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ABSTRACT

In manufacturing, the monitoring of the fabrication pro-
cess is crucial in order to be sure that objects are compliant.
For nano-objects, most of this monitoring is done manually.
In this paper, we propose a method to segment different mate-
rials in a manufactured object. The method uses design infor-
mation which represent the ideal object to manufacture. This
representation visually gathers information about materials,
shapes and relationships between these shapes. In our seg-
mentation method we choose to encode this information in
the tree of shapes to enforce the design characteristics into a
real image of the object. To achieve such segmentation, we
perform graph cuts on this particular tree structure using ad-
ditional information such as the position in the design or the
order of inclusion of the shapes.

Index Terms— material segmentation, tree of shapes,
manufacturing

1. INTRODUCTION

Nano-structured objects are spreading across many different
fields of industry to create high performance materials such
as is the case for semiconductor, pharmaceutical, cosmetics
among others. These objects requires numerous complex
steps to be produced. Thus, a monitoring of the different
dimensions of the object is needed through these steps to en-
sure the correct characteristics of the final object. Currently,
most of the measurements on these objects are done manually
as no software or algorithm is efficient and versatile enough
for the early stages of the research and development of such
technologies. For these measures, we designed a pipeline as
shown in Figure 1. The object detection allows to gather a
bounding box around each object. Then the segmentation
computes the area covered by each material in each object.
Finally, the measure part matches on the segmentation the
measurements as expected. In this paper we will cover the
segmentation part.

From our knowledge, the segmentation based on an im-
age design is not covered by the literature. The characteri-
zation of nanomaterials can use imaging techniques such as
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Fig. 1: Complete pipeline for the measure of nano-objects.

Transmission Electron Microscopy (TEM). Several classical
techniques have been used to segment TEM images. Among
them, local or global threshold [1, 2, 3], graph cut [4] and
watershed [5, 6, 7, 8], are often used thanks to hight contrast
and Signal to Noise Ratio. Recent works used CNN [9, 10].
These works are related to the detection or recognition of par-
ticules in powder [1, 2, 6], viruses [11, 10], axons or synapses
[4, 9] or Chromatin and DNA [7].

In order to help in the segmentation, designs of the desired
objects are available and represent visually the ideal shape of
the object in false colors. Each different color symbolize dif-
ferent materials in the real object as shown in Figure 2. From
this design, we aim to perform segmentation by materials to
help the monitoring of the fabrication. With the simplicity of
the design compared to a real image, we chose a more sym-
bolic representation based on trees to be able to add comple-
mentary information on the materials. This representation is
the tree of shapes.

In this paper, we present first the tree of shapes and its
advantages for our problematic. Then, in a second time, we
explain the framework we designed in order to segment real
images by using a design as guidance. Finally, we discuss the
results and finally we conclude.

2. TREE OF SHAPES

The tree of shapes is a representation of the different con-
nected components corresponding to upper and lower level-
lines of an image ordered in a tree. It was proposed to facil-
itate the resolution of problems in mathematical morphology
as maxima and minima are computed simultaneously [12].

By its construction, the tree of shapes allows us to get a
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Fig. 2: Example of fabricated objects and its design image. It
is some memories pictured in Bright Field

hierarchy between the different materials in the design. As
the real object can be assimilated to a noisy, elastically de-
formed and blurry version of the design, the global structure
of both trees is similar and the topology is preserved. This
representation presents two main advantages for us [13]. It is
invariant to illumination changes which is interesting as ac-
quisition conditions of the objects may vary. Also, as it is
constructed with different thresholds the localization of the
edges it not shifted when performing filtering of the tree.

3. TREE-CUT

We developed a first approach of segmentation based similar
to a 1-nearest neighbor by assigning each node of the object to
the closest one from the design in term of similarity of grey-
level. This simple approach demonstrates good capabilities
but were lacking of regularization.

The objective of tree of shapes cut is to match each node
of the object with a node of the tree of shape of the design. We
used a segmentation approach by considering each node from
the design as a label and thus, labeling the tree of the object
with these labels. This assumption allows to gather additional
information about the labels. First, it needs to have a given
grey-level associated to it which is an approximate mean in-
tensity of the region in the image. The precision of this value
does not matter, we want an order between grey-levels. In a
second time, we review the regularization in order to be more
consistent with our problematic. Finally, we add a second
term with the grey-level in order to get more robustness by
adding the position in the image.

3.1. General framework

Considering T = (V,C), a tree of shapes with a set of ver-
tex V and a set of links C. We can define Tdesign the tree of
shapes of the design and Timg the tree of shapes of the ob-
ject. Tdesign defines the set of labels for the segmentation.
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(e) A simplified tree of shapes of a real object fabricated
from the design

Fig. 3: Example of similarity between tree of shapes of design
and real object.

Each node of this tree has an information about the average
expected grey-level. We search to minimize:

E(V ) =
∑

i∈Tdesign

j∈Timg

DGi(Vj) +
∑

i∈Timg

j∈Ni

Rij(Vi, Vj) (1)

with D the data fidelity term, R the regularization term, and
Ni the set of nodes that are either father or child of i. In a
first time we defined:

DGi(Vj) = ‖GVi
− Ij‖2 (2)

Rij(Vi, Vj) = δ(LVi , LVj ) (3)

with GVi corresponding to the grey-level of the node Vi, Lx

corresponding to the node of Tdesign with the same label as
x.



In the context of graph cut, minimizing this energy is
equivalent to find the min cut in the tree thus, computing the
max flow [14].

3.2. Regularization adapted to tree of shapes

The current model used for the regularization is the Potts
model adapted to trees. It has the advantage to penalize neigh-
boring nodes. Nonetheless, it penalizes nodes in the same
way as they are close or not in the tree of shapes of the de-
sign. But in our case, we do not want to mix two regions that
are similar in term of grey-levels but far in the tree hierarchy.
For example, in Fig 3, considering the region two (orange), if
we observed region three (red) labels in it, they will be penal-
ized because they come from a two-distance region. On the
other hand, labels from neighboring regions such as region
one (cyan) will be less penalized.

In order to still have guaranties in the graph cut in the
multi-label case, the new regularization function we want to
use has to be a distance or at least a semi distance. For this
purpose, we propose to modified the Potts model and replace
it to the shortest path between labels as described in equation
4 which satisfies the previous constraint [15] on the tree of
shapes.

Rij(Vi, Vj) = min
∀P∈Tdesign

LVj∑
i=LVi

f(Ci,i+1) (4)

with P a path P = (C1, C2, ..., Cn) (where C1 = LVi
and

C2 = LVj
) and f(Ci,i+1) = 1 ∀C ∈ Tdesign

3.3. Position cost

The data fidelity term we used in our proposition of this gen-
eral framework is rather simple but we can enhance it by in-
cluding additional terms. Using only grey-levels information
does not give enough robustness because of the important
variation of grey-levels in a same material. To increase the
use of a priori information present in the design, we chose
to use the position information. In this purpose, we resized
the design to the same size as the object to have comparable
images.

DPi(Vj) = |Lj ∩ Vj \ Lj ∪ Vj | (5)

where |A| is the number of elements of the set A and A \ B
is the complementary of A in the set B.

This new term corresponds to the number of pixels of the
current node of the tree of shapes that do not overlap with the
corresponding label in the design. Thus, the final data fidelity
term Di is :

Di(Vj) = DGi(Vj) + λDPi(vj) (6)

We add a normalization term λ to be able to give more
importance to one term or another. In our experiences, we

want to give the same importance to grey-level and to posi-
tion. So, we normalized the position term by the area of the
node as described in equation 7 and thus, adapt automatically
the lambda to match with the average of the grey-level term.

DPi(Vj) =
|Lj ∩ Vj \ Lj ∪ Vj |

|Vj |
(7)

4. EXPERIMENTS AND RESULTS

For the experiments, we have 2 data sets available. The first
one contains objects as show in figure 2, it contains 28 ob-
jects. It is parts of memory objects imaged with Transmission
Electron Microscopy. On this data, the main challenge is the
variability of material 1 (see Figure 3) as some darker pix-
els appears in the material which is clear that a thresholding
approach will not be satisfactory. The second one contains
confidential data. It has also three materials and 32 objects.
For this data set, the problematic are a low contrast between
material 1 and material 2 and a thin segmentation of the ma-
terial 1 at some places.

We compared our approach against two classical ap-
proaches which are the graph cut (GC) and the watershed
segmentation. For the graph cut, we select the labels ac-
cording to the different grey-levels in the design. For the
watershed, we computed the ultimate erosion for each label
to obtain the seeds. We also compared with an improved
version of the graph cut which uses the position in the design
as an additional term for the fidelity to the data. Finally, we
also proposed a method using the tree of shapes by matching
each node of the image to the closest one from the design in
term of grey-level intensity.

Table 1: Comparative results of the data set 1 with Dice Index

GC Watershed GC
Position

Tree
cut

Background 0.50 0.71 0.48 0.79
Material 1 0.09 0.73 0.12 0.68
Material 2 0.46 0.82 0.59 0.90
Material 3 0.72 0.91 0.80 0.95

Mean 0.44 0.79 0.52 0.83

Table 2: Comparative results of the data set 2 with Dice Index

GC Watershed GC
Position

Tree
cut

Background 0.87 0.91 0.93 0.92
Material 1 0.73 0.24 0.71 0.73
Material 2 0.22 0.51 0.29 0.64
Material 3 0.76 0.86 0.89 0.93

Mean 0.68 0.63 0.70 0.81
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Fig. 4: Comparative results on a simple object from the data
set 1.

On the example shown in Figure 4, we can see that the
graph cut approach have difficulties because the materials
contrast but the watershed performs way better except for the
material one (cyan). On a more difficult example as shown in
Figure 5, the watershed begins to show difficulties to get the
correct segmentation. The discontinuities of the segmentation
of our method are caused by the noise in the image and the
structure of the tree of shapes. But in practice, they do not
pose to much issues for the measurements. Finally, in table 1
and 2 we can see the different results of each method on both
data sets by comparing them with Dice index, which means
the closer to 1, the better. On both data sets, material one and
two are difficult because of their contrast or because they are
similar to another material, and that overall our proposition
performs better.

5. CONCLUSION

Our proposed technique takes advantage of the structure of
the tree of shapes to perform segmentation. This allows to
be robust to the changes of illumination across the data set
both inter and intra image. Secondly, edges are not moved
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Fig. 5: Comparative results on a difficult object from the data
set 1.

during the matching thanks to these properties. Nonetheless,
we saw that these different thresholds create some artifacts in
the resulting segmentation by including pixels surrounding an
inner region.

The use of the framework is also convenient as it allows
to leverage the possibility for the tree of shapes to contain
numerous attributes about the nodes. We saw that using a
second term for the data fidelity helps to deal with outlier re-
gions. The regularization in the framework is also a really
strong tool to obtain more homogeneous regions.

In conclusion, we observed that the results are compliant
with the design definition but some artifacts remain. For the
future work, we think that a better regularization would help
for this aspect because the final segmentation should be con-
nected into a single component for each label. Finally, it could
be interesting to build the tree of shapes from other attributes
than grey-level as the blur in the images tends to create leaks
in the segmentation.
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