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ABSTRACT

Inpainting in hyperspectral imagery is a challenging research
area and several methods have been recently developed to
deal with this kind of data. In this paper we address missing
data restoration via a convex optimization technique with
regularization term based on Collaborative Total Variation
(CTV). In particular we evaluate the effectiveness of several
instances of CTV in conjunction with different dimensional-
ity reduction algorithms.

Index Terms— Inpainting, Hyperspectral images, Total
Variation, Collaborative Norms, Image restoration.

1. INTRODUCTION

HyperSpectral (HS) images are composed of hundreds of
spectral channels, typically ranging from the visible to the
long-wave infrared. The fine sampling of the spectral domain
provided by HS imaging systems allows one to infer the spec-
tral signature of the materials present in a scene, as required
by several applications such as Earth observation (e.g., pre-
cision agriculture, land cover classification and mineralogy
mapping [1]), detection of chemical agent plumes [2], quality
control [3], astrophysics [4], biometrics [5], archeology [6]
and biomedical imaging [7].

Hyperspectral acquisition can be affected by missing
information due to sensors defects (e.g., damaged pixels,
striping and sensor saturation), presence of occlusions (such
as clouds in remote sensed images [8]) and missing data (e.g.,
due to image reprojection or incomplete spatial coverage of
the acquisition). In some other cases, the imaging system is
specifically designed to acquire images with missing infor-
mation such as in compressed measurements schemes [9, 10].
In order to deal with the problem of missing data reconstruc-
tion, several techniques have been proposed ranging from the
diffusion-based methods to variational approaches [11, 12].
These latter are typically casted as convex optimization prob-
lems adopting spatial regularization, e.g. via Total Variation
(TV) [13, 14], which enforces piece-wise smoothness in the
reconstructed images. The definition of TV for vectorial
images (e.g., RGB) is not unique and affects how image

discontinuities (i.e., edges) are coupled across bands [15].
This aspect is even more relevant when dealing with HS data
due to the high number of spectral channels. This work is
specifically devoted to explore several vectorial formulations
of TV based on the Collaborative Total Variation (CTV)
paradigm [16] for the inpainting of HS images. In particular,
we will analyze several CTV-based regularization strategies
and different architectures to cope with the high dimension-
ality of the HS data.

2. COLLABORATIVE TOTAL VARIATION

We denote a HS image H in vector notation: H ∈ RC×N ,
with C bands and N pixels (each row contains the lexico-
graphically ordered pixels of a given band). In this scenario, it
is possible to define the so-called inpainting domain I ⊂ RN ,
i.e. the set of all the pixels in the image in which the spectral
information is completely missing. Performing the inpaint-
ing is an ill-posed inverse problem that can be addressed by a
convex optimization formulation:

minimize
Z

1

2
‖H− Z‖2F (I) + λϕϕ(Z), (1)

where i) Z ∈ RC×N is the image to estimate, ii) ‖·‖F (I) is the
Frobenius norm computed on the complement to the inpaint-
ing domain I; iii) ϕ(Z) is a regularization term accounting
for the desired features of the solution, whose weight (or reg-
ularization parameter) λϕ has to be tuned.

Since Z lives in a subspace of dimensionality (signifi-
cantly) lower than C [17], it is possible to solve an alterna-
tive problem which applies on the data after dimensionality
reduction. For example, Z can be factorized as Z = EX, in
which E is the set of basis (with cardinality L ≤ C) spanning
the subspace of Z and X are the representation coefficients.
Therefore the problem becomes

minimize
X

1

2
‖H−EX‖2F (I) + λϕϕ(X). (2)

In the following we will focus on the regularization term,
in order to identify the most appropriate CTV instance for HS



Table 1: Pavia University: numerical results computed via an Intel Core i7 vPro laptop. The best overall results for each in-
painting domain pattern are in blue-bold. The best results within every case are in bold and the second-best ones are underlined.
The indices have been computed by averaging over 10 Monte Carlo trials for SVD (L = 10) and NF and 50 Monte Carlo trials
for VCA (L = 10), with SNR = 30 dB. PSNR and SAM standard deviation is < 5 ·10−4 for SVD and NF, and it is < 2 ·10−2
for VCA. UIQI standard deviation is < 2 · 10−5 for SVD and NF, and it is < 2 · 10−4 for VCA.

Algorithm λϕ
Random Stripes (s = 1) Stripes (s = 2) T (s)PSNR UIQI SAM PSNR UIQI SAM PSNR UIQI SAM

V
C

A

CTV-`2,2,1(dbx) 1e-2 30.93 0.955 2.661 31.87 0.963 2.611 29.20 0.932 3.153 22.92
CTV-`1,1,1(bdx) 1e-2 29.76 0.942 2.951 29.94 0.942 2.958 27.30 0.899 3.568 23.27
CTV-`2,1,1(bdx) 1e-3 30.33 0.948 2.617 31.32 0.957 2.528 28.00 0.912 3.335 23.37
CTV-`∞,1,1(bdx) 5e-2 30.13 0.945 3.064 30.70 0.951 3.086 27.84 0.908 3.727 27.08
CTV-`∞,∞,1(bdx) 1e-1 29.76 0.942 3.264 30.70 0.953 3.196 28.51 0.925 3.658 27.97
CTV-`2,∞,1(dbx) 1e-1 30.29 0.947 3.207 30.81 0.953 3.221 28.59 0.923 3.706 24.88
CTV-(S1(bd), `1(x)) 2e-2 30.34 0.947 2.860 31.05 0.954 2.772 28.91 0.925 3.268 25.74
CTV-(S∞(bd), `1(x)) 1e-2 30.63 0.953 2.757 31.60 0.962 2.730 29.32 0.936 3.231 85.60

SV
D

CTV-`2,2,1(dbx) 5e-3 30.97 0.955 2.526 31.80 0.962 2.494 29.22 0.932 3.025 20.38
CTV-`1,1,1(bdx) 2e-2 29.96 0.942 3.229 30.65 0.949 3.231 27.89 0.907 3.862 19.92
CTV-`2,1,1(bdx) 5e-3 30.14 0.948 2.612 31.16 0.957 2.575 28.16 0.916 3.285 20.35
CTV-`∞,1,1(bdx) 2e-2 29.88 0.945 2.885 30.74 0.952 2.867 27.78 0.908 3.580 22.86
CTV-`∞,∞,1(bdx) 2e-2 29.85 0.944 2.960 30.81 0.954 2.867 28.47 0.924 3.417 24.45
CTV-`2,∞,1(dbx) 1e-2 30.44 0.950 2.850 31.10 0.956 2.839 28.66 0.926 3.403 22.27
CTV-(S1(bd), `1(x)) 5e-3 30.69 0.951 2.580 31.49 0.958 2.486 29.13 0.929 2.990 22.85
CTV-(S∞(bd), `1(x)) 5e-3 30.72 0.953 2.744 31.48 0.960 2.733 29.09 0.931 3.175 81.42

N
F

CTV-`2,2,1(dbx) 5e-3 30.86 0.953 3.227 31.64 0.960 3.197 29.12 0.930 3.693 385.67
CTV-`1,1,1(bdx) 5e-3 29.88 0.941 3.444 30.53 0.946 3.420 27.91 0.906 4.029 374.82
CTV-`2,1,1(bdx) 5e-3 30.13 0.947 3.255 31.11 0.955 3.200 28.11 0.914 3.887 394.85
CTV-`∞,1,1(bdx) 2e-1 29.82 0.940 3.370 30.54 0.948 3.371 27.74 0.905 4.006 461.96
CTV-`∞,∞,1(bdx) 2e-1 29.61 0.939 3.556 30.61 0.951 3.491 28.43 0.920 3.966 467.85
CTV-`2,∞,1(dbx) 2e-1 30.08 0.943 3.514 30.65 0.950 3.526 28.42 0.917 3.995 427.67
CTV-(S1(bd), `1(x)) 5e-3 30.57 0.949 3.254 31.35 0.957 3.145 29.00 0.927 3.620 429.26
CTV-(S∞(bd), `1(x)) 5e-3 30.56 0.950 3.561 31.23 0.957 3.569 28.98 0.929 3.936 636.34

inpainting. More in detail, we exploit the so-called Collabo-
rative Norms (CNs), which are denoted by ‖·‖C and applied
to a multivariate image A ∈ RL×N×M , where L is the num-
ber of the basis vectors, N is the number of the pixels and
M is the number of directional derivatives computed on each
pixel.

There are two general formulations for the CN’s. The first
one is based on the `p,q,r norm. For example, if we associate
the `p norm to the derivative dimension (d), the `q norm to
the basis dimension (b) and the `r norm to the pixel dimen-
sion (x), i.e. the application order is (dbx), we obtain the
`p,q,r(dbx) norm:

||A||p,q,r =

 N∑
j=1

 L∑
i=1

[
M∑
k=1

|Ai,j,k|p
]q/pr/q


1/r

. (3)

The other formulation is based on the Schatten p-norm (re-
ferred to as Sp) applied to two dimensions (usually spectra
and derivatives) and then on the `q norm for the third dimen-
sion (i.e. the pixel dimension), according to:

(Sp, `q) (A) =

 N∑
j=1

min{L,M}∑
t=1

σp
t (A·,j,·)

q/p

1/q

, (4)

that defines the (Sp(bd), `q(x)) norm, where A·,j,· ∈ RL×M

is the j-th two-dimensional matrix and σt(·) are its singular
values (e.g., see [18]). In our framework A can be written as
A(X) = cat3[XDh,XDv], where the operator catd[·, ·] con-
catenates two matrices along the direction d and where XDh

and XDv stand for the spatial derivatives of X in the horizon-
tal and vertical directions, respectively. Thus, the regulariza-
tion term can be recasted as ϕ(X) = ‖A(X)‖C . The range
of possible norms is wide [16], due to the possibility of freely
selecting the norm kind and the application order. Therefore,
we test the effectiveness of the most popular choices, such as
the `2,2,1(dbx) norm and the (S1(bd), `1(x)), with or without
the application of a dimensionality reduction technique.

3. ALGORITHM DETAILS

In order to solve the problem in eq.(2), we use the alternating
direction method of multipliers (ADMM) approach [19], that
relies on the introduction of auxiliary variables into the opti-
mization problem, via the so-called variable splitting method.
More in detail, we split the original optimization variable X
into a total of four variables, i.e. X itself and three auxiliary
variables, i.e.,U1, U2 and U3. Therefore the optimization
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Fig. 1: Quality indexes computed with respect to λϕ using CTV-`2,2,1(dbx) algorithm (Random pattern). Left plot: PSNR.
Central plot: UIQI. Right plot: SAM. A factorization with L = 10 has been performed when using VCA and SVD.

problem can be written as:

minimize
X,U1,U2,U3

1
2 ‖H−EU1‖2F (I) + λϕϕ(U2,U3),

subject to: U1 = X; U2 = XDh; U3 = XDv.
(5)

By introducing also the scaled dual variables V1,V2 and V3,
we can use an augmented Lagrangian formulation and it is
possible to write the algorithm described below.
Initialization: X(0) = 0,U

(0)
a = 0,V

(0)
a = 0, ∀a ∈ {1, 2, 3},

where 0 is a null matrix.
Repeat the following steps:
Step 1: compute X(k+1).

X(k+1) =
[
I+DhD

T
h +DvD

T
v

]−1
×
[(

U
(k)
1 +V

(k)
1

)
+
(
U

(k)
2 +V

(k)
2

)
DT

h

+
(
U

(k)
3 +V

(k)
3

)
DT

v

]
,

where I is the identity matrix.
Step 2: compute U

(k+1)
1 .

U
(k+1)
1 ◦M =

[
EET − µI

]−1
×
[
ETH+ µ

(
X(k+1) −V

(k)
1

)]
◦M

U
(k+1)
1 ◦M =

(
X(k+1) −V

(k)
1

)
◦M,

where µ is the penalty parameter introduced in the augmented
Lagrangian formulation (in our setup µ = 0.05), M is a mask
whose elements are zero on the inpainting domain and one
otherwise, and the operator “◦” indicates the element-wise
Hadamard product.
Step 3: compute U

(k+1)
2 and U

(k+1)
3 .{

U
(k+1)
2 ,U

(k+1)
3

}
= proxϕ

(
C,

λϕ
µ

)
,

where

C =
{(

X(k+1)Dh −V
(k)
2

)
,
(
X(k+1)Dv −V

(k)
3

)}

and proxϕ (·, ·) is the proximity operator related to the norm
used for the regularization term ϕ(·).
Step 4: update the Lagrange multipliers.

V
(k+1)
1 = V

(k)
1 −

(
X(k+1) −U

(k+1)
1

)
V

(k+1)
2 = V

(k)
2 −

(
X(k+1)Dh −U

(k+1)
2

)
V

(k+1)
3 = V

(k)
3 −

(
X(k+1)Dv −U

(k+1)
3

)
Until a suitable stopping criterion is satisfied.

4. NUMERICAL RESULTS

The effect of selecting different CNs is evaluated on a real HS
image acquired by the ROSIS sensor over the city of Pavia,
Italy (103 spectral channels at 1.3 m of spatial resolution).
The inpainting domain I has been constructed following two
strategies: a) Random pattern; b) Stripes pattern of width s,
which is a typical defect affecting remotely sensed images
acquired by some sensors [8]. In this paper we considered
missing data corresponding to 50% of the pixels, either or-
ganized in a random or stripes (s = {1, 2}) patterns. White
Gaussian noise was added to the images (to mimic different
acquisitions on the same area) leading to a SNR = 30 dB.

The numerical results will be devoted to test the effec-
tiveness of the Collaborative Norms for image inpainting in
these scenarios: i) factorization via Vertex Component Analy-
sis (VCA); ii) factorization via Singular Value Decomposition
(SVD); iii) No Factorization (NF), i.e. L = C and E = I.

The inpainting results are evaluated via several indices:
the Peak Signal-to-Noise Ratio (PSNR), the Universal Im-
age Quality Index (UIQI) [20] and the Spectral Angle Mapper
(SAM) [21] (useful to evaluate the spectral distortion, which
is of paramount importance for HS data). By a preliminary
Monte Carlo simulation phase, we found that reasonable re-
sults are typically obtained when L ∈ [10, 20]. Therefore we
select the value L = 10 for our experiments, for both VCA
and SVD factorization, leading to a computational time less
than half with respect to L = 20.
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Fig. 2: Pavia University. Panel (a): Original image. Panels (b) - (e): Random pattern. Degraded images (b), estimated image via
VCA/CTV: `2,2,1(dbx) (c), estimated image via VCA/CTV: `1,1,1(bdx) (d), estimated image via VCA/CTV: (S1(bd), `1(x))
(e). Panels (f) - (i): Stripes pattern (s = 1). Degraded images (f), estimated image via VCA/CTV: `2,2,1(dbx) (g), estimated
image via VCA/CTV: `1,1,1(bdx) (h), estimated image via VCA/CTV: (S1(bd), `1(x)) (i). Panels (j) - (m): Stripes pattern
(s = 2). Degraded images (j), estimated image via VCA/CTV: `2,2,1(dbx) (k), estimated image via VCA/CTV: `1,1,1(bdx) (l),
estimated image via VCA/CTV: (S1(bd), `1(x)) (m). Other relevant parameters are L = 10 and SNR = 30 dB.

The results are reported in Table 1 (the regularization
coefficient λϕ was selected by optimizing the PSNR val-
ues). It is evident that the best norms for CTV, regardless of
the used factorization, are `2,2,1(dbx) (overall the best one),
(S∞(bd), `1(x)) and (S1(bd), `1(x)). This can be explained
because the `2 and the Schatten norms applied on the bands
lead to a coupling of spatial discontinuities across chan-
nels, e.g., by enforcing smooth transitions among adjacent
bands as for `2. Regularizing with norms such as `1,1,1(dbx),
`∞,1,1(bdx) and `∞,∞,1(bdx) have led to poor performance,
which can be due to a “too weak” (`1) or “too strong” (`∞)
spectral coupling of edges.

If we focus on the dimensionality reduction, the results
show that it is effective for inpainting, both in terms of accu-
racy in the reconstructed image (SAM dramatically improves)
and in reducing the computational burden. In particular SVD
seems to have a little advantage over VCA in spectral fidelity.
On the other hand, as shown in Fig. 1, VCA exhibits a higher
degree of robustness with respect to the choice of λϕ, at least
for PSNR and UIQI. This trend, which is shown here only in
the case of `2,2,1(dbx) norm, holds also for the other CNs.

Finally, we notice that the algorithms perform well when
the stripes are thin (s = 1), but the performance strongly de-
creases when they are thicker (s = 2) due to limitations of
the local approach. This effect can be appreciated also by a
visual analysis. Indeed in Fig. 2 it is clear to see the artifacts
due to thick stripes, especially for anisotropic norms such as
`1,1,1(dbx).

5. CONCLUSION

In this work we compared the effectiveness of several norms
to implement the Collaborative Total Variation framework
for the inpainting of HS images affected by damaged pixels
and stripes. The numerical results show that that perform-
ing a dimensionality reduction and using norms `2,2,1(dbx),
S∞(bd), `1(x)) and S1(bd), `1(x)) allows to obtain good
performance, above all in reconstructing the spectral infor-
mation. Future work will be devoted to the extension of
this framework to the case of Non-Local TV, that has been
proved to be very effective (e.g. see [22]), and to the case of
multitemporal reconstruction [8].
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