance

$$d_{a1}(\boldsymbol{v}, \boldsymbol{v}') = \min \left\{ \mathcal{T}_f(\mu, \mu') : (\mu, \mu') \in \mathcal{M}^2, \right.$$
$$\mathcal{F}\mu = \boldsymbol{v}, \ \mathcal{F}\mu' = \boldsymbol{v}' \right\},$$

= min
$$\{ \|\eta\|_{TV} : \eta \in \mathcal{M}, \ \mathcal{F}\eta = w, \text{ with }$$

 $j2\pi m w_m = v_m - v'_m, \ m = -M, ..., M \}$

$$= \min_{X,\alpha} \left(\frac{2}{M+1} \operatorname{tr}(X) + \alpha \right)$$
 s.t. X is Toeplitz

and
$$X > 0$$
 and $X - W + \alpha \text{Id} > 0$

where
$$w = ((v_m - v'_m)/(j2\pi m))_{m=-M}^{M}$$
, with $w_0 = 0$, and $W = T(w)$

$$f(t, t') = d(t, t')$$
 atomic Wasserstein-1 distance

$$d_{a1}(\mathbf{v}, \mathbf{v}') = \min \left\{ \mathcal{T}_f(\mu, \mu') : (\mu, \mu') \in \mathcal{M}^2, \right.$$

$$\mathcal{F}\mu = \mathbf{v}, \ \mathcal{F}\mu' = \mathbf{v}' \right\},$$

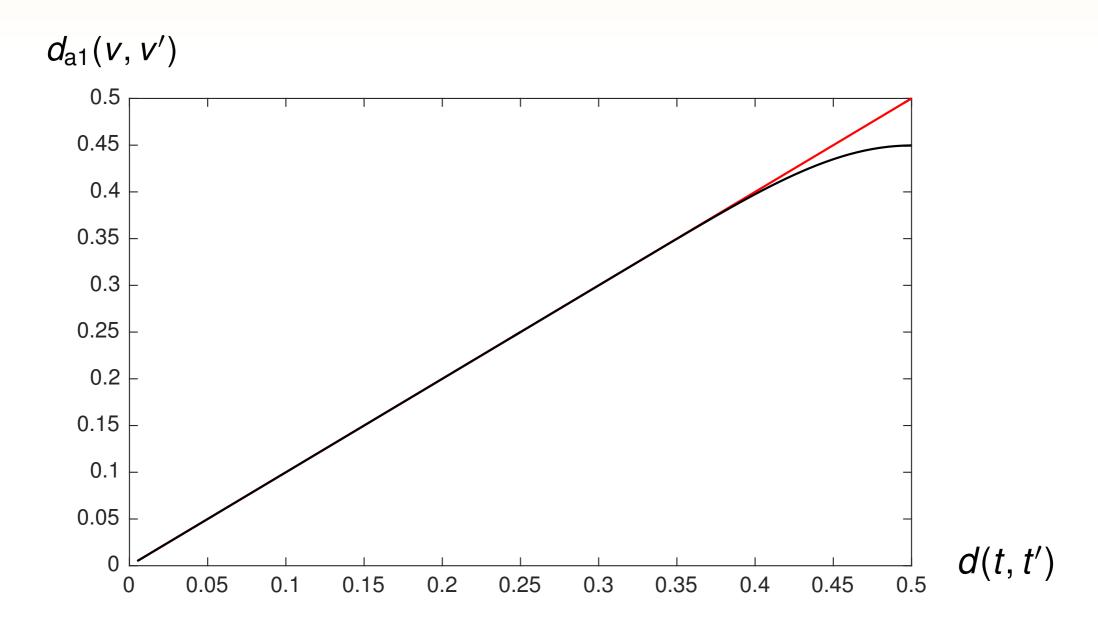
= min
$$\{ \|\eta\|_{TV} : \eta \in \mathcal{M}, \ \mathcal{F}\eta = w, \text{ with }$$

 $j2\pi mw_m = v_m - v'_m, \ m = -M, ..., M \}$

$$= \min_{X} \left(\frac{2}{M+1} \operatorname{tr}(X) + i^{+}(W-X) \right) \quad \text{s.t.}$$

X is Toeplitz and X > 0,

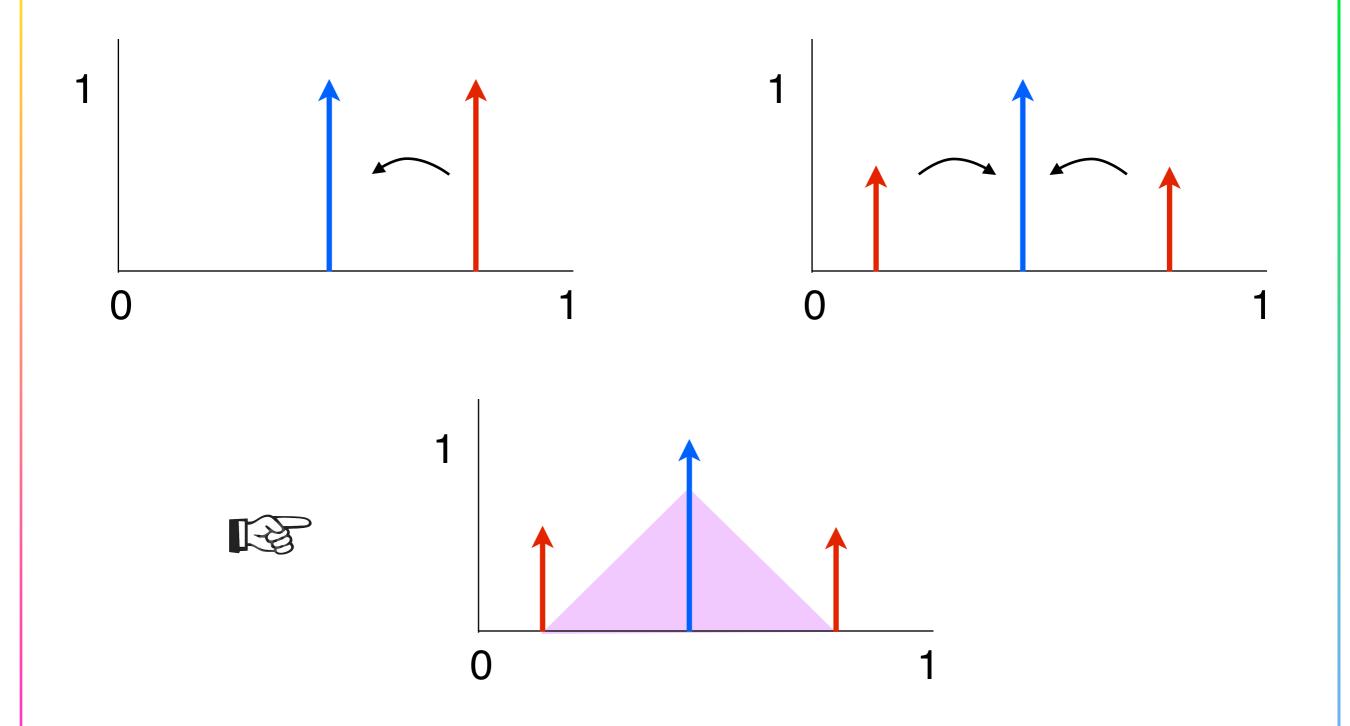
where i+ denotes the largest eigenvalue



$$V = (e^{-j2\pi tm})_{m=-M}^{M}, \ V' = (e^{-j2\pi t'm})_{m=-M}^{M}, \ M = 10$$

v' is fixed as an atom: $v'_{m} = (c.e^{-j2\pi t'm})_{m=-M}^{M}$.

v' is fixed as an atom: $v'_m = (c.e^{-j2\pi t'm})_{m=-M}^M$. We design an approximation \widetilde{d}_{a2}^2 of the function which maps $v \in \mathbb{V}$, with $v_0 = c$ and $T(v) \succcurlyeq 0$, to $\mathcal{T}_{a,d^2}(v,v') = \min_{\text{pos. measure } \mu} \int_{\mathbb{T}} d(t,t')^2 d\mu(t) \quad \text{s.t. } \mathcal{F}\mu = v$



$$\widetilde{d}_{a2}^{2}(v, v') = \min \{ \eta(\mathbb{T}) : \eta \in \mathcal{M} \text{ is positive, } \mathcal{F}\eta = w,$$
with $-4\pi^{2}m^{2}w_{m} = v_{m} - 2v'_{m} + v'_{m}^{2}v_{m}^{*}, m = -M, ..., M \}$

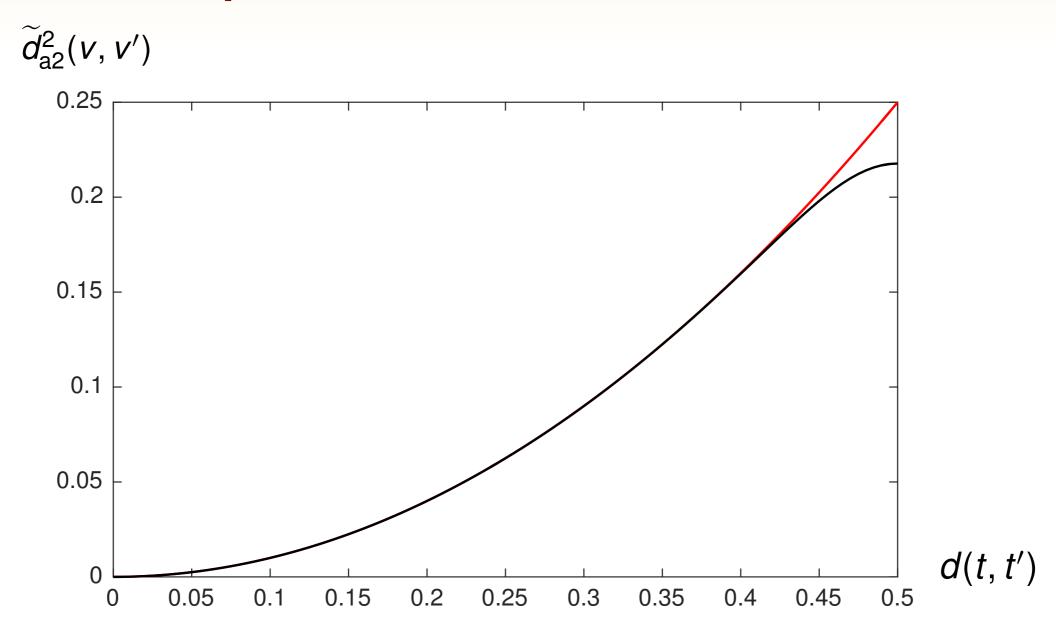
$$\widetilde{d}_{a2}^{2}(v, v') = \min \{ \eta(\mathbb{T}) : \eta \in \mathcal{M} \text{ is positive, } \mathcal{F}\eta = w,$$

with $-4\pi^{2}m^{2}w_{m} = v_{m} - 2v'_{m} + v'_{m}^{2}v_{m}^{*}, m = -M, ..., M \}$

Explicit form:

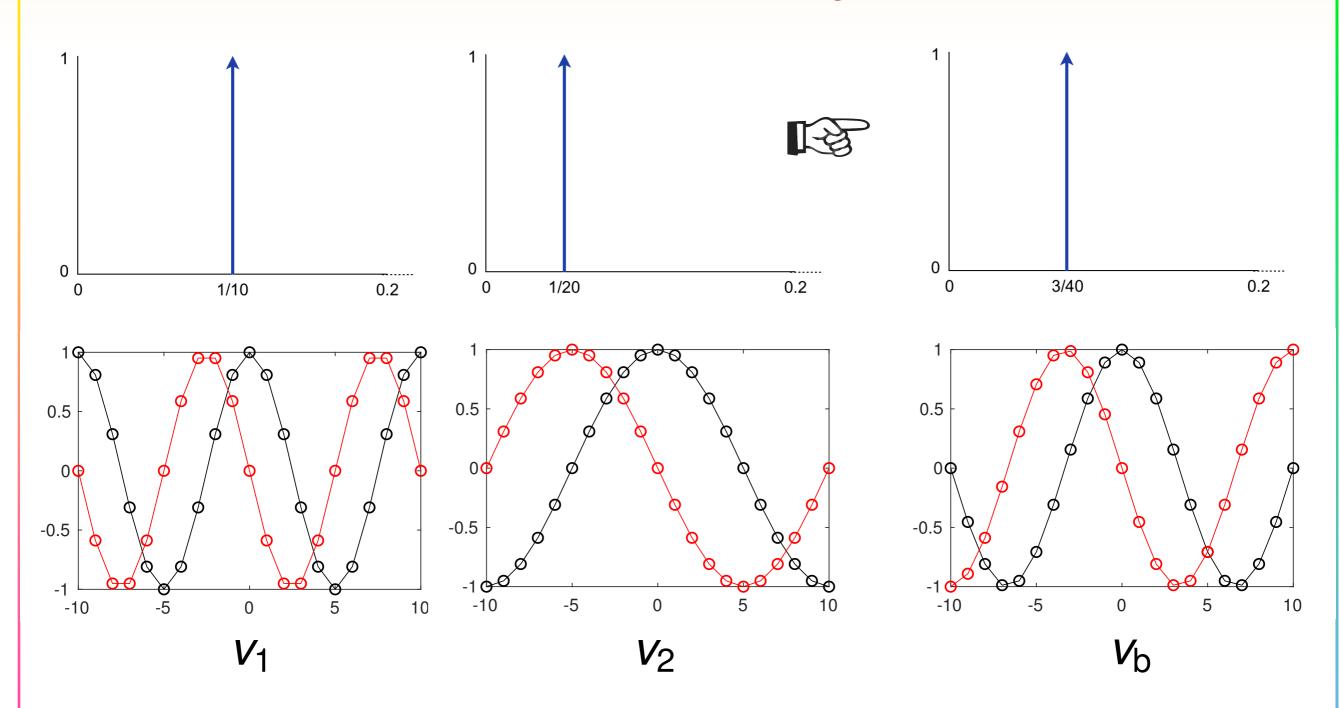
set
$$w = ((v_m - 2v'_m + v'_m^2 v_m^*)/(-4\pi^2 m^2))_{m=-M}^M$$
, with $w_0 = 0$ and $W = T(w)$.

Then
$$\widetilde{d}_{a2}^2(a, v) = i^+(-W)$$



$$V = (e^{-j2\pi tm})_{m=-M}^{M}, \ V' = (e^{-j2\pi t'm})_{m=-M}^{M}, \ M = 10$$

Wasserstein-2 barycenters



$$v_{b} = \underset{v : T(v) \geq 0}{\operatorname{arg \, min}} \widetilde{d}_{a2}^{2}(v, v_{1}) + \widetilde{d}_{a2}^{2}(v, v_{2})$$

Application: Potts model

Piecewise-constant approximation with interface length regularization

$$M = 8$$

