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Abstract
In this paper, we propose a new approach for structured illumination 
microscopy image reconstruction. We !rst introduce the principles of this 
imaging modality and describe the forward model. We then propose the 
minimization of nonsmooth convex objective functions for the recovery of 
the unknown image. In this context, we investigate two data-!tting terms 
for Poisson–Gaussian noise and introduce a new patch-based regularization 
method. This approach is tested against other regularization approaches on 
a realistic benchmark. Finally, we perform some test experiments on images 
acquired on two different microscopes.
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1. Introduction

1.1. Context

Superresolution approaches allow us to go beyond the resolution of standard wide!eld #uo-
rescence microscopy, therefore breaking the classical diffraction limit de!ned by Abbe in 
1873 [1]. Structured illumination microscopy (SIM) is one of the recently proposed optical 
superresolution methods compatible with time lapse imaging of several labels. Based on the 
illumination of a sample by a set of interference patterns, this technique makes it possible 
to typically increase the resolution of the microscope by a factor of two [2, 3]. The resulting 
sinusoidal modulations of the #uorophore excitation signal lead to frequency shifts in the 
Fourier domain, which bring inaccessible frequencies within the scope of the optical transfer 
function of the microscope. An example of acquired raw data is depicted in !gure 1. Once 
post-processed, the acquired images show an increased resolution, as illustrated in !gure 2, 
where an acquired image has been reconstructed using a linear method [3]. Several studies 
have investigated the properties of such reconstruction algorithms and provided solutions for 
artifact reduction [4, 5]. However, like in many optical microscopy approaches, the photon 
counting process leads to noisy data, compromising the quality and the resolution of the !nal 
images. Therefore, the development of reconstruction methods less sensitive to noise and able 
to deal with the speci!city of the structure of the reconstruction problem is crucially needed.

1.2. Related work

While Wiener !ltering remains the main reconstruction approach for SIM, the problem was 
recast in [6] as a more general inverse problem, allowing more complex illumination pattern 
to be considered [7–9]. Several regularization approaches have been also explored, in [6, 10] 
the !2 norm of the Laplacian operator is considered and total-variation (TV) was explored in 
[11] to deal with low signal to noise ratios. If [12] makes the underlying assumption of the 
Poisson noise model, none of these approaches consider a more accurate Poisson–Gaussian 
noise model. Moreover, none of the recent regularization methods, such as the Schatten norm 
of the Hessian operator [13], nonlocal total variation (NLTV) [14–16], global patch diction-
aries [17, 18] or local patch dictionaries [19] have been applied to structured illumination 
reconstruction, therefore limiting the !nal performance of this superresolution technique in its 
ability to discriminate !ne structures of interest.

1.3. Contribution and organization of the article

We propose here a reconstruction method taking into account the Poisson–Gaussian distri-
bution of the noise and relying on a new regularization approach based on learning local 
dictionaries of patches in a convex setting. The minimization of the resulting cost function is 
performed using a versatile primal-dual optimization method. An extensive comparison with 
alternative regularization approaches is provided and we detail the implementation aspects of 
the tested regularization approaches in an uni!ed way. Note that this work is an extension of 
the method published in a conference proceedings [20].

We will !rst recall the image formation problem in section 2.2, and further introduce the 
proposed reconstruction scheme based on Poisson–Gaussian approximation and local diction-
aries of patches in section 3. A performance evaluation on a synthetic dataset is then detailed 
in section  4.2 and the reconstruction of acquired data is !nally analyzed in section  4.4.  
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Finally, in appendix, we recall the implementation details for the tested regularization cost 
terms and the needed tools for their minimization.

2. Presentation of the problem

2.1. Notations

In this article, IN denotes the identity operator/matrix of size N × N ; when the size is not 
mentioned, it should be clear from the context. ·∗ denotes the adjoint of an operator; when 
the operator is assimilated to its representation matrix, with real entries, ·∗ = ·T, the trans-
pose operation. In the following, ⊗ denotes the Kronecker product and ·†, the Moore–Penrose 
pseudo-inverse. Notations used in this article are listed in table A1.

2.2. Forward problem

Let us consider a set of K noise-free images ȳk  with k = 1, . . . , K :

ȳk = S0A0Mkx̄, (1)

Figure 1. Example of real data. A molecular probe slide was imaged nine times using 
a Nikon SIM microscope using a 100× oil objective. The images represent a 256 × 256 
region of 512 × 512 acquired images and display some labeled microtubules. The 
modulation pattern can be observed as a slight Moiré effect on the object.

J Boulanger et alInverse Problems 34 (2018) 095004
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where x̄ is the unknown two-dimensional image de!ned on a regular grid of size N1 × N2 and 
represented in a vectorized form by a vector of size N = N1N2. Mk, A0 and S0 are three linear 
operators represented by matrix multiplications and corresponding to modulation, convolu-
tion and down-sampling, respectively.

The modulation operator Mk performs a pixelwise multiplication by a pattern image mk, 
so that Mk = diag(mk). In SIM, modulations often result from the interference of two or three 
coherent laser beams [2, 21] and can be represented by a sinusoidal pattern de!ned for each 
point of coordinates (n1, n2) ∈ N1 × N2 as:

[mk]n1,n2 = 1 + αk cos(n1ω1,k + n2ω2,k + ϕk), (2)

where αk is the amplitude of the modulation, ω1,k and ω2,k are the modulation frequencies and 
ϕk a phase. However, one can devise other light structuring strategies such as a set of scanning 
points [22], or random illumination [7], often at the expense of the number of required images. 
In the following, we will stack all the modulations Mk in the matrix M = [M1, · · · , MK ]

T.
The convolution operator A0 models the point-spread function of the acquisition sys-

tem, represented as a pseudo-circulant N × N  matrix. In the sequel, we will use the notation 
A = IK ⊗ A0 to represent the convolution of all modulated images. Moreover, when approxi-
mating the optical microscope by a perfect diffraction-limited 2D imaging system, we can 
model the optical transfer function (OTF) in wide!eld microscopy by the auto-correlation of 
the pupil function as [6, 23]:

A0(!) =






2
π

(
arccos

(
"

2"0

)
− "

2"0

√
1 −

(
"

2"0

)2
)

! ! !0,

0 otherwise,
, (3)

where ! =
√
ξ2

1 + ξ2
2  is the amplitude of the frequencies in polar coordinates and !0 the cutoff 

frequency. A pro!le of the OTF A0(!) is depicted in dashed black in !gure 3. We can note 
that for any pair of signals whose spectrum only differs for frequencies greater than !0, both 
signals will be equal when viewed through the optical system. We therefore cannot assume 
the operator A0 to be injective.

The down-sampling operator S0 represented by a matrix of size L × N, where typically 
L  =  N/4, leads to down-sampling of a factor 2 in each dimension. Note that the images could 
be sampled at a higher rate at the acquisition time, however this would compromise the !eld 

Figure 2. Reconstruction of the data displayed in !gure 1. On the left the corresponding 
classical wide-!eld microscopy is obtained from the mean of the nine images. On the 
right, a linear least-squares reconstruction. The actual dimension of the image on the 
right is twice the size of the image of the left.
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of view and increase the noise level, since the number of photon per pixel would also decrease. 
In the rest of the text, down-sampling for the set of K images is represented by the operator 
S = IK ⊗ S0.

To summarize our forward imaging model, we can now conveniently rewrite equation (7) 
as:

ȳ = SAMx̄ (4)

where ȳ = [ȳ1, · · · , ȳK ]T is the stack of noise-free images.
The principle of SIM imaging in the case of sinusoidal modulations is illustrated in !g-

ure 3. It depicts how the modulations amount to a shift in the Fourier domain (!gure 3(b)), that 
makes it possible for the optical system to capture information at frequencies above the cutoff 
frequency !0 (!gure 3(c)). By shifting back these components individually, a high resolution 
image is recovered. However, in order to obtain this highly resolved image (!gure 3(d) yellow 
curve) a normalization step equivalent to the ratio of the demodulated images (green curve) 
with the shifted OTFs (purple curve) is necessary, at the risk of amplifying the noise present 
in the acquired data.

Indeed, the acquired images are actually degraded by some random noise due to the photo-
electron counting process (shot noise) and the thermal agitation of the electrons (dark current 
and readout noise). To take into account those degradations, a general noise model can be 
written as [24]:

Figure 3. Principle of structured illumination microscopy (SIM) illustrated in one 
dimension. (a) Spectrum of x in blue and the optical transfer function A0 in black (b) 
Spectrum of a modulated image xn · (1 + cos(ωn + ϕ)) (green) as the sum of the three 
components 1, e±i(ωξ+ϕ) (resp. blue and red) (c) Spectrum of the sum (green) and of the 
individual components (blue and green) after being !ltered by the OTF of the optical 
system (d) Reconstruction of a superresolved image obtained by shifting the modulated 
components (red) and summing them (green). Finally, normalizing the components by 
taking into account the shape of the OTF (purple) allows us to recover the original 
image (yellow). (a) Original. (b) Modulation. (c) Acquisition. (d) Reconstruction.
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y = κ p + n, (5)

where κ is the overall gain of the acquisition system, p is a vector of Poisson distributed 
random variables of parameter (ȳ − mDC)/κ accounting for the shot noise and n a vector 
of Normally distributed random variables of mean mDC and variance σ2

DC. The offset term 
mDC accounts for the baseline gray level that are characteristic of the sensor, while the vari-
ance σ2

DC of the additive white Gaussian noise summarizes several intensity-independent 
noise contributions such as dark current and readout noise. This formulation ensures that 
limN!→∞

1
N!

∑N!

!=1(y)! → ȳ for N! different statistical realizations of the random vector (y)!. 
The resulting distribution y is then the convolution of a Poisson distribution and a Normal 
distribution. Note that a direct use of a variance stabilization transform [25] would intro-
duce nonlinearities, which would have a signi!cant impact on the observation model (7) and 
make the reconstruction process intractable. The additive white Gaussian noise model cannot 
deal with variations of the noise level, especially considering that an image often has a high 
dymanic range (16bit), and a pure Poisson approximation does not account for the presence of 
additional readout noise. Therefore, we consider in section 3.2, which are able to capture the 
speci!cities of joint Poisson–Gaussian noise.

3. Proposed approach

In this work, we focus on a general framework aiming to deal with possibly non!nite data 
!delity terms and nonsmooth regularization terms [26]. We formulate the estimation proce-
dure as a minimization involving a sum of Q cost terms de!ned by:

x̂ ∈ Argmin
x∈C

Q∑

q=1

fq(Tqx), (6)

where fq are convex, closed and proper functions [27] from RMq to R ∪ {+∞}, C is a non-
empty closed convex subset of RN  (e.g. nonnegative solutions) and Tq  operators represented 
as matrices of size Mq × N . The cost terms fq(Tqx) corresponding either to a data !delity 
term or to a regularization term.

3.1. Primal-dual proximal minimization

When the involved functions are non-necessarily smooth, two main classes of algorithms 
can be derived to solve (6) and have been largely employed for solving inverse problems 
during the last decade: the alternating directions method of multipliers (ADMM) [28] or the 
Chambolle–Pock algorithm also known as primal-dual hybrid gradient (PDHG) [29–33]. 
Both strategies have in common to split the processing of the (fq)1!q!Q and the (Tq)1!q!Q 
and to rely on the computation of the proximity operator [34] of each fq. We de!ne the proxim-
ity operator proxf : Rn → Rn of any closed proper convex function f : Rn → R ∪ {∞} as:

(∀x ∈ Rn) proxf (x) = argmin
y∈Rn

(
1
2
‖x − y‖2

2 + f (y)
)

. (7)

Note that a large number of closed form expressions are known in the literature [27]. Some of 
them, useful for the study, are recalled in appendix. The major difference between both strate-
gies comes from the way the operators (Tq)1!q!Q are handled. The ADMM requires to com-
pute (

∑Q
q=1 T∗

q Tq)−1 while the PDHG strategies avoid such a step. Note that since in general 
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the operator associated to SIM imaging is not directly invertible, the ADMM would require 
an inner minimization procedure (e.g. the conjugate gradient) for the inversion of this opera-
tor. Finally, we can note that the PDHG can be formulated as a preconditioned ADMM [26]. 
Consequently, we solve equation (6) using the PDHG algorithm [29, 32, 33] (see !gure 4) and 
consider several cases corresponding to the combination of function fq and operator Tq . The 
algorithm has four parameters: the number of iteration R, τ, σ and the acceleration ρ ∈ ]0, 2[. 

In practice, we use R  =  500, ρ ≈ 2 and σ = 1/(τL) where L =
√∑Q

q=1 ‖Tq‖2  [32]. The last 

parameter τ is set to 1 by default in our experiments but could be adapted for each objective 
function. Note that this parameter will only change the convergence rate.

In the next section, we will explicit the cost terms fq(Tqx) corresponding to the proposed 
approach, while appendix details the other regularization terms tested in section 4.2. We give 
the expression of the function fq and its associated proximity operator [34], and describe the 
operator Tq  and its ajoints when needed. As a convention, we denote z = Tqx the vector of 
length Mq in the image space of Tq . In practice, we will later consider only the combination of 
one data term along with one regularization term, while C will denote the nonnegativity con-
straint, which will be enforced directly on the iterates of the algorithm, see Step 8 in !gure 4. 
Therefore, we can write the estimate as: x̂ ∈ Argminx!0f1(T1x) + f2(T2x).

3.2. Poisson–Gaussian approximation

Handling Poisson–Gaussian noise is challenging as the resulting probability density func-
tion (p.d.f) is the convolution of the Poisson and Gaussian densities. Consequently, several 
strategies have been developed over the years to approximate the resulting p.d.f (See [35] for 
a recent review). The different approximations are more or less precise, depending on the rela-
tive amount of Gaussian and Poisson noise, and are more are less numerically tractable. Here, 
we propose to consider two approximations: the shifted Poisson model and the heterosce-
dastic Gaussian model approximation. One can notice a degree of symmetry between these 
two approaches, as the !rst one approximates Gaussian noise as Poisson noise with shifted 
intensity while the second one approximate Poisson noise by Gaussian noise with variance 
depending on the intensity of the signal.

Figure 4. The primal-dual minimization algorithm proposed in [32] allows us 
to minimize the energy functional de!ned by equation  (6) given that the proximity 
operator of the function fq and the operator Tq  and its adjoint T∗

q  are de!ned. We can 
notice that this algorithm does not require the direct inversion of these operators.

J Boulanger et alInverse Problems 34 (2018) 095004
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3.2.1. Shifted Poisson model. Under a purely Poisson noise model assumption for 
the acquired data y, the negative log-likelihood would coincide up to a constant with the 
Kullback–Leibler (KL) divergence also called I-divergence [36] and can be expressed as 
z = (zn)1!n!LK !→ fPoisson(z) =

∑LK
n=1 f (n)

Poisson(zn), where the component-wise function is 
de!ned by [37]:

(∀γ > 0, ∀zn ∈ R) f (n)
Poisson(zn) =






zn − yn log zn, zn, yn > 0,
zn, zn > 0 and yn = 0,
∞, otherwise.

 

(8)

In this con!guration, the linear operator is TPoisson = SAM. The proximity operator is given 
component-wise for n ∈ [1, LK] by:

(∀zn ∈ R) prox
γf (n)

Poisson
(zn) =

1
2

(
zn − γ +

√
(zn − γ)2 + 4γyn

)
 (9)

and the proximity operator proxγfPoisson
(z) =

(
prox

γf (n)
Poisson

(zn)
)

1!n!LK is obtained by applying 
equation (9) to each component of the vector z.

In the case of Poisson–Gaussian noise, we can shift the Poisson likelihood as proposed by 
[38]. However, we would like to take into account the full model that we proposed in equa-
tion (5) with a Gaussian noise n ∼ N (mDC,σ2

DC) and a gain κ. In order to do so, we seek 
a transformation of the form (y − b)/a with (a, b) ∈ R2 so that the two !rst moments are 

matching after transformation E[ y−b
a ] = Var

[
y−b

a

]
 in order to satisfy the intrinsic property of 

Poisson random variable. Choosing a = κ leads to b = mDC − σ2
DC/κ and we can de!ne then, 

the shifted Poisson data-!tting term as:

(∀zn ∈ R) f (n)
shifted−Poisson(zn) = f (n)

Poisson

(
zn − b

a

)
 (10)

and the associated proximity operator component-wise for n ∈ [1, LK] as:

(∀zn ∈ R) prox
γf (n)

shifted−Poisson
(zn) = a prox

γf (n)
Poisson

(
zn − b

a

)
+ b (11)

using these two constants for the shifted Poisson approximation.

3.2.2. Heteroscedastic Gaussian noise model. As an approximation of the Poisson–Gauss-
ian noise model, a weighted least-squares data term can be used to take into account the depen-
dency between the variance of the noise level and the intensity of the signal. The weighted 
least-squares can be written as

(∀z ∈ RLK) fWLS(z) =
1
2
(z − y)TW−1(z − y), (12)

where W is a diagonal variance matrix of size LK × LK  with elements (wn)1!n!LK  and the 
associated proximity operator is given by

(∀γ > 0)(∀z ∈ RLK) proxγfWLS
(z) =

(wnzn + γ yn

wn + γ

)

1!n!LK
. (13)

J Boulanger et alInverse Problems 34 (2018) 095004
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Given the noise model de!ned by equation (5) the variance at each point n is given by:

Var[yn] = κE[yn] + σ2
DC − κmDC, (14)

with E[yn] and Var[yn] the expectation and variance of the random variable yn. The weights 
are consequently given by:

wn = κȳ + σ2
DC − κmDC (15)

where ȳ can be approximated by its noisy counterpart y.

3.2.3. Noise parameter estimation. If the CCD or sCMOS sensor have not been calibrated 
and the parameters κ, mDC and σDC are unknown, we can follow the procedure described in 
[39] to estimate the required parameters. The variance of the noise Var[yn] is estimated locally 
using a maximum of absolute deviation !lter (MAD) computed on the pseudo-residuals 
(normalized Laplacian 1√

20
(D2

11y + D2
22y)) of the image while the mean is estimated using a 

median !lter. The linear regression allows us then to estimate the gain κ and the noise variance 
at the origin eDC = σ2

DC − κmDC. Interestingly, these two parameters are suf!cient to fully 
determine the noise model for both approximation.

3.2.4. Comparison of the associated likelihoods. In order to gain some insight into these 
two approximations of the Poisson–Gaussian noise model, we can analyze the associated 
likelihoods. We present in !gure 5 the Hellinger distance between the likelihoods of the exact 
model and the two approximations, in (a) and (b), as a function of the photo-electron count ȳ 
and readout noise σDC simplifying without loss of generality setting κ = 1 and mDC = 0 for 
simplicity without loss of generality. The relative ratio shows that the likelihood of the shifted 
Poisson model is closer to the exact likelihood when the number of photons ̄y is approximately 
below 50 and the standard deviation of the readout noise is approximately below 5. Then a 
transition zone shown in red indicates that the heteroscedastic likelihood is closer to the exact 
model. Increasing further the photon count and the readout noise !nally seems to sti#e the dif-
ference between these two models as the relative difference tends to zero (lime green color). 
This analysis suggests that the approximation that should be used could be selected according 
to the regime where the data have been acquired.

3.3. Regularization by local dictionaries of patches

We propose here to adapt the idea of online learning of sparse local dictionaries of patches 
in the context of inverse problem regularization by considering the nuclear norm of a patch 
extraction operator TP. This operator TP maps all the Np × Np patches in each neighborhoods 
of dimension Nw × Nw into a matrices of dimension N2

p × N2
w. Dimension of z = TP(x) can 

be then represented as a 4D array, where a N2
p × N2

w collection of patches corresponds to each 
2D point of the image space. The adjoint of this operator is the projection of the overlapping 
collection patches onto the image. Note that the operator TP does not depend on the content 
of x but is only parametrized by the windows and patch dimensions. As an illustration, let us 
consider the case of a 4 × 4 image and patches of size 2 × 2. Then the operator is:

J Boulanger et alInverse Problems 34 (2018) 095004
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TPx =





x1 x2 x5 x6

x2 x3 x6 x7

x3 x4 x7 x8

x5 x6 x9 x10

x6 x7 x10 x11

x7 x8 x11 x12

x9 x10 x13 x14

x10 x11 x14 x15

x11 x12 x15 x16





and corresponds to the nine possible translations of the patch of four elements, picking values 
within an image represented as a vector of 16 elements. The patch dictionaries are highly 
redundant and for computational ef!ciency, only a fraction of the possible neighborhoods 
can be considered by shifting the patch extraction window from its half in both directions. As 
an example, for a 512 × 512 images, the operator will map to a 128 × 128 !eld of 16 × 25 
matrices corresponding to dictionaries of patches of size 4 × 4 extracted from neighborhoods 
of size 8 × 8. More generally, the total size of the collection of local dictionaries is given by 
2n
Nw
(Nw − Np + 1)2N2

p. In order to better illustrate this approach, the diagram shown in !gure 6 
represents the extraction of two dictionaries associated to the neighborhoods of two selected 
points in the image.

The nuclear norm ‖zn‖∗ of zn ∈ R2×2 is de!ned as the !1-norm of the diagonal matrix Λn 
such that zn = UnΛnVT

n . Then, the associated proximity operator is given by [16]:

(∀zn ∈ R2×2) proxγ‖·‖∗
(zn) = Unproxγ‖·‖1

(Λn)VT
n . (16)

The nuclear norm can be seen as a relaxed version of the case !0-norm of the eigenvalues [40]. 
Note that the Schatten norm Sp of the Hessian operator with p  =  1 described in appendix and 
introduced in [13] is identical to the nuclear norm.

(a) (b) (c)

Figure 5. Poisson–Gaussian noise approximation error measured as the Hellinger 
distance between the exact likelihood and either shifted Poisson (a) or the heteroscedastic 
Gaussian (b) models. In (c) the relative ratio of the two errors highlights in blue 
the domain in the (y,σDC) space where the shifted Poisson model outperforms the 
heteroscedastic approximation.

J Boulanger et alInverse Problems 34 (2018) 095004
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4. Results

4.1. In"uence of the patch and neighborhood size

We proposed here to evaluate the in#uence of the patch and neighborhood size of the pro-
posed patch-based regularization approach. Table 1 gives the dictionary size factor, PSNR and 
elapsed time for three combinations of patch and neighborhood size. We can observe that the 
two !rst are equivalent in term of computation time, with the second one providing a slightly 
better PSNR. Using a combination of larger patch and neighborhood increases by a factor 3 
the computation time while not improving the PSNR. Finally, we can note the dependency of 
the optimal regularization parameter on the patch and neighborhood size. In the following, we 
will use a 8 × 8 patch size and a 16 × 16 neighborhood size.

4.2. Evaluation of data #tting term and regularization term

In order to evaluate the proposed reconstruction method, we consider alternative regulariza-
tion approaches corresponding to different choices for the function f2 and the operator T2. The 
regularization cost functions are the following

 •  the squared !2-norm of the gradient operator ( f2(·) = ‖ · ‖2 , T2 = [D1, D2]T ),
 •  the squared !2-norm of the Laplacian operator ( f2(·) = ‖ · ‖2 , T2 = D2

11 + D2
22) [6],

 •  the TV as the !1-norm of the gradient operator ( f2(·) = ‖ · ‖1, T2 = [D1, D2]T ) [41, 42],
 •  the nonlocal TV as the !1-norm of the weighted nonlocal !nite difference operator 

( f2(·) = ‖ · ‖1, T2 = TNL) [14],
 •  the Schatten norm (with p  =  1, that is the nuclear norm) of the Hessian operator with 

( f2(·) = S1(·), T2 = TH) [13].

The details of the associated proximity operators and the de!nition of the linear operators are 
given in appendix. Note that only the three !rst regularization terms have been previously 
tested in this context, while the NLTV and Schatten norm of the Hessian operator have not 
been applied to SIM image reconstruction. Although none of these regularization terms have 
been tested in the context of Poisson–Gaussian noise model for SIM image reconstruction, we 

Figure 6. Illustration of the local dictionary of patch extraction. Neighborhood 
(16 × 16 pixels) depicted in orange are sampled every 8 pixels in each directions. For 
each neighborhood, each patches (violet) are collected and vectorized to form a matrix: 
the dictionary. Consequently, the image is represented as a collection of dictionaries.
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can note that they have been considered in the context image deconvolution under a Poisson–
Gaussian noise model but with a different algorithm [35].

We generated two test images (see !gure 7). The !rst one aims at providing a visual assess-
ment of the performance of the reconstruction in term of resolution, by integrating details 
at various frequencies. To check the data !tting under the Poisson–Gaussian noise assump-
tion, we took care to integrate a large range of gray levels and to prevent any bias towards a 
par ticular regularization term, various realistic textures (points, blobs, lines, disks) are also 
used. The second image emulates several realistic intracellular features of interest for single 
cell imaging such as microtubules, endoplasmic reticulum, mitochondria and vesicles. The 
dynamic range of both images is [0, 255]. We simulated structured illumination images by 
using a down-sampling factor of 2 and a cut-off frequency ρ0 = 1.53 pixel−1. The modula-
tions are composed of three equispaced phases and three equispaced angles with a frequency 
of 1 pixel−1. The images were !nally corrupted by noise, as described in equation (5), with 
κ = 2, mDC = 0 and σDC = 10. For each run, we used 500 iterations and we tested 20 values 
logarithmically spaced in the interval [0.01, 100] for the regularization parameters. We used the 
PSNR as a criterion in order to select the best image among the 20 results. All the implementa-
tion has been done using the MATLAB programming language.

To evaluate the performances of the reconstruction methods, we have considered the PSNR 
and the SSIM criteria. The PSNR being very sensitive to bias, we used a linear regression 
between the original image and the estimate to remove any systematic trend. More precisely 
the PSNR is de!ned as: PSNR(x̄, x) = 20 log10(255/‖x̄ − (x − c0)/c1)‖2 where the coef!-
cient c0 and c1 are estimated by by minimizing ‖x̂ − (c0 + c1x)‖2.

Figure 8 displays the evolution of both criteria as a function of the regularization parameter. 
We can notice that if the difference between the two data-!tting terms are more apparent in 
term of PSNR than in term of SSIM while the optimal regularization parameter seems to be 
consistent between the two performance measures. Figure 9 shows the images corresponding 
to the best PSNR for the 12 cost functions for both test images with the PSNR values, the 
corresponding SSIM, the regularization parameter and the elapsed time. PSNR and SSIM 
values seem to correlate with the visual inspection of the images. In particular, high resolu-
tion information in the middle row of the image A seems to be better retrieved when using 
the proposed regularization approach. Note that the proposed regularization approach leads 
to signi!cant computation times. On the one hand, all other approaches involve the optimized 
Matlab im!lter function, while on the other hand, the proposed approach requires many loops 
which are known to be slow in these condition. An implementation in another programming 
language using multi-threading would reduce the computational burden. Finally, best PSNR 
and SSIM values are displayed in table 2 for each cost term and both images. We can see in 
bold that the best data !tting term would depend on the image and the performance measure 
while the proposed regularization consistently outperforms the other ones. Note that a com-
parison with recent methods taking advantage of the #exibility of the Bayesian framework 

Table 1. In#uence of patch and neighborhood size. The dictionary size factor is a 
multiple of the initial image size.

Patch Neighborhood Dictionary λ PSNR (dB)
Elapsed 
time (s)

4 × 4 8 × 8 100 1.0 14.25 105
8 × 8 16 × 16 648 2.0 14.34 106

16 × 16 32 × 32 4624 2.0 14.11 375
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for the formulation of the inverse problem [43] would be well suited for the reconstruction of 
blocky object, with sharp and sudden changes of intensity [44].

4.3. Modulation pattern

As described in [6], one advantage of considering the SIM image reconstruction as an inverse 
problem lies in the ability to reduce the number of acquired images. As an example, we can 
consider a set of three images with different modulation orientations but no phase shift. This 
allows us to effectively reduce the imaging speed and photo-toxicity which are both limiting 
factors in #uorescence light microscopy. This is a nonideal case as the sum of the modulation 
is not a uniform image and that therefore the noise is not spatially uniform. Nonetheless the 
results displayed in !gure 10 show that the sample is successfully recovered with PSNR of 
26.75 dB and that high frequency details are well estimated as shown on the power-spectrum 
on the second row.

4.4. Reconstruction of acquired data

We have tested the proposed approaches on acquired data. For this purpose, we used  
two commercial systems: the N-SIM from Nikon and the OMX from general electrics.  

Figure 7. Test images used for evaluating the data-!tting and regularization terms.

Figure 8. Evolution of the PSNR and the SSIM criterion as a function of the 
regularization parameters for the test image A.
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Both microscopes use a similar approach for performing SIM imaging and rely on the use of 
a diffraction grating which is optically conjugated with the object plane.

The N-SIM is equipped with a 100× (1.49 N.A.) objective and a 2.5× lense is set on the 
camera port. A Xion Ultra 897 EMCCD camera from Andor Technology Ltd was on the 
detection path leading to a pixel-size of  ∼64 nm  in the !nal image. A FluoCell prepared slide 
#2 with BPAE cells with mouse anti-α-tubulin was imaged and the results obtained with the 

Figure 9. Reconstruction of the two test images with PSNR, SSIM, regularization 
parameter and elapsed time for the best PSNR. Images are displayed with gamma 
correction of 0.5 in order to better appreciate the details in the low end of the dynamic 
range.

Table 2. Best PSNR (dB)/SSIM (%) performance for both test images.

‖∇‖2
2 ‖∆‖2

2 TV ‖TH‖∗ NLTV ‖TP‖∗
Shifted 
Poisson 21.35/82.53 21.73/82.96 22.79/84.00 23.58/85.94 23.02/82.95 24.28/ 87.18

Weighted 
least-
squares

22.88/84.20 22.83/84.30 22.66/83.84 23.61/85.94 22.94/82.36 24.67/87.00

‖∇‖2
2 ‖∆‖2

2
TV ‖TH‖∗ NLTV ‖TP‖∗

Shifted 
Poisson

26.70/85.42 26.86/85.89 27.99/87.59 28.38/88.08 27.86/86.52 28.53/88.42

Weighted 
least-
squares

27.82/86.86 27.79/86.97 27.68/87.81 28.03/88.51 27.12/85.57 28.16/ 88.61
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Figure 10. Reconstruction of a simulated three SIM images with a reduced number of 
images using only three modulation orientations and no phase shift. The second row 
displays the corresponding power spectra.

Figure 11. Reconstruction of acquired #uorescently labeled tubulin cell with a NSIM 
microscope. SIM allows us to reveal the crossing of !bers with more details than the 
wide!eld image. The proposed approach is able to handle the noise and reduce the 
artifacts observed in the linear reconstruction (here the weighted least-square data 
!tting term was used). On the second row, the power spectrum is displayed as reveals 
the increased support in the frequency domain. The blue circle correspond to the 
resolution 128 µm.
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linear and the convex nonsmooth reconstruction with a Poisson data term and a local patch 
dictionary regularization are shown in !gure 11 along, with the ‘wide-!eld’ image obtained 
by averaging the nine acquired images. On this image, we can notice that !laments appear 
much thinner on the nonsmooth estimate than on the linear one. We can also observe that the 
power spectrum seems to have a larger support.

The OMX microscope is equipped with a 100× (1.4 N.A.) objective coupled with a 2× 
lense on the camera port. This time a Evolve 512 from Photometrics was used and the !nal 
pixel-size in the image is  ∼80 nm . A FluoCell prepared slide #1 with BPAEC cells with 
F-actin stained with Alexa #uor 488 phalloidin. Once again, both linear and the proposed 
nonsmooth convex reconstruction methods reveal an increased resolution. Varying the regu-
larization parameter for the linear method does not allow to reduce noise without inducing a 
loss of resolution. The proposed method allows us to achieve a much better compromise in 
this respect and clearly outperforms the linear approach.

5. Conclusion

We have proposed a new method for structured illumination image reconstruction. We have 
considered a primal-dual algorithm, which does not require the direct inversion of the forward 
operator, as this one is too large to be directly handled. In this framework, we have proposed 
a new regularization based on learning local patch dictionaries. Two valid approximations of 

Figure 12. Reconstruction of acquired F-actin #uorescently labeled cell with the OMX 
setup. The !ne and dense network structure of the actin cytosqueleton is better resolved 
when using the proposed approach. Corresponding power spectra are displayed in the 
second row.

J Boulanger et alInverse Problems 34 (2018) 095004



17

the Poisson–Gaussian noise were tested and combined with several regularization to evalu-
ate the performance of the proposed approach. The results show that the proposed approach 
leads to a signi!cant improvement in terms of PSNR. Being able to better handle the noise 
perturbation make it possible to increase the resolution and the sensitivity of SIM images. We 
did not address the problem of the modulation parameter estimation, which can impact the 
quality of the reconstructed images [45]; we leave this study for future work. Finally, we have 
seen that the computation time associated to the proposed regularization are high. However, 
its implementation could be easily parallelized taking advantage of the multi-core architecture 
of modern CPUs and GPUs.
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Appendix. Cost terms

We list here the implementation details for the other tested cost functions used in the numer-
ical experiments.

A.1. Least-squares SIM (LS)

When considering an additive Gaussian white noise model, the negative log-likelihood 
leads to a least-squares approach. The least-squares data term for SIM imaging is de!ned 
by 1

2‖y − SAMx‖2
2, corresponding to the combination of the function fLS = 1

2‖ ·−y‖2
2 and 

the linear operator TLS = SAM. The proximity operator [34] associated to fLS is then [27] : 
∀γ > 0, ∀z ∈ RLK , proxγfLS

(z) = (z + γ y)/(1 + γ).

A.2. Gradient squared !2-norm (‖∇‖2)

While more ef!cient algorithms exist for minimizing the squared !2-norm of the gradient of x, 
especially combined with a least-squares data term, we may still use the proposed approach. 
In this case, the operator is de!ned by the two !rst order derivatives along the horizontal D1 
and vertical D2 directions, stacked together as TD = [D1, D2]T . The adjoint of this operator is 
then the opposite of the divergence operator de!ned as T∗

D = DT
1 z1 + DT

2 z2 where z1 and z2 
are the gradient components. The gradient D1 and are D2 computed using a forward !nite dif-
ferences scheme and their adjoints DT

1  and DT
2  are backward !nite differences with Neumann 

boundary conditions in both cases. For Tikhonov regularization, the associated function is 
then the squared !2-norm, i.e. fD = ‖ · ‖2 whose proximity operator in this case is given by 
proxγfD (z) = z/(1 + γ) for every z ∈ R2N .

A.3. Laplacian squared !2-norm (‖∆‖2)

A Laplacian squared !2-norm regularization was introduced in [6] for SIM image recon-
struction. We can consider this regularization using the proposed minimization algorithm by 
combining the squared !2-norm with the Laplacian operator TL = D2

11 + D2
22 where D2

11 and 
D2

22  are the second order derivatives in the horizontal and vertical directions. Note that the 
Laplacian operator is self-adjoint. Furthermore, we can use here the same function fL = ‖ · ‖2 
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and the associated proximity operator as for Tikhonov regularization. Note that in the context 
of this study, unlike in [6], we do not consider the posterior mean estimate but only a maxi-
mum a posteriori (MAP) estimate.

A.4. TV

The TV seminorm can be de!ned as the !1-norm of the gradients of x [41, 42]. Therefore, we 
can use this time the same operator TD as for Tikhonov regularization, but with a different 
function f. Indeed, in order to achieve an isotropic TV, a vectorial form of the !1-norm denoted 
by fTV = ‖ · ‖1,2 should be applied, by considering the two gradient components as a vector 
[27]:

(∀z = [z!1 , z!2 ]!) ∈ R2N ‖z‖1,2 =
∑N

n=1

√
[z1]2n + [z2]2n. (A.1)

Then the proximity operator is applied component-wise for n ∈ [1, N] as:

(∀zn ∈ R2) prox‖·‖1,2
(zn) =

{
zn − γzn√

[z1]2n+[z2]2n
,
√
[z1]2n + [z2]2n ! γ

0 otherwise.
 (A.2)

A.5. Schatten norm of the Hessian operator (Sp(TH))

Recently, a new regularization based on the Schatten norm of the Hessian operator has been 
proposed [13]. This approach has been developed in order to reduce the staircase artifacts 
observed with TV regularization.

Table A1. Detailed notations used in the paper.

n Index of the component of a  
vector (e.g. x)

k Index for modulations
q Index of cost term (integer)
r Iteration counter of an algorithm
N Pixel number of x
L Pixel number of y
K Number of modulations
Q Number of cost term
R Number of iterations
T Number of translations (NLTV)
! Radial frequency
ξ1, ξ2 Frequencies
κ Camera gain
µDC Dark current noise mean offset
σ2

DC
Dark current noise variance

ωk Pulsation 2πξ of the modulation
ϕk Phases of the modulation
τ, σ, ρ Algorithm parameters
x̄ Ground truth image x
x Estimated image (vector)
yk Measurements (vector)
z The image of Tqx (vector)
IK Identity matrix

IK K × K  identity matrix
Mk Modulations (diagonal matrix)
A0 Point spread function (matrix)
S0 Down-sampling (matrix)
y Measurements (stacked vector)
M Stacked modulations
A Stacked point spread function
S Down-sampling (stacked matrix)
W Diagonal weight matrix
p Number of photo electrons (stacked vector)
n Gaussian white noise (stacked vector)
Φk Phase matrix
Φ Stacked phase matrix
Ω Stacked frequency matrix
L Operator for linear regularized  

least-squares
D1 Finite difference operator
D2

11
Second order !nite difference operator

Tq Generic operator in the cost term
TD Stacked gradient operator
TL Laplacian operator
TH Stacked Hessian operator
TP Patch extraction operator
fq Function in the cost term
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In order to include this regularization constraint, we consider the Hessian operator de!ned 
at each location n ∈ {1, . . . , N} as:

[THx]n =

[
[D2

11x]n [D2
12x]n

[D2
12x]n [D2

22x]n

]
 (A.3)

and composed of the second order derivative along horizontal, diagonal and vertical direction 
denoted respectively D2

11, D2
12  and D2

22 . The adjoint of this operator is de!ned by:

T∗
Hz = D2∗

11 z11 + D2∗
12(z12 + z21) + D2∗

22 z22 (A.4)

for every

z =

[
z11 z12

z21 z22

]

where z11, z12 = z21 and z22 represent the four components of the Hessian operator, each of 
size RN .

In a similar way to the nuclear norm, the Schatten norm Sp of zn ∈ R2×2 is de!ned as the 
!p-norm of the diagonal matrix Λn such that zn = UnΛnVT

n , and the proximity operator has the 
following expression [16]:

(∀zn ∈ R2×2) proxγSp
(zn) = Unproxγ‖·‖p

(Λn)VT
n . (A.5)

A.6. NLTV

The NLTV penalization was introduced in [14] and extended to various inverse problems in 
[15, 46] by considering differential operators de!ned on the graph associated to the sites of the 
image grid. It was also recently extended to multispectral images in [16]. The operator associ-
ated to the NLTV regularization can be described as weighted nonlocal gradients de!ned as 
[47]:

[TNLx]n =





[W1(F1x − x)]n
...

[WT(FTx − x)]n



 (A.6)

where for t ∈ 1, . . . , T, we de!ne some diagonal weight matrices as functions of the distance 

between patches Wt = diag
(
exp

(
− 1

ηB(Ftx̃ − x̃)2
))

 with Ft  a translation operator and B a 

convolution by a lowpass !lter such as a box-!lter, or a Gaussian !lter and η a positive scalar. 
The image x̃ can be obtained by minimizing the classical TV for example. Note that the com-
putation of the convolution could be done using separable recursive !lters as proposed in [48]. 
However, since the estimation of the weights is performed only once, this step is not critical 
in terms of computation time. The T translations Ft  are chosen so that they describe a square 
neighborhood of size Nw × Nw while the operator B corresponding to an image patch whose 
size Np × Np is given by the width of the support of the !lter in the case of a box-!lter. The 
adjoint of the operator TNL is de!ned by:

(∀z ∈ RTN) T∗
NLz =

T∑

t=1

Wt(F∗
t − I)zt, (A.7)
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where F∗
t  with t ∈ 1, . . . , T are the translation with the corresponding opposite directions. The 

function associated to the NLTV regularization is a !1,2-norm de!ned by:

(∀z ∈ RTN) ‖z‖1,2 =
N∑

n=1

(
T∑

t=1

z2
n,t

) 1
2

. (A.8)

The associated proximity operator is then de!ned by:

(∀zn ∈ RT) proxγ‖·‖1,2
(zn) =





zn − γzn√∑T

t=1 [zt]2n
,
√∑T

t=1 [zt]2n ! γ

0 otherwise.
 (A.9)
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