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ABSTRACT

Hyperspectral pansharpening is a challenging research area
and several methods have been recently developed to fuse low
resolution hyperspectral and high resolution panchromatic
images. In this paper we focus on a recent regularization
method, called Collaborative Total Variation, exploiting a
convex optimization algorithm. We evaluate the effectiveness
of this novel approach in comparison to existing methods,
and assess the performances on two datasets: a synthetic
scene mimicking the characteristics of the Hyperion and ALI
sensors and the Pavia University dataset.

Index Terms— Data fusion, Hyperspectral pansharpen-
ing, Convex optimization, Total variation, Deconvolution

1. INTRODUCTION

Images composed of several spectral channels allow to infer,
with medium to low spatial resolution, the spectral signature
of the materials present on a scene, as required by several
applications, ranging from precision agriculture to mineral-
ogy mapping [1]. On the other hand, high spatial resolution
images can give a detailed representation of the surveyed
area, but are in general less spectrally accurate (i.e., they
feature broadband spectral responses). However, the avail-
ability of data characterized by both high spatial resolution
and high spectral diversity is precluded in the real practice,
due to physical constraints of acquisition devices. Hyper-
spectral Pansharpening [2, 3] addresses this limitation by
generating a synthetic image through the fusion of a Hyper-
Spectral (HS) image (with hundreds of bands in the Visible
Near-Infrared and Shortwave Infrared) with a PANchromatic
(PAN) image, characterized by a higher spatial resolution.
Several algorithms have been proposed in the literature for
performing hyperspectral pansharpening [3]. They can be di-
vided in three main families: Component Substitution (CS),
MultiResolution Analysis (MRA) and Bayesian/Variational
techniques. The two former groups are composed by clas-
sical pansharpening methods, extended to hyperspectral im-

ages [2], whereas the latter can be seen as a particular instance
of a deconvolution or deblurring problem.

Focusing on the latter family, variational techniques (e.g.,
based on convex optimization), have been profitably used in
recent years [4, 5]. In particular in [5] the authors have intro-
duced the “HySure” method, in which an efficient implemen-
tation is attained by reducing the dimensionality of HS data
and a regularization approach, based on a particular form of
Vectorial Total Variation (VTV) [6], is employed for dealing
with the ill-posed nature of the problem. In this work we
extend the approach proposed in [5] for the fusion of a HS
and a PAN image by considering alternative regularization
strategies based on the Collaborative Total Variation (CTV)
paradigm. Different instances of CTV were defined and ap-
plied to denoising and deblurring problems in [7]. Therefore,
in this paper we show that, according to the particular choice
of the regularization term, the fused images exhibit different
effects that directly impact the Hyperspectral Pansharpening
results.

2. PANSHARPENING VIA TOTAL VARIATION

In this work we test several spatial regularization terms based
on total variation, by relying on the framework proposed
in [5]. To make the paper self-contained, we briefly describe
it in the following, resorting to a vector notation. Namely, a
multichannel image is represented by a matrix in which each
row contains the lexicographically ordered pixels of a given
band. More in detail, the HS image H ∈ RC×NHS , with C
bands and NHS pixels, is assumed to be a spatially degraded
version of the unknown high spatial and spectral resolution
image Z ∈ RC×NPAN (with NPAN = ρ2NHS , where ρ > 1
is the resolution ratio), obtained according to the following
model

H = ZBM+Nh, (1)

where: i) B ∈ RNPAN×NPAN is the spatial blurring matrix,
representing the hyperspectral sensor’s Point Spread Func-
tion (PSF), that is assumed to be band-independent; ii) M ∈
RNPAN×NHS allows to perform a uniform subsampling of the
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Fig. 1: Synthetic dataset: GT image (a), PAN image (b), HS image(c), example of fused image using `2,2,1(dbx) norm (d).

Table 1: Synthetic dataset: performance obtained by the tested CTV norm averaged on 100 Monte Carlo trials. λϕ is the
optimal value of the TV term weight, as defined in eq. (3)

SNRPAN = 40 dB, SNRHS = 30 dB SNRPAN = 20 dB, SNRHS = 20 dB
Norm λϕ ERGAS SAM UIQI SCC λϕ ERGAS SAM UIQI SCC T [s]
`2,2,1(dbx) [5] 0.05 0.9919 1.8793 0.9334 0.9558 0.67 6.2949 11.438 0.7648 0.8799 39.9
`1,1,1(bdx) 0.02 0.9968 2.0026 0.9336 0.9560 0.37 6.4758 11.111 0.7635 0.8483 45.8
`2,1,1(bdx) 0.05 0.9095 1.7430 0.9359 0.9567 0.6 6.0433 11.142 0.7676 0.8814 28.9
`∞,1,1(bdx) 0.1 0.9832 1.9108 0.9347 0.9558 1.44 6.2674 11.284 0.7645 0.8669 130.3
`∞,∞,1(bdx) 0.15 1.2594 2.0283 0.9290 0.9540 2.33 7.3584 11.432 0.7503 0.8160 121.5
`2,∞,1(dbx) 0.1 1.1538 2.2805 0.9285 0.9544 1.89 6.8250 11.446 0.7566 0.8438 92.4
(S1(bd), `1(x)) 0.05 0.9330 1.7455 0.9353 0.9567 0.67 6.0791 11.041 0.7685 0.8821 45.5
(S∞(bd), `1(x)) 0.075 1.1306 2.0097 0.9280 0.9550 0.83 7.1989 11.964 0.7495 0.8398 80.1

image and gives rise to the lower spatial resolution of the hy-
perspectral image; iii) Z ∈ RC×NPAN is the high spatial and
spectral resolution image (i.e., the objective of pansharpen-
ing); iv) Nh ∈ RC×NHS is a matrix whose elements are sam-
ples of independent and identically distributed (i.i.d.) zero-
mean Gaussian noise with variance σ2

HS .
On the other hand, the PAN image P ∈ R1×NPAN is sup-

posed to be obtainable as:

P = RZ+Np (2)

where: i) R ∈ R1×C is related to the Relative Spectral Re-
sponse (RSR) of the Panchromatic band; ii) Np ∈ R1×NPAN

is a matrix whose elements are samples of independent and
identically distributed (i.i.d.) zero-mean Gaussian noise with
variance σ2

PAN .
Following [5], since Z lives in a subspace of dimension-

ality (significantly) lower than C, the models in (1) and (2)
admit an alternative formalization. Specifically, Z is factor-
ized as Z = EX, in which E is the set of basis (with car-
dinality lower than C) that spans the subspace of Z and X
are the representation coefficients. This dimensionality re-
duction step, which can be obtained by using algorithms from
the spectral unmixing literature [5], leads to a simplification
of the problem that reflects in an increased robustness and
eases the computation. Therefore, the aim is to estimate a
pansharpened image Z (or equivalently its factorization EX)
that gives the closest approximation of the HS and PAN im-

age according to the models (1) and (2). This represents an
ill-posed inverse problem that can be addressed by a convex
optimization formalization, described by:

minimize
X

1
2 ‖H−EXBM‖2F

+λm

2 ‖P−REX‖2F + λϕϕ(X),
(3)

where ‖·‖F is the Frobenius norm and λm = 1 [5]. Due to
the complexity of the ill-posed problem, a regularization term
ϕ(X) is required and its weight λϕ needs to be tuned. In the
following we focus on this term, in order to identify the best
choice according to the CTV theory.

3. COLLABORATIVE TOTAL VARIATION

The VTV regularization used in [5] is a particular instance of
Total Variation on multivariate images (e.g., multi- and hyper-
spectral images). Indeed the authors of [7] showed that it is
possible to build a framework, named CTV, in which the main
idea is to choose the most appropriate regularization term ϕ(·)
among the so-called Collaborative Norms (CNs), that operate
on a multivariate image A = [Ai,j,k] ∈ RN×C×M , where N
is the number of the pixels, C is the number of the bands and
M is the number of directional derivatives computed on each
pixel.

More in detail, there are two general formulations for the
CN’s. The first one is based on the `p,q,r norm. For example,
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Fig. 2: Synthetic dataset: SAM map for `2,2,1(dbx) norm (a), `1,1,1(bdx) norm (b), `2,1,1(bdx) norm (c) and (S1(bd), `1(x))
norm (d). Relevant parameters are SNRPAN = 40 dB and SNRHS = 30 dB.

if we associate the `p norm to the derivative dimension (d),
the `q norm to the bands dimension (b) and the `r norm to the
pixel dimension (x), i.e. the application order is (dbx), we
can obtain the `p,q,r(dbx) norm :

||A||p,q,r =

 N∑
i=1

 C∑
j=1

(
M∑
k=1

|Ap,q,r|p
)q/pr/q


1/r

.

(4)
The other formulation is based on the Schatten p-norm

(referred to as Sp) applied to two dimensions (usually spectra
and derivatives) and then on the `q norm for the third dimen-
sion (i.e. the pixel dimension), according to:

(Sp, `q) (A) =

 N∑
i=1

∥∥∥∥∥∥∥
Ai,1,1 · · · Ai,1,M

...
. . .

...
Ai,C,1 · · · Ai,C,M

∥∥∥∥∥∥∥
q

Sp


1/q

,

(5)
that defines the (Sp(bd), `q(x)) norm.

In our framework M = 2 and therefore we can put A
in the form A = [XDh,XDv], where XDh and XDv stand
for the spatial derivatives of X in the horizontal and verti-
cal directions, respectively. The range of possible choices
is wide [7], due to the possibility of freely selecting the
norm kind and the application order. In the following we
will check the effectiveness of the most popular choices,
such as the `2,2,1(dbx) norm (used in “HySure” [5]) and the
(S1(bd), `1(x)) norm (the well-known nuclear norm).

4. EXPERIMENTAL RESULTS

The effect of selecting different CNs is evaluated via a re-
duced resolution assessment [8] on two different datasets: a
synthetic one, designed to mimic the acquisitions of the Hy-
perion and ALI sensors, and the well-known Pavia Univer-
sity dataset. The fusion results are evaluated via several in-

(a) (b) (c) (d)

Fig. 3: Pavia University dataset: GT image (a), PAN image
(b), HS image(c), Fused image (using `2,2,1(dbx) norm) (d).

dices [2, 9, 10], i.e.: i) The Erreur Relative Globale Adi-
mensionelle de Synthèse (ERGAS) that is a generalization of
the Root Mean Square Error (RMSE); ii) The Spectral Angle
Mapper (SAM), useful to evaluate the spectral distortion; iii)
The Universal Image Quality Index (UIQI), that takes into
account the correlation, the error and the contrast between the
fused image and the reference image; iv) The Spatial Corre-
lation Coefficient (SCC) computed between the details of the
reference image and the fused one, aimed to assess the correct
rendering of the details in the fused image.

4.1. Synthetic dataset

This dataset has been created by using a collection of ten geo-
metric shapes: each of them is associated to a spectral signa-
ture of a different material. The background, divided in four
quarters, is composed by a mixing (different for each quarter)
of the previous materials. Three images have been generated
(see Fig. 1 (a)-(c)): i) A HS image, playing the role of the
Ground Truth (GT), obtained by using the Relative Spectral
Response (RSR) of the Hyperion sensor; ii) A PAN image,
obtained using the RSR of the ALI sensor. Moreover, white
Gaussian noise is added in order to have a Signal to Noise Ra-
tio (SNR) equal to a fixed value SNRPAN ; iii) A HS image,



Table 2: Pavia University dataset: performance obtained by some CTV, CS and MRA algorithms, averaged on 100 Monte Carlo
trials. λϕ is the optimal value of the TV term weight in eq. (3).

SNRPAN = 40 dB, SNRHS = 30 dB SNRPAN = 20 dB, SNRHS = 20 dB
Algorithm λϕ ERGAS SAM UIQI SCC λϕ ERGAS SAM UIQI SCC
EXP - 7.3828 5.2903 0.7686 0.5517 - 7.4267 5.7044 0.7623 0.5533
HPF - 5.8474 7.0084 0.8792 0.7261 - 6.8810 8.0241 0.8105 0.7345
ATWT - 5.9789 8.0134 0.8789 0.7404 - 6.9640 8.8917 0.8154 0.7469
GS - 5.3330 6.3522 0.8839 0.7411 - 6.1975 7.0914 0.8276 0.7433
GSA - 6.0100 9.2121 0.8798 0.7409 - 7.4846 10.501 0.8056 0.7460
PCA - 7.4006 9.3170 0.7843 0.6854 - 8.0904 9.9096 0.7387 0.6899
CTV: `2,2,1(dbx) [5] 0.002 3.8160 4.8204 0.9411 0.7804 0.02 4.2458 5.0985 0.9168 0.7494
CTV: `1,1,1(bdx) 0.002 3.8431 4.8398 0.9387 0.7777 0.005 4.2891 5.0138 0.9147 0.7679
CTV: `2,1,1(bdx) 0.002 3.9325 4.9662 0.9370 0.7763 0.01 4.3937 5.2126 0.9116 0.7600
CTV: (S1(bd), `1(x)) 0.002 3.7809 4.7396 0.9421 0.7801 0.02 4.2097 5.0285 0.9179 0.7436

obtained by spatially degrading the GT according to the PSF
of the Hyperion sensor: the resolution ratio is ρ = 3. Also in
this case, white Gaussian noise is added in order to have an
SNR equal to a fixed value SNRHS .

As shown by the numerical results reported in Table 1,
two different norms achieve the best results in the high
SNR and low SNR scenarios. The `2,1,1(bdx) norm rep-
resents the best option in the first case (SNRPAN = 40 dB,
SNRHS = 30 dB) and the nuclear norm is the optimal choice
(S1(bd), `1(x)) in the second setting (SNRPAN = 20 dB,
SNRHS = 20 dB). A significant improvement is achieved
w.r.t. the `2,2,1(dbx) norm used in “HySure” [5] in terms of
SAM and ERGAS. Focusing on the spatial distribution of the
SAM, reported in Fig. 2, we can see that the improvements
are mainly related to the borders of the geometrical shapes,
that are sharper for `2,1,1(bdx) and (S1(bd), `1(x)) (see, for
instance, the little square in the bottom-left corner). Notice-
ably, CTV algorithms based on these three norms and on
`1,1,1(bdx) (that obtains appreciable SAM values in the high
noise scenario) have comparable (and relatively low) com-
putation times T. The use of other norms results in higher
computation times and lower performance, thus constituting
worse choices.

4.2. Pavia University dataset

This dataset is based on a widely used HS image acquired
by the ROSIS sensor. Also in this case, three images were
created (see Fig. 3 (a)-(c)): i) The original ROSIS image
plays the role of GT; ii) The PAN image is simulated by
using the RSR of IKONOS sensor; iii) The HS image is ob-
tained by blurring the GT via a Starck-Murtagh filter [11]
and downsampling by a factor ρ = 4. Similarly to the other
dataset, both PAN and HS images are corrupted by adding
white Gaussian noise in order to obtain the desired values
of the SNRPAN and SNRHS , respectively. In this case,
we considered for comparison only the fastest CTV-based
algorithms, i.e., the ones based on `2,2,1(dbx), `1,1,1(bdx),

`2,1,1(bdx) and (S1(bd), `1(x)) norms. Moreover, for sake of
comparison, we assess the performance of some conventional
pansharpening techniques belonging to both the CS class
(i.e., GS and GSA, based on the Gram-Schmidt procedure,
and the Principal Component Analysis (PCA) method) and
to the MRA class (i.e., the High-Pass Filtering (HPF) and the
A-Trous Wavelet Transform (ATWT) method) [2]. Looking
at the results shown in Table 2, we see that CTV-based al-
gorithms outperform the other techniques. More specifically,
we can see that `2,1,1(bdx) yields a poor performance: in-
deed, abrupt variations (caused for example by the shadows)
are present in all the bands of this image. The `2,1,1(bdx)
norm is not able to reduce spectral artifacts on the corre-
sponding edges [7, 12]. On the other hand, the nuclear norm
(S1(bd), `1(x)) still outperforms the “HySure” `2,2,1(dbx)
one, in particular in terms of SAM, both for low and high
noise. Finally, as in the synthetic dataset, `1,1,1(bdx) norm
shows good performance in the high noise scenario.

5. CONCLUSIONS

In this work we compared the effectiveness of several norms
to implement the Collaborative Total Variation framework
for the fusion of HS and PAN images. The numerical re-
sults obtained with two different datasets indicate that the
nuclear norm S1(bd), `1(x)) allows to obtain superior per-
formance with respect to the `2,2,1(dbx) norm used in the
original “HySure” algorithm. Future work will be devoted
to the application of these algorithms to other pansharpening
scenarios, e.g., the fusion of HS and MS images and of MS
and PAN ones.
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