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Reconstruction: an inverse problem
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• Stochastic framework: minimize

→ Wiener-like solution; depends on the power spectrum density of 

• Variational framework: minimize the regularized least-squares criterion

                                                               for some functional    , e.g.

• Minimax framework: minimize the worst-case      -error in some quadratic set.

      

Some classical reconstruction frameworks
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• « think analog, act digital » [Unser] :          has a parametric form

• Common point in all classical settings:
        belongs to some linear shift-invariant (LSI) functional space

LSI reconstruction spaces

    with c = v � p
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• Common point in all classical settings:
        belongs to some linear shift-invariant (LSI) functional space

• The best      -reconstruction of    is

LSI reconstruction spaces
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The frequency error kernel

E(�)
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E(�) = 1� |⇥̂(�)|2
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• Result of approximation theory  [Blu et al., 99]:

where          is the frequency error kernel:

             (                                               )

• stochastic framework:
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The frequency error kernel

E(�)
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E(�) = 1� |⇥̂(�)|2
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• Result of approximation theory  [Blu et al., 99]:

where          is the frequency error kernel:

The approximation      is exact in many cases, e.g. for bandlimited 
functions or when averaging over the shifts of

�
s
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Asymptotic result: if    is smooth enough (Sobolev sense),
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Frequency error kernel: properties

s

The behavior of            around               characterizes the error 
for the low-frequency part of 

E(�) � = 0

E(�)           is the relative error at the frequency      : 
it describes the time-averaged error when 
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Designing reconstruction schemes

• Strategy: minimizing      in                         among a class of 
functions, e.g. the cubic MOMS

cubic B-spline cubic O-MOMS

C
�

E(�) � C�L

�(t)

[Blu et al., IEEE TIP, 01]

�
Emin(�)
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Consistent reconstruction
" Once the LSI reconstruction space            is fixed:

the usual solution is to choose the unique function in
which is consistent with the data, i.e. 

 !          is the oblic projection of     in
 !  can be quite different from the orthogonal projection: 
  

s VT (�)
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Designing reconstruction schemes

• When     is fixed, choose     so that 
→ amounts to performing a quasi-projection of    in  

� p E(�) � Emin(�) � C2
min�2L

s VT (�)

n=0

n=1

n=2

n=3

[Condat, Blu, Unser, ICIP 05]

example: spline optimal
quasi-interpolation 
with inverse prefilters
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initial image bilinear interpolation bilinear quasi-int.1

13

Validation: successive rotations of angle 2�/7
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2initial image bilinear interpolation bilinear quasi-int.

Validation: successive rotations of angle 2�/7
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3initial image bilinear interpolation bilinear quasi-int.

Validation: successive rotations of angle 2�/7
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4initial image bilinear interpolation bilinear quasi-int.

Validation: successive rotations of angle 2�/7
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5initial image bilinear interpolation bilinear quasi-int.

Validation: successive rotations of angle 2�/7
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6initial image bilinear interpolation bilinear quasi-int.

Validation: successive rotations of angle 2�/7
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7initial image bilinear interpolation bilinear quasi-int.

Validation: successive rotations of angle 2�/7
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Multi-D case: signals on lattices

The hexagonal lattice
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examine that the filter does not deteriorate normal
images by blurring the edges. With the set of test
images from ISO 12640:1997 (1997), we could not
see any differences of the halftoned image with and
without prefilter. Figs. 4(b) and 7 show a part of
an ISO400 test image which exhibit no noticeable
difference between the image after halftoning with
and without prefiltering. The second-order should
produce sharper results, but the halftoning process
almost completely masks this effect.

5. Conclusions

Moire patterns in color printing are very un-
wanted artifacts which could ruin a print job. The
advent of advanced scanners and digital cameras
increases the availability of high-resolution images

and even so the possibility of high-frequency com-
ponents giving cause to moire patterns. Resampling
techniques such as nearest neighbour and bilinear
interpolation are common practice, but they do
not incorporate the properties of the target lattice
in any way. In the case of color printing, moire
patterns due to aliasing can exhibit new fre-
quencies, orientations, and color tints. Based on a
novel class of two-dimensional spline models, we
propose a reconstruction function based on a least-
squares approximation and apply it as a prefilter.
The assumed target lattice is hexagonal in order to
jointly optimize for all color separations. Results
show that moire patterns are well suppressed while
there is no visual loss of edge sharpness in ‘‘normal’’
images.

Future research could try to incorporate the
algorithm into the resampling device itself, or

Fig. 6. The test image zoneplate (cyan and magenta) after regular halftoning, but after applying the least-squares prefilter. (a) First
order; (b) second order.

Fig. 7. Normal test image. (a) Halftoned after first-order least-squares prefiltering. (b) Halftoned after second-order least-squares
prefiltering.

D. Van De Ville et al. / Pattern Recognition Letters 24 (2003) 1787–1794 1793

• There exist sensors with hex. geometry, e.g. in mammography [Laine’93]
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box-splines: 
new characterization + 

fast implementation

Reconstruction on the hex. lattice

15

 hex-splines

“hex-MOMS” 

Condat, Van De Ville, SPL 06

Condat, Van De Ville, ICIP 08

Van De Ville et al., TIP 06
Condat, Van De Ville, TIP 07
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Comparison of 2D lattices

• Examples of kernels

• Asymptotic behavior: 

• Comparison of the constants   : asymptotically, the same reconstruction 
quality is obtained on a hexagonal lattice with 40% less samples than on 
a Cartesian lattice. [Condat, Van De Ville, Blu, ICIP 2005]
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C

⇥ = �1 ⇥ = �2 ⇥ = �4

Emin(�)

E(�) � C(�)⇥�⇥2L
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• New result:

where          is the frequency error kernel:

• Stochastic framework:

                                                           

Reconstruction of derivatives

E(�)
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estimate

Reconstruction error: example

Reconstruction error
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s(t)

true error

asymptote

Reconstruction of          where                             by the derivative of the 
cubic spline interpolant.

s�(t) s(t) = e�
(t�1)2

2

1
2�

�

R
|ŝ(⇥)|2⇥2NE(T⇥)d⇥Error estimate:
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Case study: reconstruction 
of the second derivative

• Method 1 :
finite difference + linear spline interpolation               

• Method 2 :
finite difference + cubic spline interpolation 

• Method 3 :               
second derivative of the cubic spline interpolant: 

• Method 4 :
finite difference on the cubic spline interpolant         

P (z) = z � 2 + z�1⇥ = �1

⇥ = �3 P (z) = 6(z � 2 + z�1)/(z + 4 + z�1)

⇥ = �1 P (z) = 6(z � 2 + z�1)/(z + 4 + z�1)

fapp

19

fder = f ��
app

fder(t) =
1
�2

�
fapp(t� �)� 2fapp(t) + fapp(t + �)

⇥
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• M4 best with             

• All methods have
approximation order 2

• M4 > M3 > M2 > M1  

� � 0.43

Case study: reconstruction 
of the second derivative
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Case study: reconstruction 
of the second derivative

• Method 1 :
finite difference + linear spline interpolation               

• Method 2 :
→                      : the prefilter is not optimal 

• Method 3 :               
→ performs the orthogonal projection in 

• Method 4 :
finite difference on the cubic spline interpolant         

P (z) = z � 2 + z�1⇥ = �1

⇥ = �3 P (z) = 6(z � 2 + z�1)/(z + 4 + z�1)

⇥ = �1 P (z) = 6(z � 2 + z�1)/(z + 4 + z�1)

fapp
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L < L� = 4

fder(t) =
1
�2

�
fapp(t� �)� 2fapp(t) + fapp(t + �)

⇥
VT (�1)
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Conclusion

22

• The frequency error kernel is a powerful tool to evaluate and 
design linear reconstruction methods

optimal quality for a given computation cost

• Possible extensions:
Noisy case
Gradient reconstruction on non-Cartesian lattices (e.g. BCC in 3D) with 
applications to visualization [Alim, Möller, Condat IEEE TVCG, 2010]
Applications to control theory


