

Models and methods for the acquisition of color images

Laurent Condat

CNRS research fellow at GIPSA-lab, Grenoble, France

Color image acquisition with a single sensor

A (Bayer) color filter array (CFA) is overlaid on the sensor

what you see

Color image acquisition with a single sensor

A (Bayer) color filter array (CFA) is overlaid on the sensor

what your camera sees

Outline

- The challenge of demosaicking
 - An image formation model
 - «Denoisaicking» methods
 - New robust CFAs

Luminance / chrominance basis

$$\mathbf{L} = \frac{1}{\sqrt{3}} [1, 1, 1]^{\mathrm{T}}$$

$$\mathbf{C}^{G/M} = \frac{1}{\sqrt{6}} [-1, 2, -1]^{\mathrm{T}}$$

$$\mathbf{C}^{R/B} = \frac{1}{\sqrt{3}} [1, 0, -1]^{\mathrm{T}}$$

Chrominance of natural images

Frequency interpretation of Bayer sampling

[Alleysson *et al., IEEE TIP,* 2005]

Fourier transform

$$\hat{v}(\boldsymbol{\omega}) = \frac{1}{\sqrt{3}} \hat{u}^{L}(\boldsymbol{\omega}) + \frac{1}{\sqrt{24}} \hat{u}^{G/M}(\boldsymbol{\omega}) + \frac{\sqrt{6}}{4} \hat{u}^{G/M}(\boldsymbol{\omega} - [\pi, \pi]^{T}) + \frac{\sqrt{2}}{4} \hat{u}^{R/B}(\boldsymbol{\omega} - [0, \pi]^{T}) - \frac{\sqrt{2}}{4} \hat{u}^{R/B}(\boldsymbol{\omega} - [\pi, 0]^{T})$$

Frequency interpretation of Bayer sampling

[Alleysson *et al., IEEE TIP,* 2005]

Fourier transform

$$v[\mathbf{k}] = \frac{1}{\sqrt{3}} u^{L}[\mathbf{k}] + \frac{1}{\sqrt{24}} u^{G/M}[\mathbf{k}] + \frac{\sqrt{6}}{4} (-1)^{k_1 + k_2} u^{G/M}[\mathbf{k}] + \frac{\sqrt{2}}{4} (-1)^{k_2} u^{R/B}[\mathbf{k}] - \frac{\sqrt{2}}{4} (-1)^{k_1} u^{R/B}[\mathbf{k}]$$

Linear demosaicking by frequency selection

Chrominance obtained by modulation + lowpass filtering

$$d^{G/M} = \frac{4}{\sqrt{6}} v_{\pi,\pi} * h_{G/M} \text{ where } v_{\pi,\pi}[\mathbf{k}] = (-1)^{k_1 + k_2} v[\mathbf{k}]$$

$$d^{R/B}_H = -2\sqrt{2} v_{\pi,0} * h_{R/B} \text{ where } v_{\pi,0}[\mathbf{k}] = (-1)^{k_1} v[\mathbf{k}]$$

$$d^{R/B}_V = 2\sqrt{2} v_{0,\pi} * (h_{R/B})^{\mathrm{T}} \text{ where } v_{0,\pi}[\mathbf{k}] = (-1)^{k_2} v[\mathbf{k}]$$

$$d^{R/B} = \frac{1}{2} (d^{R/B}_H + d^{R/B}_V)$$

Luminance as the residual

$$\frac{1}{\sqrt{3}}d^L = v[\mathbf{k}] - \left(\frac{1}{\sqrt{24}} + \frac{\sqrt{6}}{4}(-1)^{k_1 + k_2}\right)d^{G/M}[\mathbf{k}] - \frac{\sqrt{2}}{4}\left((-1)^{k_2} - (-1)^{k_1}\right)d^{R/B}[\mathbf{k}]$$

[Dubois, IEEE SPL, 2005]

 Aliasing artifacts due to highfrequency content of luminance

Redundancy of the blue/red chrominance information

Adaptive demosaicking based on the structure tensor

Outline

- The challenge of demosaicking
- An image formation model
 - «Denoisaicking» methods
 - New robust CFAs

The workflow of digital photography

Noise model

[Foi et al., IEEE TIP]

$$v[\mathbf{k}] = \mathcal{C}(\mathbf{r}^X[\mathbf{k}] + \varepsilon[\mathbf{k}])$$

$$\varepsilon[\mathbf{k}] \sim \sigma[\mathbf{k}] \, \mathcal{N}(0,1)$$

$$v[\mathbf{k}] = \mathcal{C}(\mathbf{r}^X[\mathbf{k}] + \varepsilon[\mathbf{k}])$$
 $\varepsilon[\mathbf{k}] \sim \sigma[\mathbf{k}] \,\mathcal{N}(0, 1)$ $\sigma[\mathbf{k}] = \sqrt{a \, \mathbf{r}^X[\mathbf{k}] + b}$

Simplified acquisition model

- We ignore:
 - the spectral sensitivity functions of the R,G,B filters
 - cross-talk
 - non-linearities of the sensor, A/D conversion
 - white balancing
 - optical blur due to the optical system

$$v[\mathbf{k}] = \mathcal{C}\left(\mathcal{G}^{-1}(\mathrm{im}^X[\mathbf{k}]) + \sqrt{a\,\mathcal{G}^{-1}(\mathrm{im}^X[\mathbf{k}]) + b\,e[\mathbf{k}]}\right)$$

clipping

inverse of tone mapping

$$\mathcal{G}(x)^{-1} \approx x^{2.2}$$

Reconstruction procedure

$$v[\mathbf{k}] = \mathcal{C}\left(\mathcal{G}^{-1}(\mathrm{im}^X[\mathbf{k}]) + \sqrt{a\,\mathcal{G}^{-1}(\mathrm{im}^X[\mathbf{k}]) + b\,e[\mathbf{k}]}\right)$$

- 1) variance stabilization (clipping taken into account)
- 2) joint demosaicking/denoising in the AWGN setting
- 3) pixel-wise mapping: bias correction $E\{f(x)\} \neq f(E\{x\})$
- + inverse stabilization + unclipping + tone mapping

Outline

- The challenge of demosaicking
- An image formation model

New robust CFAs

Naive approaches to joint demosaicking/denoising

Original image

Demosaicked image

Demosaicking + denoising

Denoising + demosaicking

Joint demosaicking/ denoising [Hirakawa, 2006]

Ad hoc approaches

• Hirakawa et al. "Joint demosaicing and denoising", IEEE TIP, 2006

Laurent Condat - Acquisition of color images

Linear demosaicking: behavior under noise

$$v[\mathbf{k}] = v_0[\mathbf{k}] + \varepsilon[\mathbf{k}]$$
 $\varepsilon[\mathbf{k}] \sim \mathcal{N}(0, \sigma^2)$

Let d_0 be the demosaicked image in absence of noise

$$\mathbf{d}[\mathbf{k}] = \mathbf{d}_0[\mathbf{k}] + \mathbf{e}[\mathbf{k}]$$

- The demosaicked color noise **e** is such that:
 - ullet $e^{G/M}$, $e^{R/B}$, e^L are independent Gaussian noise realizations
 - $e^{G/M}$ is stationary with spectral density $\frac{8}{3}\sigma^2|\hat{h}_{G/M}(\omega)|^2$
 - $e^{R/B}$ is stationary with spect. dens. $2\sigma^2(|\hat{h}_{R/B}(\omega_1,\omega_2)|^2+|\hat{h}_{R/B}(\omega_2,\omega_2)|^2)$
 - ullet e^L is not stationary and not white
- \rightarrow The basis $\mathbf{L}, \mathbf{C}^{G/M}, \mathbf{C}^{R/B}$ is appropriate to address the problem

MMSE chrominance filters

- → The chrominance should be denoised <u>before</u> estimating the luminance
 - Wiener-like FIR chrominance filters of size $N \times N$ optimal for a learning image base: linear systems of size $N^2 \times N^2$ to solve:

$$\mathbf{A}_{G/M}\mathbf{h}_{G/M} = \mathbf{b}_{G/M}$$

 $\mathbf{A}_{R/B}\mathbf{h}_{R/B} = \mathbf{b}_{R/B}$

[Dubois, IEEE ICIP, 2006]

• In presence of noise:

$$(\mathbf{A}_{G/M} + \frac{8}{3}\sigma^2 \mathbf{I})\mathbf{h}_{G/M} = \mathbf{b}_{G/M}$$
$$(\mathbf{A}_{R/B} + 4\sigma^2 \mathbf{I})\mathbf{h}_{R/B} = \mathbf{b}_{R/B}$$

[Condat, IEEE ICIP, 2010]

Strategy by frequency selection + luminance denoising

$$\sigma = 20$$

$$\sigma = 20$$

Laurent Condat - Acquisition of color images

Original Image

Hirakawa et al., IEEE TIP, 2006

Zhang et al., IEEE TIP, 2007

Zhang et al., IEEE TIP, 2009

Paliy et al., Int. J. Im. Sys. and Tech., 2007

Proposed

A variational interpretation

[Condat, GRETSI, 2009]

 We can show that demosaicking by frequency selection solves the following variational problem:

minimize
$$_{\mathbf{d}} \ \mu \|\nabla d^L\|_{\ell_2}^2 + \|\nabla d^{G/M}\|_{\ell_2}^2 + \|\nabla d^{R/B}\|_{\ell_2}^2 \qquad s.t. \ d^{X[\mathbf{k}]} = v[\mathbf{k}], \ \forall \mathbf{k}$$

- Key point: the chrominance energy is more penalized: $\mu \approx 0.05$
- Remark 1: the solution does not depend on the choice of the chrominance basis.
- Remark 2: this generic approach can be used with every CFA.

Improvement: minimize the TV

New denoisaicking strategy:

step 1) solve

minimize
$$\mathbf{d}$$
 $\|\mathbf{d}\|_{\text{TV}} := \mu \|\sqrt{(\nabla_x d^L)^2 + (\nabla_y d^L)^2}\|_{\ell_1} + \|\sqrt{(\nabla_x d^{G/M})^2 + (\nabla_x d^{R/B})^2 + (\nabla_y d^{G/M})^2 + (\nabla_y d^{R/B})^2}\|_{\ell_1}$

$$s.t. \ d^{X[\mathbf{k}]} = v[\mathbf{k}], \ \forall \mathbf{k}$$

ullet step 2) denoise d^L

Primal-dual optimization algorithm

[Chambolle and Pock, 2011, "A first-order primal-dual algorithm for convex problems with applications to imaging"

- Choose $\alpha > 0$, set $\beta = 1/(8\alpha)$, $\mathbf{b} = (0)$
- **Iterate**

•
$$\forall X \in \{R, G, B\}, \ \mathbf{b}_{(n+1)}^X = \mathbf{b}_{(n)}^X + \alpha \nabla \bar{d}_{(n)}^X$$

$$\forall \mathbf{k} \in \mathbb{Z}^2, \ \mathbf{b}_{(n+1)}^L[\mathbf{k}] = \frac{\mathbf{b}_{(n+1)}^L[\mathbf{k}]}{\max(1, |\mathbf{b}_{(n+1)}^L[\mathbf{k}]|/\mu)}$$

$$\mathbf{max}(1, |\mathbf{b}_{(n+1)}^{L}[\mathbf{k}]|/\mu)$$

$$\mathbf{b}_{(n+1)}^{X}[\mathbf{k}]$$

$$\mathbf{b}_{(n+1)}^{X}[\mathbf{k}]$$

$$\mathbf{b}_{(n+1)}^{X}[\mathbf{k}]$$

$$\mathbf{max}(1, |\mathbf{b}_{(n+1)}^{L}[\mathbf{k}]|$$

$$\mathbf{max}(1, \sqrt{|\mathbf{b}_{(n+1)}^{G/M}[\mathbf{k}]|^2 + |\mathbf{b}_{(n+1)}^{R/B}[\mathbf{k}]|^2})$$

$$\mathbf{max}(1, \sqrt{|\mathbf{b}_{(n+1)}^{G/M}[\mathbf{k}]|^2 + |\mathbf{b}_{(n+1)}^{R/B}[\mathbf{k}]|^2})$$

$$\forall X \in \{R, G, B\}, \ d_{(n+1)}^X = d_{(n)}^X + \beta \operatorname{div} \mathbf{b}_{(n+1)}^X$$

$$\forall \mathbf{k} \in \mathbb{Z}^2, \ d_{(n+1)}^{X[\mathbf{k}]}[\mathbf{k}] = v[\mathbf{k}]$$

$$\bar{\mathbf{d}}_{(n+1)} = 2\mathbf{d}_{(n+1)} - \mathbf{d}_{(n)}$$

Method by frequency selection

Method by TV minimization

Outline

- The challenge of demosaicking
- An image formation model
- «Denoisaicking» methods
- New robust CFAs

Choice of the CFA: a packing problem

Fourier interpretation of mosaicking:

$$\hat{v}(\boldsymbol{\omega}) = \sum_{X \in \{L, C_1, C_2\}} \widehat{u^X}(\boldsymbol{\omega}) * \widehat{\operatorname{cfa}^X}(\boldsymbol{\omega}), \quad \boldsymbol{\omega} \in \mathbb{R}^2$$

- → Idea of Hirakawa [IEEE TIP, 2008] to design the CFA directly in Fourier domain
- luminance in the baseband
- chrominance far away from the luminance

Choice of a R,G,B CFA

- Periodic patterns: the Bayer CFA is optimal
- → can we do better with aperiodic CFAs?

[Condat, IVC, IEEE ICIP]

$$\hat{v}(\boldsymbol{\omega}) = \frac{1}{\sqrt{3}} \widehat{u^L}(\boldsymbol{\omega}) + \sum_{C \in \{C_1, C_2\}} \widehat{u^C}(\boldsymbol{\omega}) * \widehat{\operatorname{cfa}^C}(\boldsymbol{\omega}), \quad \boldsymbol{\omega} \in \mathbb{R}^2$$

Blue noise spectral characteristics (used in halftoning...)

Generic variational demosaicking

minimize
$$\mathbf{d} \ \mu \|\nabla d^L\|_{\ell_2}^2 + \|\nabla d^{G/M}\|_{\ell_2}^2 + \|\nabla d^{R/M}\|_{\ell_2}^2 \qquad s.t. \ d^{X[\mathbf{k}]} = v[\mathbf{k}], \ \forall \mathbf{k}$$

- Quadratic problem → linear system to solve
- Iterative method (Jacobi)

[Condat, IEEE ICIP, 2009]

Bayer

random CFA, type I

random CFA, type II

Periodic CFAs with arbitrary colors

Proposed 2x3 CFA with 6 colors

[Condat, IEEE TIP 2011]

- 6 couleurs [1,½,0], [0,½,1], [½,0,1], [½,1,0], [0,1,½], [1,0,½]
- Color isotropy: two chrominance channels modulated in quadrature at the same frequency
- Designed to maximize γ^C , γ^L

$$\rightarrow \quad \omega_0 = \frac{2\pi}{3}$$

$$\operatorname{cfa}^{L}[\mathbf{k}] = \gamma^{L},$$

$$\operatorname{cfa}^{R/B}[\mathbf{k}] = \gamma^{C}(-1)^{k_{1}}\sqrt{2}\sin(\omega_{0}k_{2} - \varphi)$$

$$\operatorname{cfa}^{V/M}[\mathbf{k}] = \gamma^{C}(-1)^{k_{1}}\sqrt{2}\cos(\omega_{0}k_{2} - \varphi)$$

Bayer

Condat

Laurent Condat - Acquisition of color images

Bayer Results

Condat

Conclusion

- Demosaicking by frequency selection
 - linear (simple, stable), fast, efficient
 - noisy case: just demosaick and denoise the luminance
 - variational interpretation: generic, extension to non-quadratic penalty
- Can be inserted in a realistic reconstruction pipeline using variance stabilization
- There are better alternatives to the Bayer CFA (more robust to aliasing and noise)
 - R,G,B aperiodic CFAs
 - 2x3 periodic CFA