
Distributed Proximal Splitting Algorithms
with Rates and Acceleration

Laurent Condat∗, Grigory Malinovsky, and Peter Richtárik

King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Authors’ final version.
Published in Front. Signal Process., Jan. 2022.

https://doi.org/10.3389/frsip.2021.776825

Abstract

We analyze several generic proximal splitting algorithms well suited for large-scale convex
nonsmooth optimization. We derive sublinear and linear convergence results with new rates on the
function value suboptimality or distance to the solution, as well as new accelerated versions, using
varying stepsizes. In addition, we propose distributed variants of these algorithms, which can be
accelerated as well. While most existing results are ergodic, our nonergodic results significantly
broaden our understanding of primal–dual optimization algorithms.

Keywords: convex nonsmooth optimization, proximal algorithm, splitting, convergence rate,
distributed optimization

1 Introduction

We propose new algorithms for the generic convex optimization problem:

minimize
x∈X

{
Ψ(x) :=

1

M

M∑
m=1

(
Fm(x) +Hm(Kmx)

)
+R(x)

}
, (1)

where M ≥ 1 is typically the number of parallel computing nodes in a distributed setting; the
Km : X → Um are linear operators; X and Um are real Hilbert spaces (all spaces are supposed of
finite dimension); R and Hm are proper, closed, convex functions with values in R ∪ {+∞}, the
proximity operators of which are easy to compute; and the Fm are convex LFm-smooth functions;
that is ∇Fm is LFm-Lipschitz continuous, for some LFm > 0.

This template problem covers most convex optimization problems met in signal and image
processing, operations research, control, machine learning, and many other fields, and our goal is
to propose new generic distributed algorithms able to deal with nonsmooth functions using their
proximity operators, with acceleration in presence of strong convexity.

∗Corresponding author. Contact: see https://lcondat.github.io

1

https://doi.org/10.3389/frsip.2021.776825

1.1 Contributions

Our contributions are the following:

1. New algorithms: We propose the first distributed algorithms to solve (1) in whole generality,
with proved convergence to an exact solution, and having the full splitting, or decoupling,
property: ∇Fm, proxHm

, Km and K∗m are applied at the m-th node, and the proximity operator
of R is applied at the master node connected to all others. No other more complicated operation,
like an inner loop or a linear system to solve, is involved.

2. Unified framework: The foundation of our distributed algorithms consists in two general
principles, applied in a cascade, which are new contributions in themselves and could be used
in other contexts:

(a) We show that problem (1) with M = 1, i.e. the minimization of F + R + H ◦ K, can
be reformulated as the minimization of F̃ + R̃+ H̃ in a different space, with preserved
smoothness and strong convexity properties. Hence, the linear operator disappears and the
Davis–Yin algorithm [Davis and Yin, 2017] can be applied to this new problem. Through
this lens, we recover many algorithms as particular cases of this unified framework, like
the PD3O, Chambolle–Pock, Loris–Verhoeven algorithms.

(b) We design a non-straightforward lifting technique, so that the problem (1), with any M ,
is reformulated as the minimization of F̂ + R̂+ Ĥ ◦ K̂ in some product space.

3. New convergence analysis and acceleration: Even when M = 1, we improve upon the
state of the art in two ways:

(a) For constant stepsizes, we recover existing algorithms, but we provide new, more precise,
results about their convergence speed, see Theorems 1 and 5.

(b) With a particular strategy of varying stepsizes, we exhibit new algorithms, which are
accelerated versions of them. We prove O(1/k2) convergence rate on the last iterate, see
Theorems 3 and 4, whereas current results in the literature are ergodic, e.g. Chambolle
and Pock [2016b].

1.2 Related Work

Many estimation problems in a wide range of scientific fields can be formulated as large-scale convex
optimization problems [Palomar and Eldar, 2009, Sra et al., 2011, Bach et al., 2012, Polson et al.,
2015, Bubeck, 2015, Glowinski et al., 2016, Chambolle and Pock, 2016a, Stathopoulos et al., 2016,
Condat, 2017b, Condat et al., 2019b]. Proximal splitting algorithms [Combettes and Pesquet, 2010,
Boţ et al., 2014, Parikh and Boyd, 2014, Komodakis and Pesquet, 2015, Beck, 2017, Condat et al.,
2019a] are particularly well suited to solve them; they consist of simple, easy to compute, steps that
can deal with the terms in the objective function separately.

These algorithms are generally designed as sequential ones, for M = 1, and then they can be
extended by lifting in product space to parallel versions, well suited to minimize F+R+

∑
mHm◦Km,

see for instance Condat et al., 2019a, Section 8. However, it is not straightforward to adapt lifting to
the case of a finite-sum F = 1

M

∑
m Fm, with each function Fm handled by a different node, which is

of primary importance in machine learning. This generalization is one of our contributions.
There is a vast literature on distributed optimization to minimize 1

M

∑
m Fm +R, with a focus on

strategies based on (block-)coordinate or randomized activation, as well as replacing the gradients by
cheaper stochastic estimates [Cevher et al., 2014, Richtárik and Takáč, 2014, Gorbunov et al., 2020,
Salim et al., 2020]. Replacing the full gradient by a stochastic oracle in the accelerated algorithms

2

with varying stepsizes we propose is not straightforward; we leave this direction for future research.
In any case, the generalized setting, with the smooth functions Fm at the nodes supplemented
or replaced by nonsmooth functions Hm, possibly composed with linear operators, seems to have
received little attention. We want to make up for that. Decentralized optimization over networks is
an active research topic [Latafat et al., 2019, Alghunaim et al., 2021]. In this paper, we focus on the
centralized client–server model, with one master node connected to several client nodes, working in
parallel. We leave the study of decentralized algorithms for future work.

When M = 1 and K = I, where I denotes the identity, Davis and Yin [Davis and Yin, 2017]
proposed an efficient algorithm, along with an extensive study of its convergence rates and possible
accelerations. But the ability to handle a nontrivial K is behind the success of the Chambolle–
Pock [Chambolle and Pock, 2011] or Condat–Vũ algorithms [Condat, 2013, Vũ, 2013]: they are well
suited for regularized inverse problems in imaging [Chambolle and Pock, 2016a], for instance with
the total variation and its variants [Condat, 2014, 2017a, Duran et al., 2016, Bredies et al., 2010];
other examples are computer vision problems [Cremers et al., 2011], overlapping group norms for
sparse estimation in data science [Bach et al., 2012], and trend filtering on graphs [Wang et al., 2016].
Another prominent case is when H is an indicator function, so that the problem becomes: minimize
F (x) +R(x) subject to Kx = b. If K is a gossip matrix like the minus graph Laplacian, decentralized
optimization over a network can be tackled [Shi et al., 2015, Scaman et al., 2017, Salim et al., 2021].

When M = 1 and K is arbitrary, there exist algorithms to solve (1) in full generality, for
example, the Combettes–Pesquet [Combettes and Pesquet, 2012], Condat–Vũ [Condat, 2013, Vũ,
2013], PD3O [Yan, 2018] and PDDY [Salim et al., 2020] algorithms. However, their convergence rates
and possible accelerations are little understood. Our main contribution is to derive new convergence
rates and accelerated versions of the PD3O and PDDY algorithms, and their particular cases,
including Chambolle–Pock [Chambolle and Pock, 2011] and Loris–Verhoven [Loris and Verhoeven,
2011] algorithms. In order to do this, we show that these two algorithms can be viewed as instances
of the Davis–Yin algorithm. This reformulation technique is inspired by the recent one of O’Connor
and Vandenberghe [O’Connor and Vandenberghe, 2020]; it makes it possible to split the composition
H ◦K and to derive algorithms, which call the operators proxH , K, K∗ separately. This technique
is fundamentally different from the one in Salim et al. [2020], showing that the PD3O and PDDY
algorithms are primal–dual instances of the operator version of Davis–Yin splitting to solve monotone
inclusions. Notably, we can derive convergence rates with respect to the objective function and
accelerations, which is not possible with the primal–dual reformulation of Salim et al. [2020]. On the
other hand, the latter encompasses the Condat–Vũ algorithm [Condat, 2013, Vũ, 2013], which is not
the case of our approach. So, these are complementary interpretations.

1.3 Organization of the paper

In Section 2, we propose new nonstationary versions (i.e. with varying stepsizes) of several algorithms
for optimization problems made of three terms, and we analyze their convergence rates. The derivation
details are pushed to the end of the paper in Section 5 for ease of reading. In Section 3, we further
propose distributed algorithms, which can minimize the sum of an arbitrary number of terms. Again,
the derivation details are deferred to Section 6. Numerical experiments illustrating the good match
between our theoretical results and practical performance are shown in Section 4.

2 Minimization of 3 Functions with a Linear Operator

Let us focus on the problem (1) when M = 1:

minimize
x∈X

Ψ(x) = F (x) +R(x) +H(Kx), (2)

3

where K : X → U is a linear operator, X and U are real Hilbert spaces, R and H are proper, closed,
convex functions, and F is a convex and LF -smooth function. We will see in Section 3 that using
an adequate lifting technique, (2) can be extended to (1) and, accordingly, parallel or distributed
versions of the sequential algorithms to solve (2) will be derived. That is why we first study the case
M = 1. For any function G, we denote by µG ≥ 0 some constant such that G is µG-strongly convex;
that is, G− (µG/2)‖ · ‖2 is convex.

The dual problem to (2) is

minimize
u∈U

(F +R)∗(−K∗u) +H∗(u), (3)

where K∗ is the adjoint operator of K and G∗ is the convex conjugate of a function G [Bauschke
and Combettes, 2017]; we recall the Moreau identity: proxτG(z) = z − τ proxG∗/τ (z/τ) [Bauschke
and Combettes, 2017]. We suppose that the following holds:

Assumption 1. There exists x? ∈ X such that 0 ∈ ∇F (x?) + ∂R(x?) +K∗∂H(Kx?), which implies
that x? is a solution to (2); see for instance Combettes and Pesquet, 2012, Proposition 4.3 for
sufficient conditions on the functions for this property to hold.

2.1 Deriving the Nonstationary PD3O and PDDY Algorithms

The main difficulty in (2) is the presence of the linear operator K. Indeed, if K = I, the Davis–Yin
algorithm [Davis and Yin, 2017] is well suited to minimize F +R+H. Note that there is a minor
mistake in the way Algorithm 3 in Davis and Yin [2017] is initialized. This is corrected here. Thus,
the Davis–Yin algorithm is as follows:

Let (γk)k∈N be a sequence of stepsizes. Let x0H ∈ X and u0 ∈ X . For k = 0, 1, . . . iterate xk+1 = proxγkR(xkH + γku
k)

uk+1 = uk + 1
γk

(xkH − xk+1)

xk+1
H = proxγk+1H

(
xk+1 − γk+1u

k+1 − γk+1∇F (xk+1)
)
.

(4)

To make this algorithm applicable to K 6= I, we reformulate the problem (2) as follows:

1. We choose a value η ≥ ‖K‖2; we recommend to set η = ‖K‖2 in practice. Then there exists a
real Hilbert space W and a linear operator C :W → U such that KK∗ + CC∗ = ηI. C is not
unique, for instance, we can set C = (ηI −KK∗)1/2. We actually don’t need to exhibit C, its
existence is sufficient here and there will be no call to C in the algorithms.

2. Now, the problem (2) can be rewritten as:

minimize
x∈X ,w∈W

F̃ (x,w) + R̃(x,w) + H̃(x,w), (5)

where F̃ : (x,w) 7→ F (x) + µF
2 ‖w‖

2, R̃ : (x,w) 7→ R(x) + ı0(w), where ı0 : w 7→ {0 if w = 0,
+∞ otherwise}, and H̃ : (x,w) = H(Kx + Cw). Indeed, we introduce the variable w, but
also the constraint that w = 0. Since F̃ (x, 0) = F (x), R̃(x, 0) = R(x), H̃(x, 0) = H(Kx), the
equivalence between (2) and (5) follows.

We have ∇F̃ (x,w) = (∇F (x), µFw), prox
R̃

(x,w) = (proxR(x), 0). Most importantly, for every
γ > 0, we have [O’Connor and Vandenberghe, 2020]:

prox
H̃∗/γ(x,w) = (K∗u,C∗u), where u = proxH∗/(γη)

(
(Kx+ Cw)/η

)
. (6)

4

PD3O Algorithm (F +R+H ◦K)

input: (γk)k∈N, η ≥ ‖K‖2, q0 ∈ X , u0 ∈ U
for k = 0, 1, . . . do
xk+1 := proxγkR

(
γk(q

k −K∗uk)
)

qk+1 := 1
γk+1

xk+1 −∇F (xk+1)

uk+1 := proxH∗/(γk+1η)

(
uk

+ 1
ηK(1

γk
xk+1 + qk+1 − qk)

)
end for

Davis–Yin Algorithm (F +R+H)

input: (γk)k∈N, s0 ∈ X
for k = 0, 1, . . . do
xk+1 := proxγkR(sk)

xk+1
H := proxγk+1H

(
(1 +

γk+1

γk
)xk+1

− γk+1

γk
sk − γk+1∇F (xk+1)

)
sk+1 := xk+1

H +
γk+1

γk
(sk − xk+1)

end for

Chambolle–Pock Algorithm I (R+H ◦K)

input: (γk)k∈N, η ≥ ‖K‖2, x0 ∈ X , u0 ∈ U
for k = 0, 1, . . . do
xk+1 := proxγkR

(
xk − γkK∗uk

)
uk+1 := proxH∗/(γk+1η)

(
uk + 1

ηK
(
(1
γk+1

+ 1
γk

)xk+1 − 1
γk
xk
))

end for

Douglas–Rachford Algorithm (R+H)

input: (γk)k∈N, s0 ∈ X
for k = 0, 1, . . . do
xk+1 := proxγkR(sk)

xk+1
H := proxγk+1H

(
(1+

γk+1

γk
)xk+1− γk+1

γk
sk
)

sk+1 := xk+1
H +

γk+1

γk
(sk − xk+1)

end for

PDDY Algorithm (F +R+H ◦K)

input: (γk)k∈N, η ≥ ‖K‖2, x0R ∈ X , u0 ∈ U
initialize: p0 := K∗u0

for k = 0, 1, . . . do
uk+1 := proxH∗/(γkη)

(
uk + 1

γkη
KxkR

)
pk+1 := K∗uk+1

xk+1 := xkR − γk(pk+1 − pk)
xk+1
R := proxγk+1R

(
xk+1 − γk+1∇F (xk+1)

− γk+1p
k+1
)

end for

Loris–Verhoeven Algorithm (F +H ◦K)

input: (γk)k∈N, η ≥ ‖K‖2, q0 ∈ X , u0 ∈ U
for k = 0, 1, . . . do
xk+1 := γk(q

k −K∗uk)
qk+1 := 1

γk+1
xk+1 −∇F (xk+1)

uk+1 := proxH∗/(γk+1η)

(
uk

+ 1
ηK(1

γk
xk+1 + qk+1 − qk)

)
end for

Chambolle–Pock Algorithm II (R+H ◦K)

input: (γk)k∈N, η ≥ ‖K‖2, x0R ∈ X , u0 ∈ U
for k = 0, 1, . . . do
uk+1 := proxH∗/(γkη)

(
uk + 1

γkη
KxkR

)
xk+1
R := proxγk+1R

(
xkR −K∗

(
(γk

+ γk+1)u
k+1 − γkuk

))
end for

Forward–Backward Algorithm (F +R)

input: (γk)k∈N, x1 ∈ X ,
for k = 1, 2, . . . do
xk+1 := proxγkR

(
xk − γk∇F (xk)

)
end for

Note that in O’Connor and Vandenberghe [2020], the authors use F̃ (x,w) = F (x), whereas we add
µF
2 ‖w‖

2. This difference is essential, so that F̃ is LF -smooth and µF -strongly convex. Also, R̃ is
µR-strongly convex.

Then, we can apply the Davis–Yin algorithm (4) to solve the problem (5). We set F , R, H in
(4) as F̃ , R̃, H̃, respectively. The details of the substitutions yielding the algorithms are deferred
to Section 5 for the convenience of reading; most notably, whenever CC∗ appears, it is replaced
by ηI − KK∗. The obtained algorithms turns out to be a nonstationary version of the PD3O

5

algorithm [Yan, 2018], shown above. On the other hand, if we exchange the two functions and set F ,
R, H in (4) as F̃ , H̃, R̃, we obtain a different algorithm. It turns out to be a nonstationary version
of the PDDY algorithm proposed recently [Salim et al., 2020], shown above too. With constant
stepsizes γk ≡ γ ∈ (0, 2/LF), for both the PD3O and PDDY algorithms, xk and uk converge to some
solutions x? and u? of (2) and (3), respectively; this result was known for η > ‖K‖2 [Yan, 2018,
Salim et al., 2020] and shown for η = ‖K‖2 for the PD3O algorithm in O’Connor and Vandenberghe
[2020], but convergence with η = ‖K‖2 for the PDDY algorithm, as stated in Theorem 2, is new.

Particular cases of the PD3O and PDDY algorithms, which are shown above, are the following:

1. If K = I and η = 1, the PD3O algorithm reverts to the Davis–Yin algorithm (4); the PDDY
algorithm too, but with H and R exchanged in (4).

2. If F = 0, the PD3O and PDDY algorithms revert to the forms I and II [Condat et al., 2019a]
of the Chambolle–Pock algorithm, a.k.a. Primal–Dual Hybrid Gradient algorithm [Chambolle
and Pock, 2011], respectively.

3. If R = 0, the PD3O and PDDY algorithms revert to the Loris–Verhoeven algorithm [Loris
and Verhoeven, 2011], also discovered independently as the PDFP2O [Chen et al., 2013] and
PAPC [Drori et al., 2015] algorithms; see also Combettes et al. [2014], Condat et al. [2019a] for
an analysis as a primal–dual forward–backward algorithm.

4. If F = 0 in the Davis–Yin algorithm or K = I and η = 1 in the Chambolle–Pock algorithm, we
obtain the Douglas–Rachford algorihm; it is equivalent to the ADMM, see the discussion in
Condat et al. [2019a].

5. If H = 0, the PD3O and PDDY algorithms revert to the forward–backward algorithm, a.k.a.
proximal gradient descent. The Loris–Verhoeven algorithm with K = I and η = 1, too.

2.2 Convergence Analysis

We first give convergence rates for the PD3O algorithm with constant stepsizes.

Theorem 1 (convergence rate of the PD3O algorithm). In the PD3O algorithm, suppose that
γk ≡ γ ∈ (0, 2/LF) and η ≥ ‖K‖2. Then xk and uk converge to some solutions x? and u? of (2) and
(3), respectively. In addition, suppose that H is continuous on an open ball centered at Kx?. Then
the following hold:

(i) Ψ(xk)−Ψ(x?) = o(1/
√
k).

Define the weighted ergodic iterate x̄k = 2
k(k+1)

∑k
i=1 ix

i, for every k ≥ 1. Then

(ii) Ψ(x̄k)−Ψ(x?) = O(1/k).

Furthermore, if H is L-smooth for some L > 0, we have a faster decay for the best iterate so far:

(iii) min
i=1,...,k

Ψ(xi)−Ψ(x?) = o(1/k).

Proof. The convergence of xk follows from Davis and Yin, 2017, Theorem 2.1 and the convergence
of uk follows from the one of the variable ukB = (zk − xkA)/γ in the notations of Davis and Yin
[2017]. (i) follows from Davis and Yin, 2017, Theorem 3.1, using the following facts; first, in this
theorem, the function corresponding to H̃ is supposed to be Lipschitz-continuous on a certain ball,
but since the rate is asymptotic and Kxk → Kx?, it is sufficient to consider the property around
Kx?; second, it is well known that if a convex real-valued function is continuous on a convex open

6

set, it is Lipschitz-continuous on every compact subset of this set [Unknown author, 1972]; third, if
H is continuous, H̃ is continuous too. (ii) follows from Davis and Yin, 2017, Theorem 3.2 and (iii)
follows from Theorem D.5 in the preprint of Davis and Yin [2017].

Theorem 1 applies to the particular cases of the PD3O algorithm, like the Loris–Verhoeven,
Chambolle–Pock, Douglas–Rachford algorithms. Our results are new even for them.

Remark 1. We can note that the forward–backward algorithm xk+1 = proxγR(xk− γ∇F (xk)), which
is a particular case of the PD3O algorithm when H = 0, is monotonic. So, the best iterate so far
is the last iterate. Hence, Theorem 1 (iii) yields Ψ(xk)−Ψ(x?) = o(1/k) for the forward–backward
algorithm.

For the PDDY algorithm, we cannot derive a similar theorem, since R̃ is not continuous around
(x?, 0). Still, we can establish convergence of the variables:

Theorem 2 (convergence of the PDDY algorithm). In the PDDY algorithm, suppose that γk ≡
γ ∈ (0, 2/LF) and η ≥ ‖K‖2. Then xk and xkR both converge to some solution x? of (2), and uk

converges to some solution u? of (3).

Proof. The convergence of xk and xkR to the same solution x? of (2) follows from Davis and Yin,
2017, Theorem 2.1. The convergence of the variable ukB = (zk − xkA)/γ, in the notations of
Davis and Yin [2017], implies in our setting, according to (6), that K∗uk and C∗uk both converge
to some elements. But since ηuk = KK∗uk + CC∗uk, uk converges to some element u? ∈ U .
Finally, we have x? = proxγR(x? − γ∇F (x?)− γK∗u?), so that 0 ∈ ∂R(x?) +∇F (x?) +K∗u?, and
u? = proxH∗/(γη)(u

? + 1
γηKx

?), so that Kx? ∈ (∂H)−1(u?). Hence, u? is a solution to (3).

We now give accelerated convergence results using varying stepsizes, when F or R is strongly
convex; that is, µF + µR > 0. In that case, we denote by x? the unique solution to (2).

Theorem 3 (convergence rate of the accelerated PD3O algorithm). Suppose that µF + µR > 0. Let
κ ∈ (0, 1) and γ0 ∈ (0, 2(1− κ)/LF). Set γ1 = γ0 and

γk+1 =
−γ2kµFκ+ γk

√
(γkµFκ)2 + 1 + 2γkµR

1 + 2γkµR
, for every k ≥ 1. (7)

Suppose that η ≥ ‖K‖2. Then in the PD3O algorithm, there exists c0 > 0 (whose expression is given
in Section 5) such that, for every k ≥ 1,

‖xk+1 − x?‖2 ≤
γ2k+1

1− γk+1µFκ
c0 = O

(
1/k2

)
.

Proof. This result follows from Davis and Yin, 2017, Theorem 3.3, stated for convenience as Lemma 1
in Section 5.

Note that with the stepsize rule in (7), we have k γk → 1/(µFκ + µR) as k → +∞, so that
γk = O(1/k) and γk+1/γk → 1. Also, when F = 0, LF can be taken arbitrarily small, so that we can
choose any γ0 > 0.

Theorem 3 is new for the PD3O and Loris–Verhoeven algorithms, but has been derived in
O’Connor and Vandenberghe [2020] for the Chambolle–Pock algorithm. For the forward–backward
algorithm, strong convexity yields linear convergence with constant stepsizes, so this nonstationary
version does not seem interesting.

Concerning the PDDY algorithm, H̃ is not necessarily strongly convex, even if H is. So, we only
consider the case where F is strongly convex. As a consequence of Lemma 1, we get:

7

Theorem 4 (convergence rate of the accelerated PDDY algorithm). Suppose that µF > 0. Let
κ ∈ (0, 1) and γ0 ∈ (0, 2(1− κ)/LF). Set γ1 = γ0 and

γk+1 = −γ2kµFκ+ γk
√

(γkµFκ)2 + 1, for every k ≥ 1. (8)

Suppose that η ≥ ‖K‖2. Then in the PDDY algorithm, there exists c0 > 0 (whose expression is given
in Section 5) such that, for every k ≥ 1,

‖xk+1 − x?‖2 ≤
γ2k+1

1− γk+1µFκ
c0 = O

(
1/k2

)
.

Moreover, if η > ‖K‖2, ‖xkR − x?‖2 = O(1/k2) as well.

Finally, we consider the case where, in addition to strong convexity of F or R, H is smooth;
in that case, the algorithms with constant stepsizes converge linearly; that is, as a consequence of
Lemma 2, we have:

Theorem 5 (linear convergence of the PD3O and PDDY algorithms). Suppose that µF + µR > 0
and that H is LH-smooth, for some LH > 0. Let x? and u? be the unique solutions to (2) and (3),
respectively. Suppose that γk ≡ γ ∈ (0, 2/LF) and η ≥ ‖K‖2. Then the PD3O algorithm converges
linearly: there exists ρ ∈ (0, 1] such that, for every k ∈ N,

‖xk+1 − x?‖2 ≤ (1− ρ)k
(
‖γq0 − x? + γ∇F (x?)− γK∗(u0 − u?)‖2

+ γ2η‖u0 − u?‖2 − γ2‖K∗(u0 − u?)‖2
)
.

The PDDY algorithm converges linearly too: there exists ρ ∈ (0, 1] such that, for every k ∈ N,

‖xk+1
R − x?‖2 ≤ 4(1− ρ)k

(
‖x0R − x? + γK∗(u0 − u?)‖2 + γ2η‖u0 − u?‖2 − γ2‖K∗(u0 − u?)‖2

)
.

Linear convergence of the other variables in the algorithms can be derived as well, see Proposition 1.
Lower bounds for ρ can be derived from Theorem D.6 in the preprint version of Davis and Yin [2017].
We don’t provide them, since they are not tight, as noticed in Remark D.2 of the same preprint. For
instance, for the PDDY or Loris–Verhoeven algorithms with µF > 0,

ρ =
γµF (2− γLF)

(1 + γηLH)2
.

If H = 0, by setting LH = 0, we get ρ = γµF (2−γLF). But then the PDDY algorithm reverts to the
forward–backward algorithm, for which it is known that 1−ρ = (1−γµF)2 whenever γ ≤ 2/(LF +µF),
which corresponds to the larger value ρ = γµF (2− γµF).

We emphasize that linear convergence comes for free with the algorithms, if the conditions are
met, without any modification. That is, there is no need to know µF , µR, LH , since the conditions
on the two parameters γ and η do not depend on these values. For the particular case of the
Chambolle–Pock algorithm, as pointed out in O’Connor and Vandenberghe [2020], this is in contrast
to existing linear convergence results [Chambolle and Pock, 2016a], derived for a modified version of
the algorithm, which depends on these values.

3 Distributed Proximal Algorithms

8

Distributed PD3O Algorithm

input: (γk)k∈N, η ≥ ‖K̂‖2, (ωm)Mm=1,
(q0m)Mm=1 ∈ XM , (u0m)Mm=1 ∈ Û

initialize: a0m := q0m −K∗mu0m, m = 1...M
for k = 0, 1, . . . do
at master, do

xk+1 := proxγkR
(γk
M

∑M
m=1 a

k
m

)
broadcast xk+1 to all nodes

at all nodes, for m = 1, . . . ,M , do
qk+1
m := Mωm

γk+1
xk+1 −∇Fm(xk+1)

uk+1
m := proxMωmH∗

m/(γk+1η)

(
ukm

+ 1
ηKm(Mωm

γk
xk+1 + qk+1

m − qkm)
)

ak+1
m := qk+1

m −K∗muk+1
m

transmit ak+1
m to master

end for

Distributed Loris–Verhoeven Algorithm

input: (γk)k∈N, η ≥ ‖K̂‖2, (ωm)Mm=1

(q0m)Mm=1 ∈ XM , (u0m)Mm=1 ∈ Û
initialize: a0m := q0m −K∗mu0m, m = 1...M
for k = 0, 1, . . . do
at master, do

xk+1 := γk
M

∑M
m=1 a

k
m

broadcast xk+1 to all nodes
at all nodes, for m = 1, . . . ,M , do

qk+1
m := Mωm

γk+1
xk+1 −∇Fm(xk+1)

uk+1
m := proxMωmH∗

m/(γk+1η)

(
ukm

+ 1
ηKm(Mωm

γk
xk+1 + qk+1

m − qkm)
)

ak+1
m := qk+1

m −K∗muk+1
m

transmit ak+1
m to master

end for

Distributed PDDY Algorithm

input: (γk)k∈N, η ≥ ‖K̂‖2, (ωm)Mm=1,
x0R ∈ X , (u0m)Mm=1 ∈ Û

initialize: p0m := K∗mu
0
m, m = 1, ...,M

for k = 0, 1, . . . do
at all nodes, for m = 1, . . . ,M , do

uk+1
m := proxMωmH∗

m/(γkη)

(
ukm

+ Mωm
γkη

Kmx
k
R

)
pk+1
m := K∗mu

k+1
m

xk+1
m := xkR −

γk
Mωm

(pk+1
m − pkm)

akm := Mωmx
k+1
m − γk+1∇Fm(xk+1

m)
− γk+1p

k+1
m

transmit akm to master
at master, do

xk+1
R := proxγk+1R

(
1
M

∑M
m=1 a

k
m

)
broadcast xk+1

R to all nodes
end for

Distributed Davis–Yin Algorithm

input: (γk)k∈N, (s0m)Mm=1 ∈ XM , (ωm)Mm=1

for k = 0, 1, . . . do
at master, do

xk+1 := proxγkR(
∑M

m=1 ωms
k
m)

broadcast xk+1 to all nodes
at all nodes, for m = 1, . . . ,M , do

xk+1
m := proxγk+1Hm/(Mωm)

(
(1 +

γk+1

γk
)

× xk+1− γk+1

γk
skm−

γk+1

Mωm
∇Fm(xk+1)

)
sk+1
m := xk+1

m +
γk+1

γk
(skm − xk+1)

transmit sk+1
m to master

end for

We now focus on the more general problem (1) and we derive distributed versions of the PD3O
and PDDY algorithms to solve it. For this, we develop a lifting technique: we recast the minimization
of R(x) + 1

M

∑M
m=1

(
Fm(x) +Hm(Kmx)

)
as the minimization of

R̂(x̂) + F̂ (x̂) + Ĥ(K̂x̂),

as follows. Let (ωm)Mm=1 be a sequence of positive weights, whose sum is 1; they can be used to
mitigate different ‖Km‖, by setting ωm ∝ 1/‖Km‖2, or different LFm , by setting ωm ∝ L2

Fm
, as a

rule of thumb.
We introduce the Hilbert space X̂ = X × · · · × X (M times), endowed with the inner product

〈· , ·〉X̂ : (x̂, x̂′) 7→
M∑
m=1

ωm〈xm, x′m〉,

9

Distributed Chambolle–Pock Algorithm

input: (γk)k∈N, η ≥ ‖K̂‖2, (ωm)Mm=1

x0 ∈ X , (u0m)Mm=1 ∈ Û
initialize: a0m := K∗mu

0
m, m = 1, ...,M

for k = 0, 1, . . . do
at master, do

xk+1 := proxγkR
(
xk − γk

M

∑M
m=1 a

k
m

)
broadcast xk+1 to all nodes

at all nodes, for m = 1, . . . ,M , do
uk+1
m := proxMωmH∗

m/(γk+1η)

(
ukm

+ Mωm
η Km

(
(1
γk

+ 1
γk+1

)xk+1 − 1
γk
xk
))

ak+1
m := K∗mu

k+1
m

transmit ak+1
m to master

end for

Distributed Douglas–Rachford Algorithm

input: (γk)k∈N, (ωm)Mm=1, (s0m)Mm=1 ∈ XM
for k = 0, 1, . . . do

at master, do
xk+1 := proxγkR

(∑M
m=1 ωms

k
m

)
broadcast xk+1 to all nodes

at all nodes, for m = 1, . . . ,M , do
xk+1
m := proxγk+1Hm/(Mωm)(

(1 +
γk+1

γk
)xk+1 − γk+1

γk
skm
)

sk+1
m := xk+1

m +
γk+1

γk
(skm − xk+1)

transmit sk+1
m to master

end for

Distributed Chambolle–Pock Alg. Form II

input: (γk)k∈N, η ≥ ‖K̂‖2, (ωm)Mm=1,
x0R ∈ X , (u0m)Mm=1 ∈ Û

for k = 0, 1, . . . do
at all nodes, for m = 1, . . . ,M , do

uk+1
m := proxMωmH∗

m/(γkη)

(
ukm

+ Mωm
γkη

Kmx
k
R

)
akm := Mωmx

k
R −K∗m

(
(γk + γk+1)u

k+1
m

− γkukm
)

transmit akm to master
at master, do

xk+1
R := proxγk+1R

(
1
M

∑M
m=1 a

k
m

)
broadcast xk+1

R to all nodes
end for

Distributed Forward–Backward Alg.
input: (γk)k∈N, x1 ∈ X
for k = 1, 2, . . . do
at all nodes, for m = 1, . . . ,M , do

akm := ∇Fm(xk)
transmit akm to master

at master, do
xk+1 := proxγkR(xk − γk

M

∑M
m=1 a

k
m)

broadcast xk+1 to all nodes
end for

and the Hilbert space Û = U1 × · · · × UM , endowed with the inner product

〈· , ·〉Û : (û, û′) 7→
M∑
m=1

ωm〈um, u′m〉.

Furthermore, we introduce K̂ : x̂ = (xm)Mm=1 ∈ X̂ 7→ (K1x1, . . . ,KMxM) ∈ Û , and the functions
ı= : x̂ ∈ X̂ 7→ {0 if x1 = · · · = xM , +∞ otherwise}, R̂ : x̂ ∈ X̂ 7→ R(x1) + ı=(x̂), Ĥ : û ∈ Û 7→
1
M

∑M
m=1Hm(um), and F̂ : x̂ ∈ X̂ 7→ 1

M

∑M
m=1 Fm(xm). We have to be careful when defining the

gradient and proximity operators, because of the weighted metrics; see in Section 6 for details.
Doing these substitutions in the PD3O and PDDY algorithms, we obtain the new Distributed

PD3O and Distributed PDDY algorithms, shown above. Their particular cases, also shown above,
are the distributed Davis–Yin algorithm when Km ≡ I and η = 1, the distributed Loris–Verhoeven
algorithm when R = 0, the distributed Chambolle–Pock algorithm when Fm ≡ 0, the distributed
Douglas–Rachford algorithm when Fm ≡ 0, Km ≡ I and η = 1, the (classical) distributed forward–
backward algorithm when Hm ≡ 0.

We can easily translate Theorems 1–5 to these distributed algorithms; the corresponding theorems
are given in Section 6. In a nutshell, we obtain the same convergence results and rates with any

10

10
0

10
1

10
2

10
3

10
4

10
0

10
5

O(1/k)

O(1/k2)

Condat-Vu

Condat-Vu ergodic

accelerated Condat-Vu

PDDY

PDDY xR

PDDY ergodic

accelerated PDDY

PD3O

PD3O ergodic

accelerated PD3O

10
0

10
1

10
2

10
3

10
4

10
-5

10
0

10
5

O(1/k)

O(1/k2)

Condat-Vu

accelerated Condat-Vu

PDDY

PDDY xR

accelerated PDDY

accelerated PDDY xR

PD3O

accelerated PD3O

(a) Ψ(xk)−Ψ(x?) w.r.t. # iterations (b) ‖xk − x?‖2 w.r.t. # iterations

Figure 1: Convergence error, in log-log scale, for the experiment of image deblurring regularized with
the total variation, see Section 4.1 for details.

number of nodesM ≥ 1 as in the non-distributed setting, for any γ0 ∈ (0, 2/L
F̂

) and η ≥ ‖K̂‖2, where
L
F̂
and K̂ are detailed in Section 6. Hence, to our knowledge, we are the first to propose distributed

proximal splitting methods with guaranteed, possibly accelerated, convergence, to minimize an
arbitrary sum of smooth or nonsmooth functions, possibly composed with linear operators.

4 Experiments

4.1 Image Deblurring Regularized with Total Variation

We first consider the non-distributed problem (2), for the imaging inverse problem of deblurring,
which consists in restoring an image y corrupted by blur and noise [Chambolle and Pock, 2016a]. So,
we set

F : x 7→ 1

2
‖Ax− y‖2,

where the linear operator A corresponds to a 2-D convolution with a lowpass filter, with LF = 1.
The filter is approximately Gaussian and chosen so that F is µF -strongly convex with µF = 0.01. y
is obtained by applying A to the classical 256 × 256 Shepp–Logan phantom image, with additive
Gaussian noise. R = ı0 enforces nonnegativity of the pixel values. H ◦K corresponds to the classical
‘isotropic’ total variation (TV) [Chambolle and Pock, 2016a, Condat, 2017a], with H = 0.6 times the
l1,2 norm and K the concatenation of vertical and horizontal finite differences.

We compare the nonaccelerated, i.e. with constant γk, and accelerated versions, with decaying γk,
of the PD3O, PDDY and Condat–Vũ algorithms. We initialize the dual variables at zero and the
estimate of the solution as y. We set γ0 = 1.7, κ = 0.15, η = 8 ≥ ‖K‖2 (except for the accelerated
Condat–Vũ algorithm proposed in Chambolle and Pock [2016b], for which η = 16 and γ = 0.5).

The results are illustrated in Figure 1 (implementation in Matlab). We observe that the PD3O
and PDDY algorithms have almost identical variables: the pink, red, blue curves are superimposed;
we know that both algorithms are identical and revert to the Loris–Verhoeven algorithm when R = 0.
Here R 6= 0 but the nonnegativity constraint does not change the solution significantly, which explains
the similarity of the two algorithms.

Note that xk in the PDDY algorithm is not feasible with respect to nonnegativity, and the red
curve actually shows F (xk) + H(Kxk) − Ψ(x?). In the nonaccelerated case, Ψ(xk) decays faster

11

10
0

10
1

10
2

10
3

10
4

10
-10

10
-5

10
0

10
5

Condat-Vu

Condat-Vu ergodic

accelerated Condat-Vu

PDDY

PDDY xR

PDDY ergodic

accelerated PDDY

PD3O

PD3O ergodic

accelerated PD3O

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

10
10

Condat-Vu

accelerated Condat-Vu

PDDY

PDDY xR

accelerated PDDY

accelerated PDDY xR

PD3O

accelerated PD3O

(a) Ψ(xk)−Ψ(x?) w.r.t. # iterations (b) ‖xk − x?‖2 w.r.t. # iterations

Figure 2: Convergence error, in log-log scale, for the experiment of image deblurring regularized with
the smooth Huber-total-variation, so that linear convergence occurs, see Section 4.2 for details.

than O(1/k) but slower than O(1/k2), which is coherent with Theorem 1. The same holds for
‖xk − x?‖2 ≤ 2

µF
(Ψ(xk)−Ψ(x?)).

The accelerated versions improve the convergence speed significantly: Ψ(xk) and ‖xk−x?‖2 decay
even faster than O(1/k2), in line with Theorems 3 and 4. In all cases, the Condat–Vũ algorithm is
outperformed. Also, there is no interest in considering the ergodic iterate instead of the last iterate,
since the former converges at the same asymptotic rate as the latter, but slower.

4.2 Image Deblurring Regularized with Huber-TV

We consider the same deblurring experiment as before, but we make H smooth by taking the Huber
function instead of the l1 norm in the total variation; that is, λ| · | in the latter is replaced by

h : t ∈ R 7→

{
λ
2ν t

2 if |t| ≤ ν,
λ
(
|t| − ν

2

)
otherwise,

for some ν > 0 and λ > 0 (set here as 0.1 and 0.6, respectively). We can also write h without
branching as h(t) = λ

2ν max(ν − |t|, 0)2 + λ(|t| − ν
2). It is known that h is Lh-smooth with Lh = λ/ν.

For any γ > 0 and t ∈ R, we have proxh∗/γ(t) = t/max(|t|/λ, 1 + ν
λγ). Except for H, everything is

unchanged.
The results are illustrated in Figure 2. Again, the PD3O and PDDY algorithms behave very

similarly; they converge linearly, as proved in Theorem 5, and achieve machine precision in finite
time. xk in the PDDY algorithm is not feasible and F (xk) + H(Kxk) − Ψ(x?) (red curve) takes
negative values (not shown in log scale); so, xkR is the variable to study in this setting. We tested
the ‘accelerated’ versions of the algorithms with decaying γk, but in this scenario, they are much
slower and not suitable. Again, the Condat–Vũ algorithm is outperformed and the ergodic sequences
converge much slower. Interestingly, the image x? is visually the same with TV and with Huber-TV.

4.3 SVM with Hinge Loss

Here we consider Problem (1) in the special case with X = Rd, for some d ≥ 1, Fm ≡ 0, and Km ≡ I;
that is, the problem of minimizing

Ψ(x) =
1

M

M∑
m=1

Hm(x) +R(x). (9)

12

100 101 102 103 104 105
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

O(1/k)
O(1/k2)
Douglas Rachford
Accelerated Douglas Rachford

100 101 102 103 104 105

10 3

10 2

10 1

100

O(1/k)
O(1/k2)
Douglas Rachford
Accelerated Douglas Rachford

(a) Ψ(xk)−Ψ(x?) w.r.t. # iterations (b) ‖xk − x?‖2 w.r.t. # iterations

Figure 3: Convergence error, in log-log scale, for the SVM binary classification experiment with hinge
loss, see Section 4.3 for details.

In particular, to train a binary classifier, we consider the classical SVM problem with hinge loss,
which has the form (9) with R(x) = α

2 ‖x‖
2, for some α > 0, and Hm(x) = max(1− bmaTmx, 0), with

data samples am ∈ Rd and bm ∈ {−1, 1}.
For any γ > 0 we have proxγR(x) = x/(1 + γα). We could view the dot product x 7→ bma

T
mx as

a linear operator Km, but it is more interesting to integrate it in the function Hm. Indeed, as is
perhaps not well known, the proximity operator of Hm has a closed form: for any γ > 0,

proxγHm
: x ∈ Rd 7→ x− bm

ηm
max

(
min(bma

T
mx− 1, 0),−ηmγ

)
am,

where ηm = aTmam = ‖am‖2. Thus, we use the Distributed Douglas–Rachford algorithm, a particular
case of the distributed PD3O and PDDY algorithms. Since R is α-strongly convex, we also use the
accelerated version of the algorithm with varying stepsizes, like in Theorem 3. We can note that
in the context of Federated learning [Konečný et al., 2016, Malinovsky et al., 2020], where each m
corresponds to the smart phone or computer of a different user with its own data (am, bm) stored
locally, the problem is solved in a collaborative way but with preserved privacy, without the users
sharing their data.

The method was implemented in Python on a single machine and tested on the dataset ‘australian’
from the LibSVM base [Chang and Lin, 2011], with d = 15 andM = 680. We set ωm ≡ 1/M , α = 0.1,
γ0 = 0.1, and we used zero vectors for the initialization. The results are shown in Figure 3. Despite
the oscillations, we observe that both the objective suboptimality and the squared distance to the
solution converge sublinearly, with rates looking like o(1/

√
k) and O(1/k2) for the nonaccelerated and

accelerated algorithms, respectively, as guaranteed by Theorems 1 and 3. The proposed accelerated
version of the distributed Douglas–Rachford algorithm yields a significant speedup.

5 Derivation of the Algorithms

In this section, we give the details of the derivation of the PD3O and PPDY algorithms, and their
particular cases, to solve:

minimize
x∈X

F (x) +R(x) +H(Kx),

13

with same notations and assumptions as above. Let η ≥ ‖K‖2, let W be a real Hilbert space and
C :W → U be a linear operator, such that KK∗ + CC∗ = ηI. We set Q : (x,w) 7→ Kx+ Cw. We
have QQ∗ = ηI. Let (γk)k∈N be a sequence of positive stepsizes.

5.1 The Davis–Yin Algorithm

In this section, we state the results on the Davis–Yin algorithm, which we be needed to analyze the
PD3O and PPDY algorithms.

The Davis–Yin algorithm to minimize the sum of 3 convex functions F̃ +G+J over a real Hilbert
space Z (assuming that there exists a solution z? such that 0 ∈ ∇F̃ (z?) + ∂G(z?) + ∂J(z?)) is [Davis
and Yin, 2017]:

Let z0J ∈ Z, u0G ∈ Z. For k = 0, 1, . . . iterate: zk+1
G = proxγkG(zkJ + γku

k
G)

uk+1
G = ukG + 1

γk
(zkJ − z

k+1
G)

zk+1
J = proxγk+1J

(
zk+1
G − γk+1u

k+1
G − γk+1∇F̃ (zk+1

G)
)
.

(10)

Equivalently, introducing the variable rk := zkJ + γku
k
G: let r

0 ∈ Z. For k = 0, 1, . . . iterate: zk+1
G = proxγkG(rk)

zk+1
J = proxγk+1J

(
(1 +

γk+1

γk
)zk+1
G − γk+1

γk
rk − γk+1∇F̃ (zk+1

G)
)

rk+1 = zk+1
J +

γk+1

γk
(rk − zk+1

G).

(11)

Equivalently: let r0 ∈ Z. For k = 0, 1, . . . iterate: zk+1
G = proxγkG(rk)

uk+1
J = proxJ∗/γk+1

(
(1
γk+1

+ 1
γk

)zk+1
G − 1

γk
rk −∇F̃ (zk+1

G)
)

rk+1 = zk+1
G − γk+1∇F̃ (zk+1

G)− γk+1u
k+1
J .

(12)

In our notations, Theorem 3.3 of Davis and Yin [2017] translates into Lemma 1 as follows; we
assume that F̃ is L

F̃
-smooth and µ

F̃
-strongly convex and that G is µG-strongly convex, for some

L
F̃
> 0, µ

F̃
≥ 0, µG ≥ 0.

Lemma 1 (accelerated Davis–Yin algorithm). Suppose that µ
F̃

+ µG > 0. Let z? be the unique
minimizer of F̃ +G+ J ; that is, 0 ∈ ∇F̃ (z?) + ∂G(z?) + ∂J(z?). Let u?G be such that u?G ∈ ∂G(z?)

and 0 ∈ ∇F̃ (z?) + ∂J(z?) + u?G. Let κ ∈ (0, 1) and γ0 ∈ (0, 2(1− κ)/L
F̃

). Set γ1 = γ0 and

γk+1 =
−γ2kµF̃κ+ γk

√
(γkµF̃κ)2 + 1 + 2γkµG

1 + 2γkµG
, for every k ≥ 1.

Then, for every k ≥ 1,

‖zk+1
G − z?‖2 ≤

γ2k+1

1− γk+1µF̃κ
c0 = O

(
1/k2

)
,

where
c0 =

1− γ0µF̃κ
γ20

‖z1G − z?‖2 + ‖u1G − u?G‖2.

Note that u1G = (r0 − z1G)/γ0.

Linear convergence occurs in the following conditions, according to Theorem D.6 in the preprint
version of Davis and Yin [2017], which translates into Lemma 2 as follows. We assume that F̃ is
L
F̃
-smooth and µ

F̃
-strongly convex, G is µG-strongly convex, and J is µJ -strongly convex, for some

L
F̃
> 0, µ

F̃
≥ 0, µG ≥ 0, µJ ≥ 0. We consider constant stepsizes γk ≡ γ, for some γ ∈ (0, 2/L

F̃
).

14

Lemma 2 (linear convergence of the Davis–Yin algorithm). Suppose that µ
F̃

+ µG + µJ > 0 and
that G is LG-smooth, for some LG > 0, or J is LJ -smooth, for some LJ > 0. Let z? be the unique
minimizer of F̃ +G+ J ; that is, 0 ∈ ∇F̃ (z?) + ∂G(z?) + ∂J(z?). The dual problem of minimizing
(F̃ + J)∗(−u) + G∗(u) over u ∈ Z is strongly convex too; let u?G be its unique solution. We have
u?G ∈ ∂G(z?) and 0 ∈ ∇F̃ (z?) + ∂J(z?) + u?G. Set r? = z? + γu?G. Then, the Davis–Yin algorithm
(11) converges linearly: there exists ρ ∈ (0, 1] such that, for every k ∈ N,

‖rk − r?‖2 ≤ (1− ρ)k‖r0 − r?‖2. (13)

Loose lower bounds for ρ are given in Davis and Yin, 2017, Theorem D.6.

We have the following corollary of Lemma 2:

Proposition 1 (linear convergence of the other variables in the Davis–Yin algorithm). In the same
conditions and notations as in Lemma 2, we have, for every k ∈ N,

‖zk+1
G − z?‖2 ≤ (1− ρ)k‖r0 − r?‖2 (14)

‖zk+1
J − z?‖2 ≤ 4(1− ρ)k‖r0 − r?‖2.

Also, in the form (12) of the algorithm,

‖uk+1
J + u?G +∇F̃ (z?)‖2 ≤ 4

γ2
(1− ρ)k‖r0 − r?‖2

and, in the form (10) of the algorithm,

‖uk+1
G − u?G‖2 ≤

1

γ2
(1− ρ)k‖r0 − r?‖2.

Proof. Let k ∈ N. By nonexpansiveness of the proximity operator, in view of the first line in (11),
we have ‖zk+1

G − z?‖ ≤ ‖rk − r?‖, so that (14) follows from (13). In addition, in view of the second
line in (11), we have

‖zk+1
J − z?‖2 ≤ ‖2(zk+1

G − z?)− (rk − r?)− γ(∇F̃ (zk+1
G)−∇F̃ (z?))‖2

= ‖(zk+1
G − z?)− (rk − r?) + (I − γ∇F̃)(zk+1

G)− (I − γ∇F̃)(z?)‖2

= ‖(I − proxγG)(rk)− (I − proxγG)(r?) + (I − γ∇F̃)(zk+1
G)− (I − γ∇F̃)(z?)‖2

and, by nonexpansiveness of I − proxγG and I − γ∇F̃ ,

‖zk+1
J − z?‖2 ≤

(
‖rk − r?‖+ ‖zk+1

G − z?‖
)2

≤ 4‖rk − r?‖2.

Using the same arguments, in view of the second line in (12),

‖uk+1
J + u?G +∇F̃ (z?)‖2 ≤ 1

γ2
(
‖rk − r?‖+ ‖zk+1

G − z?‖
)2

≤ 4

γ2
‖rk − r?‖2.

Finally, as visible in the first line of (16), since rk = zkJ + γku
k
G, and using the Moreau identity, we

have uk+1
G = proxG∗/γ(1γ z

k
J + ukG) = proxG∗/γ(1γ r

k), so that

‖uk+1
G − u?G‖2 ≤

1

γ2
‖rk − r?‖2.

15

5.2 The PD3O Algorithm

We set Z = X ×W , F̃ , G = R̃, J = H̃, as defined in Section 2. Doing the substitutions in (12), we
get the algorithm:

Let s0 ∈ X and r0w ∈ W. For k = 0, 1, . . . iterate:
xk+1 = proxγkR(sk)

uk+1 = proxH∗/(γk+1η)

(
K
(
(1
γk+1

+ 1
γk

)xk+1 − 1
γk
sk −∇F (xk+1)

)
/η − Crkw/(γkη)

)
sk+1 = xk+1 − γk+1∇F (xk+1)− γk+1K

∗uk+1

rk+1
w = −γk+1C

∗uk+1.

We can remove the variable rw and the algorithm becomes: Let s0 ∈ X and u0 ∈ U . For k = 0, 1, . . .
iterate: xk+1 = proxγkR(sk)

uk+1 = proxH∗/(γk+1η)

(
1
ηK
(
(1
γk+1

+ 1
γk

)xk+1 − 1
γk
sk −∇F (xk+1)

)
+ 1

ηCC
∗uk
)

sk+1 = xk+1 − γk+1∇F (xk+1)− γk+1K
∗uk+1.

After replacing CC∗ by ηI −KK∗, the iteration becomes: xk+1 = proxγkR(sk)

uk+1 = proxH∗/(γk+1η)

(
uk + 1

ηK
(
(1
γk+1

+ 1
γk

)xk+1 − 1
γk
sk −∇F (xk+1)−K∗uk

))
sk+1 = xk+1 − γk+1∇F (xk+1)− γk+1K

∗uk+1.

We can change the variables, so that only one call to ∇F and K∗ appears, which yields the algorithm:
Let q0 ∈ X and u0 ∈ U . For k = 0, 1, . . . iterate: xk+1 = proxγkR

(
γk(q

k −K∗uk)
)

qk+1 = 1
γk+1

xk+1 −∇F (xk+1)

uk+1 = proxH∗/(γk+1η)

(
uk + 1

ηK(1
γk
xk+1 + qk+1 − qk)

)
.

When γk ≡ γ is constant, we recover the PD3O algorithm [Yan, 2018].
To derive Theorem 3 from Lemma 1, we simply have to notice that the variable zk+1

G in the latter
corresponds to the pair (xk+1, 0). Also, in the conditions of Theorem 3, let u? be any solution of (3);
that is, u? ∈ ∂H(Kx?) and 0 ∈ ∂R(x?) +∇F (x?) +K∗u?. Then the constant c0 is

c0 =
1− γ0µFκ

γ20
‖x1−x?‖2 + ‖q0− 1

γ0
x1−K∗(u0−u?) +∇F (x?)‖2 + η‖u0−u?‖2−‖K∗(u0−u?)‖2.

If K = I and η = 1, the PD3O algorithm reverts to the Davis–Yin algorithm, as given in
(4). In the conditions of Theorem 3, let u? be any solution of (3); that is, u? ∈ ∂H(x?) and
0 ∈ ∂R(x?) +∇F (x?) + u?. Then the constant c0 is

c0 =
1− γ0µFκ

γ20
‖x1 − x?‖2 + ‖ 1

γ0
(s0 − x1) + u? +∇F (x?)‖2. (15)

5.3 The PDDY Algorithm

The PDDY algorithm is obtained like the PD3O algorithm from the David–Yin algorithm, but after
swapping the roles of H̃ and R̃.

16

To obtain the PDDY algorithm, starting from (10), let us first write the Davis–Yin algorithm as:
Let z0J ∈ Z and u0G ∈ Z. For k = 0, 1, . . . iterate: uk+1

G = proxG∗/γk(1
γk
zkJ + ukG)

zk+1
G = zkJ − γk(u

k+1
G − ukG)

zk+1
J = proxγk+1J

(
zk+1
G − γk+1∇F̃ (zk+1

G)− γk+1u
k+1
G

)
.

Equivalently: Let r0 ∈ Z. For k = 0, 1, . . . iterate:
uk+1
G = proxG∗/γk(rk/γk)

zk+1
G = rk − γkuk+1

G

zk+1
J = proxγk+1J

(
zk+1
G − γk+1∇F̃ (zk+1

G)− γk+1u
k+1
G

)
rk+1 = zk+1

J + γk+1u
k+1
G .

(16)

We set Z = X ×W , F̃ , G = H̃, J = R̃, as defined in Section 2. Doing the substitutions in (16),
we get the algorithm: Let r0x ∈ X , r0w ∈ W. For k = 0, 1, . . . iterate:

uk+1 = proxH∗/(γkη)

(
(Krkx + Crkw)/(γkη)

)
xk+1 = rkx − γkK∗uk+1

xk+1
R = proxγk+1R

(
xk+1 − γk+1∇F (xk+1)− γk+1K

∗uk+1
)

rk+1
x = xk+1

R + γk+1K
∗uk+1

rk+1
w = γk+1C

∗uk+1.

We can remove the variable rw and rename rx as s:
uk+1 = proxH∗/(γkη)

(
Ksk/(γkη) + CC∗uk/η

)
xk+1 = sk − γkK∗uk+1

xk+1
R = proxγk+1R

(
xk+1 − γk+1∇F (xk+1)− γk+1K

∗uk+1
)

sk+1 = xk+1
R + γk+1K

∗uk+1.

The algorithm becomes: Let s0 ∈ X , u0 ∈ U . For k = 0, 1, . . . iterate:
uk+1 = proxH∗/(γkη)

(
uk +K(sk/γk −K∗uk)/η

)
xk+1 = sk − γkK∗uk+1

xk+1
R = proxγk+1R

(
xk+1 − γk+1∇F (xk+1)− γk+1K

∗uk+1
)

sk+1 = xk+1
R + γk+1K

∗uk+1.

Equivalently: Let x0R ∈ X , u0 ∈ U . For k = 0, 1, . . . iterate: uk+1 = proxH∗/(γkη)

(
uk +KxkR/(γkη)

)
xk+1 = xkR − γkK∗(uk+1 − uk)
xk+1
R = proxγk+1R

(
xk+1 − γk+1∇F (xk+1)− γk+1K

∗uk+1
)
.

We can write the algorithm with only one call of K∗ per iteration by introducing an additional
variable p: Let x0R ∈ X , u0 ∈ U . Set p0 = K∗u0. For k = 0, 1, . . . iterate:

uk+1 = proxH∗/(γkη)

(
uk + 1

γkη
KxkR

)
pk+1 = K∗uk+1

xk+1 = xkR − γk(pk+1 − pk)
xk+1
R = proxγk+1R

(
xk+1 − γk+1∇F (xk+1)− γk+1p

k+1
)
.

When γk ≡ γ is constant, we recover the PDDY algorithm [Salim et al., 2020].

17

Let us now derive Theorem 4 from Lemma 1. The variable zk+1
G in the latter corresponds to the

pair
(
xk+1, γkC

∗(uk − uk+1)
)
, so that ‖zk+1

G − z?‖2 becomes

‖xk+1 − x?‖2 + ‖γkC∗(uk − uk+1)‖2 = ‖xk+1 − x?‖2 + γ2k〈CC∗(uk − uk+1), uk − uk+1〉
= ‖xk+1 − x?‖2 + γ2k〈(ηI −KK∗)(uk − uk+1), uk − uk+1〉
= ‖xk+1 − x?‖2 + γ2kη‖uk − uk+1‖2 − γ2k‖K∗(uk − uk+1)‖2.

(17)

Therefore, in the conditions of Theorem 4, let u? be any solution of (3); that is, u? ∈ ∂H(Kx?) and
0 ∈ ∂R(x?) +∇F (x?) +K∗u?. Then the constant c0 is

c0 =
1− γ0µFκ

γ20

(
‖x1 − x?‖2 + γ20η‖u1 − u0‖2 − γ20‖K∗(u1 − u0)‖2

)
+ η‖u1 − u?‖2.

The last statement in Theorem 4 is obtained as follows. First, for every k ≥ 1, xkR = xk+1 −
γkK

∗(uk −uk+1), so that ‖xkR−x?‖2 ≤ 2‖xk+1−x?‖2 + 2‖K‖2‖γk(uk −uk+1)‖2. Second, from (17),
‖xk+1−x?‖2 = O(1/k2) and (η−‖K‖2)‖γk(uk−uk+1)‖2 ≤ γ2k〈(ηI−KK∗)(uk−uk+1), uk−uk+1〉 =
O(1/k2). So, assuming that η > ‖K‖2, ‖γk(uk − uk+1)‖2 = O(1/k2). Hence, ‖xkR − x?‖2 = O(1/k2).

If K = I and η = 1, the PDDY algorithm reverts to the Davis–Yin algorithm, as given in (4),
but with R and H exchanged. In the conditions of Theorem 4, let u? be any solution of (3); that is,
u? ∈ ∂H(x?) and 0 ∈ ∂R(x?) +∇F (x?) + u?. Then the constant c0 is

c0 =
1− γ0µFκ

γ20
‖x1 − x?‖2 + ‖ 1

γ0
(s0 − x1)− u?‖2.

This is the same value as in (15), corresponding to the Davis–Yin algorithm, viewed as the PD3O
algorithm, with R and H exchanged. Indeed, u? is defined differently in both cases; that is, with the
exchange, u? ∈ ∂R(x?) in (15).

5.4 R = 0: The Loris–Verhoeven Algorithm

If R = 0, the PD3O algorithm becomes: Let q0 ∈ X and u0 ∈ U . For k = 0, 1, . . . iterate: xk+1 = γk(q
k −K∗uk)

qk+1 = 1
γk+1

xk+1 −∇F (xk+1)

uk+1 = proxH∗/(γk+1η)

(
uk + 1

ηK(1
γk
xk+1 + qk+1 − qk)

)
,

(18)

whereas the PDDY algorithm becomes: Let x0R ∈ X , u0 ∈ U . Set p0 = K∗u0. For k = 0, 1, . . . iterate:
uk+1 = proxH∗/(γkη)

(
uk + 1

γkη
KxkR

)
pk+1 = K∗uk+1

xk+1 = xkR − γk(pk+1 − pk)
xk+1
R = xk+1 − γk+1∇F (xk+1)− γk+1p

k+1.

Equivalently, ⌊
uk+1 = proxH∗/(γkη)

(
uk + 1

γkη
K(xk − γk∇F (xk)− γkK∗uk)

)
xk+1 = xk − γk∇F (xk)− γkK∗uk+1,

or: qk+1 = 1
γk
xk −∇F (xk)

uk+1 = proxH∗/(γkη)

(
uk + 1

γkη
K(γkq

k+1 − γkK∗uk)
)

xk+1 = γkq
k+1 − γkK∗uk+1,

18

which is equivalent to (18). So, when R = 0, both the PD3O and PPDY revert to an algorithm
which, for γk ≡ γ, is the Loris–Verhoeven algorithm [Loris and Verhoeven, 2011, Combettes et al.,
2014, Condat et al., 2019a].

Let u? be any solution of (3); that is, u? ∈ ∂H(Kx?) and 0 ∈ ∇F (x?) +K∗u?. In the conditions
of Theorem 3, c0 is:

c0 =
1− γ0µFκ

γ20
‖x1−x?‖2 + ‖q0− 1

γ0
x1−K∗(u0−u?) +∇F (x?)‖2 + η‖u0−u?‖2−‖K∗(u0−u?)‖2.

On the other hand, in Theorem 4,

c0 =
1− γ0µFκ

γ20

(
‖x1 − x?‖2 + γ20η‖u1 − u0‖2 − γ20‖K∗(u1 − u0)‖2

)
+ η‖u1 − u?‖2.

It is not clear how these two values compare to each other. They are both valid, in any case.

5.5 F = 0: The Chambolle–Pock and Douglas–Rachford Algorithms

If F = 0, the PD3O algorithms reverts to: Let x0 ∈ X and u0 ∈ U . For k = 0, 1, . . . iterate:⌊
xk+1 = proxγkR

(
xk − γkK∗uk

)
uk+1 = proxH∗/(γk+1η)

(
uk + 1

ηK
(
(1
γk+1

+ 1
γk

)xk+1 − 1
γk
xk
))
.

For γk ≡ γ, this is the form I [Condat et al., 2019a] of the Chambolle–Pock algorithm [Chambolle
and Pock, 2011].

In the conditions of Theorem 3, let u? be any solution of (3); that is, u? ∈ ∂H(Kx?) and
0 ∈ ∂R(x?) +K∗u?. Then the constant c0 is

c0 =
1

γ20
‖x1 − x?‖2 + ‖ 1

γ0
(x0 − x1)−K∗(u0 − u?)‖2 + η‖u0 − u?‖2 − ‖K∗(u0 − u?)‖2.

On the other hand, if F = 0, the PDDY algorithm reverts to: Let x0R ∈ X , u0 ∈ U . Set p0 = K∗u0.
For k = 0, 1, . . . iterate:

uk+1 = proxH∗/(γkη)

(
uk + 1

γkη
KxkR

)
pk+1 = K∗uk+1

xk+1 = xkR − γk(pk+1 − pk)
xk+1
R = proxγk+1R

(
xk+1 − γk+1p

k+1
)
,

which can be simplified as: Let x0R ∈ X , u0 ∈ U . For k = 0, 1, . . . iterate:⌊
uk+1 = proxH∗/(γkη)

(
uk + 1

γkη
KxkR

)
xk+1
R = proxγk+1R

(
xkR −K∗

(
(γk + γk+1)u

k+1 − γkuk
))
,

knowing that we can retrieve the variable xk as xk+1 = xkR − γkK∗(uk+1 − uk).
For γk ≡ γ, this is the form II [Condat et al., 2019a] of the Chambolle–Pock algorithm [Chambolle

and Pock, 2011].
Note that with constant stepsizes, the Chambolle–Pock form II can be viewed as the form I

applied to the dual problem. This interpretation does not hold with varying stepsizes as in Theorem 3:
the stepsize playing the role of γk would be 1/(γkη), which tends to +∞ instead of 0, so that the
theorem does not apply.

Note, also, that Theorem 4 does not apply, since F = 0 is not strongly convex. Finally, if the
accelerated Chambolle–Pock algorithm form I is applied to the dual problem, our results do not

19

guarantee convergence of the primal variable xk to a solution. So, we cannot derive an accelerated
Chambolle–Pock algorithm form II.

If K = I, U = X and η = 1, the Chambolle-Pock algorithm form I becomes the Douglas–Rachford
algorithm: Let x0 ∈ X and u0 ∈ X . For k = 0, 1, . . . iterate:⌊

xk+1 = proxγkR
(
xk − γkuk

)
uk+1 = proxH∗/γk+1

(
uk + (1

γk+1
+ 1

γk
)xk+1 − 1

γk
xk
)
.

We can rewrite the algorithm using only the meta-variable sk = xk − γku
k: Let s0 ∈ X . For

k = 0, 1, . . . iterate: xk+1 = proxγkR(sk)

uk+1 = proxH∗/γk+1

(
(1
γk+1

+ 1
γk

)xk+1 − 1
γk
sk
)

sk+1 = xk+1 − γk+1u
k+1.

Using the Moreau identity, we obtain: Let s0 ∈ X . For k = 0, 1, . . . iterate: xk+1 = proxγkR(sk)

xk+1
H = proxγk+1H

(
(1 +

γk+1

γk
)xk+1 − γk+1

γk
sk
)

sk+1 = xk+1
H +

γk+1

γk
(sk − xk+1),

(19)

and for γk ≡ γ, we recognize the classical form of the Douglas–Rachford algorithm [Combettes and
Pesquet, 2010].

In the conditions of Theorem 3, let u? be any solution of (3); that is, u? ∈ ∂H(x?) and
0 ∈ ∂R(x?) + u?. Then the constant c0 is

c0 =
1

γ20
‖x1 − x?‖2 + ‖ 1

γ0
(s0 − x1) + u?‖2.

On the other hand, if K = I, U = X and η = 1, the Chambolle-Pock algorithm form II becomes:
Let x0R ∈ X , u0 ∈ U . For k = 0, 1, . . . iterate: uk+1 = proxH∗/γk

(
uk + 1

γk
xkR
)

xk+1 = xkR − γk(uk+1 − uk)
xk+1
R = proxγk+1R

(
xk+1 − γk+1u

k+1
)
.

Using the Moreau identity, we obtain: Let x0R ∈ X , u0 ∈ U . For k = 0, 1, . . . iterate: xk+1 = proxγkH(xkR + γku
k)

uk+1 = uk + (xkR − xk+1)/γk
xk+1
R = proxγk+1R

(
xk+1 − γk+1u

k+1
)
.

Introducing the meta-variable sk = xkR + γku
k, we obtain: Let s0 ∈ X . For k = 0, 1, . . . iterate: xk+1 = proxγkH(sk)

xk+1
R = proxγk+1R

(
(1 +

γk+1

γk
)xk+1 − γk+1

γk
sk
)

sk+1 = xk+1
R +

γk+1

γk
(sk − xk+1).

Thus, we recover exactly the Douglas–Rachford algorithm (19), with R and H exchanged.

20

6 Derivation of the Distributed Algorithms

6.1 The Distributed PD3O Algorithm and its Particular Cases

Let us adopt the notations of Section 3 and precise the different operators. The gradient of F̂ in X̂ is

∇F̂ (x̂) =
(

1
Mω1
∇F1(x1), . . . ,

1
MωM

∇FM (xM)
)
, ∀x̂ ∈ X̂ .

We define the linear subspace S = {x̂ ∈ X̂ : x1 = · · · = xM}. F̂ is L
F̂
-smooth, with L

F̂
=

maxm
LFm
Mωm

. But since ∇F̂ is applied to an element of S in the algorithms, we can weaken the
condition on L

F̂
> 0 to be: for every x̂ = (x)Mm=1 ∈ S and x̂′ = (x′)Mm=1 ∈ S,

‖∇F̂ (x̂)−∇F̂ (x̂′)‖2X̂ =

M∑
m=1

ωm
∥∥ 1
Mωm

∇Fm(x)− 1
Mωm

∇Fm(x′)
∥∥2

≤ L2
F̂
‖x̂− x̂′‖2X̂ = L2

F̂
‖x− x′‖2.

That is, L
F̂
is such that, for every (x, x′) ∈ X 2,

1

M2

M∑
m=1

1

ωm
‖∇Fm(x)−∇Fm(x′)‖2 ≤ L2

F̂
‖x− x′‖2. (20)

Notably,

L2
F̂

=
1

M2

M∑
m=1

L2
Fm

ωm

satisfies the condition.
The adjoint operator of K̂ is

K̂∗ : û ∈ Û 7→
(
K∗1u1, . . . ,K

∗
MuM

)
∈ X̂ .

Thus,
‖K̂‖2 = ‖K̂∗K̂‖ = max

m
‖Km‖2. (21)

But if F1 = · · · = FM , we can restrict the norm to S and

‖K̂‖2 = sup
x̂∈S
〈x̂, K̂∗K̂x̂〉X̂ /‖x̂‖

2
X̂

= sup
x∈X
〈x,

M∑
m=1

ωmK
∗
mKmx〉/‖x‖2

=
∥∥ M∑
m=1

ωmK
∗
mKm

∥∥, (22)

which is ≤
∑M

m=1 ωm‖Km‖2.
For any ζ > 0, we have prox

ζR̂
: x̂ 7→ (x′, . . . , x′), where x′ = proxζR

(∑M
m=1 ωmxm

)
and prox

ζĤ
:

û 7→
(
proxζH1/(Mω1)(u1), . . . ,proxζHM/(MωM)(uM)

)
. We also have ∂Ĥ : û 7→ 1

Mω1
∂H1(u1) × · · · ×

1
MωM

∂HM (uM), Ĥ∗ : û 7→ 1
M

∑M
m=1H

∗
m(Mωmum), and prox

ζĤ∗ : û 7→
(

1
Mω1

proxζMω1H∗
1
(Mω1u1),

. . . , 1
MωM

proxζMωMH∗
M

(MωMuM)
)
.

By doing all these substitutions in the PD3O algorithm, we obtain the distributed PD3O algorithm,
and all its particular cases, shown above. Theorem 1 becomes Theorem 6 as follows. The objective
function is Ψ : x ∈ X 7→ R(x) + 1

M

∑M
m=1(Fm(x) +Hm(Kmx)).

21

Theorem 6 (convergence rate of the Distributed PD3O Algorithm). In the Distributed PD3O
Algorithm, suppose that γk ≡ γ ∈ (0, 2/L

F̂
), where F̂ satisfies (20); if Fm ≡ 0, we can choose any

γ > 0. Also, suppose that η ≥ ‖K̂‖2, where ‖K̂‖2 is defined in (21) or (22). Then xk converges to
some solution x? of (1). Also, ukm converges to some element u?m ∈ Um, for every m = 1, . . . ,M . In
addition, suppose that every Hm is continuous on an open ball centered at Kmx

?. Then the following
hold:

(i) Ψ(xk)−Ψ(x?) = o(1/
√
k).

Define the weighted ergodic iterate x̄k = 2
k(k+1)

∑k
i=1 ix

i, for every k ≥ 1. Then

(ii) Ψ(x̄k)−Ψ(x?) = O(1/k).

Furthermore, if every Hm is Lm-smooth for some Lm > 0, we have a faster decay for the best iterate
so far:

(iii) min
i=1,...,k

Ψ(xi)−Ψ(x?) = o(1/k).

The theorem applies to the particular cases of the Distributed PD3O Algorithm, like the
distributed Loris–Verhoeven, Chambolle–Pock, Douglas–Rachford algorithms. We can note that
the distributed forward–backward algorithm is monotonic, so Theorem 6 (iii) (with Hm ≡ 0) yields
Ψ(xk)−Ψ(x?) = o(1/k) for this algorithm.

We now give accelerated convergence results using varying stepsizes, in presence of strong convexity.
For this, we have to define the strong convexity constants µ

F̂
and µ

R̂
. Like for the smoothness

constant, we can restrict their definition to S. So, µ
F̂
becomes the strong convexity constant of the

average function 1
M

∑M
m=1 Fm. That is, µF̂ ≥ 0 is such that the function

x ∈ X 7→ 1

M

M∑
m=1

Fm(x)−
µ
F̂

2
‖x‖2

is convex. It is much weaker to require µ
F̂
> 0 than to ask all Fm to be strongly convex. Similarly,

we have µ
R̂

= µR, the strong convexity constant of R. Thus, since the Accelerated Distributed
PD3O Algorithm can be viewed as the accelerated PD3O algorithm applied to the minimization of
F̂ (x̂) + R̂(x̂) + Ĥ(K̂x̂), we have all the ingredients to invoke Theorem 3, which is transposed as:

Theorem 7 (Accelerated Distributed PD3O Algorithm). Suppose that µ
F̂

+ µR > 0. Let x? be the
unique solution to (1). Let κ ∈ (0, 1) and γ0 ∈ (0, 2(1− κ)/L

F̂
). Set γ1 = γ0 and

γk+1 =
−γ2kµF̂κ+ γk

√
(γkµF̂κ)2 + 1 + 2γkµR

1 + 2γkµR
, for every k ≥ 1.

Suppose that η ≥ ‖K̂‖2, where ‖K̂‖2 is defined in (21) or (22). Then in the Distributed PD3O
Algorithm, there exists ĉ0 > 0 such that, for every k ≥ 1,

‖xk+1 − x?‖2 ≤
γ2k+1

1− γk+1µF̂κ
ĉ0 = O

(
1/k2

)
.

As for Theorem 5, its counterpart in the distributed setting is:

Theorem 8 (linear convergence of the Distributed PD3O Algorithm). Suppose that µ
F̂

+ µR > 0
and that every Hm is Lm-smooth, for some Lm > 0. Let x? be the unique solution to (1). We suppose
that γk ≡ γ ∈ (0, 2/L

F̂
) and η ≥ ‖K̂‖2, where ‖K̂‖2 is defined in (21) or (22). Then the Distributed

PD3O Algorithm converges linearly: there exists ρ ∈ (0, 1] and ĉ0 > 0 such that, for every k ∈ N,

‖xk+1 − x?‖2 ≤ (1− ρ)k ĉ0.

22

We can remark that the Distributed Davis–Yin algorithm (with ωm = 1/M and γk ≡ γ) has
been proposed in an unpublished paper by Ryu and Yin [Ryu and Yin, 2017], where it is named
Proximal-Proximal-Gradient Method. Their results are similar to ours in Theorems 6 and 8 for
this algorithm, but their condition γ < 3/(2L), with L = maxm LFm , is worse than ours. Also, our
accelerated version with varying stepsizes in Theorem 7 is new.

6.2 The Distributed PDDY Algorithm

The Distributed PDDY Algorithm, shown above, is derived the same way as the Distributed PD3O
Algorithm. However, the smoothness constant cannot be defined only on S, so that we have

L
F̂

= max
m=1,...,M

LFm

Mωm

and
µ
F̂

= min
m=1,...,M

µFm

Mωm
.

Moreover,
‖K̂‖2 = max

m=1,...,M
‖Km‖2, (23)

except if Fm ≡ 0, in which case the Distributed PDDY Algorithm becomes the Distributed Chambolle–
Pock Algorithm Form II, for which we can set

‖K̂‖2 =

∥∥∥∥∥
M∑
m=1

ωmK
∗
mKm

∥∥∥∥∥ . (24)

We can note that when Km ≡ I, the Distributed PDDY Algorithm reverts to a form of distributed
Davis–Yin algorithm, which is different from the Distributed Davis–Yin Algorithm obtained from
the PD3O algorithm, shown above. Similarly, when R = 0, we obtain a different algorithm than
the Distributed Loris–Verhoeven Algorithm shown above. When Fm ≡ 0, the Distributed PDDY
Algorithm reverts to the Distributed Chambolle–Pock Algorithm Form II, which is still different
from the Distributed Douglas–Rachford Algorithm when Km ≡ I.

The counterpart of Theorem 2 is:

Theorem 9 (convergence of the Distributed PDDY Algorithm). In the Distributed PDDY Algorithm,
suppose that γk ≡ γ ∈ (0, 2/LF) and η ≥ ‖K̂‖2, where ‖K̂‖2 is defined in (23) or (24). Then all xkm
as well as xkR converge to the same solution x? of (1), and every ukm converges to some element u?m.

The counterpart of Theorem 4 is:

Theorem 10 (Accelerated Distributed PDDY Algorithm). Suppose that µ
F̂
> 0. Let x? be the

unique solution to (1). Let κ ∈ (0, 1) and γ0 ∈ (0, 2(1− κ)/L
F̂

). Set γ1 = γ0 and

γk+1 = −γ2kµF̂κ+ γk

√
(γkµF̂κ)2 + 1, for every k ≥ 1.

Suppose that η ≥ ‖K̂‖2, where ‖K̂‖2 is defined in (23) or (24). Then in the Distributed PDDY
Algorithm, there exists ĉ0 > 0 such that, for every k ≥ 1,

M∑
m=1

ωm‖xk+1
m − x?‖2 ≤

γ2k+1

1− γk+1µFκ
c0 = O

(
1/k2

)
.

Consequently, for every m = 1, . . . ,M ,

‖xkm − x?‖2 = O
(
1/k2

)
.

Moreover, if η > ‖K̂‖2, ‖xkR − x?‖2 = O(1/k2) as well.

23

Distributed Condat–Vũ Alg. Form I

input: γ > 0, σ > 0, (ωm)Mm=1

x0 ∈ X , (u0m)Mm=1 ∈ Û
initialize: a0m := K∗mu

0
m +∇Fm(x0), ∀m

for k = 0, 1, . . . do
at master, do

xk+1 := proxγR
(
xk − γ

M

∑M
m=1 a

k
m

)
broadcast xk+1 to all nodes

at all nodes, for m = 1, . . . ,M , do
uk+1
m := proxMωmσH∗

m

(
ukm

+MωmσKm(2xk+1 − xk)
)

ak+1
m := K∗mu

k+1
m +∇Fm(xk+1)

transmit ak+1
m to master

end for

Distributed Condat–Vũ Alg. Form II

input: γ > 0, σ > 0, (ωm)Mm=1

x0 ∈ X , (u0m)Mm=1 ∈ Û
for k = 0, 1, . . . do
at all nodes, for m = 1, . . . ,M , do

uk+1
m := proxMωmσH∗

m

(
ukm

+MωmσKmx
k
)

akm := K∗m(2uk+1
m − ukm) +∇Fm(xk)

transmit akm to master
at master, do

xk+1 := proxγR
(
xk − γ

M

∑M
m=1 a

k
m

)
broadcast xk+1 to all nodes

end for

The counterpart of Theorem 5 is:

Theorem 11 (linear convergence of the Distributed PDDY Algorithm). Suppose that µ
F̂

+ µR > 0
and that every Hm is Lm-smooth, for some Lm > 0. Let x? be the unique solution to (1). Suppose
that γk ≡ γ ∈ (0, 2/L

F̂
) and η ≥ ‖K̂‖2, where ‖K̂‖2 is defined in (23) or (24). Then the Distributed

PDDY Algorithm converges linearly: there exists ρ ∈ (0, 1] and ĉ0 > 0 such that, for every k ∈ N,

‖xk+1
R − x?‖2 ≤ (1− ρ)k ĉ0.

6.3 The Distributed Condat–Vũ Algorithm

We can apply our product-space technique to other algorithms; in particular, we can derive distributed
versions, shown below, of the Condat–Vũ algorithm [Condat, 2013, Vũ, 2013, Condat et al., 2019a],
which is a well known algorithm for the problem (2).

The smoothness constant L2
F̂
is the same as for the Distributed PD3O Algorithm; we can set

L2
F̂

= 1
M2

∑M
m=1 L

2
Fm
/ωm.

Moreover, the norm of K̂ is smaller for the Condat–Vũ algorithm: we have ‖K̂‖2 = ‖
∑M

m=1 ωmK
∗
mKm‖,

whatever the functions Fm. This is because the gradient descent step is completely decoupled from
the dual variables in the Condat–Vũ algorithm.

The price to pay is a stronger condition on the parameters for convergence:

Theorem 12 (convergence of the Distributed Condat–Vũ Algorithm). Suppose that the parameters
γ > 0 and σ > 0 are such that

γ
(
σ
∥∥ M∑
m=1

ωmK
∗
mKm

∥∥+
L
F̂

2

)
< 1.

Then xk converges to a solution x? of (1). Also, ukm converges to some element u?m ∈ Um, for every
m = 1, . . . ,M .

When Fm ≡ 0, the two forms of the Distributed Condat–Vũ Algorithm revert to the two forms
of the Distributed Chambolle–Pock Algorithm, respectively. In that case, with constant stepsizes
γk ≡ γ, the convergence condition is γσ‖

∑M
m=1 ωmK

∗
mKm‖ ≤ 1, which is the same as above with

σ = 1/(ηγ).

24

Author Contributions

Grigory Malinovsky wrote the code and generated the results for the SVM experiment in Section 4.3.
Peter Richtárik contributed to the paper writing and to the project management. Laurent Condat
did all the rest.

References

S. A. Alghunaim, E. K. Ryu, K. Yuan, and A. H. Sayed. Decentralized proximal gradient algorithms
with linear convergence rates. IEEE Trans. Autom. Control, 66(6):2787–2794, June 2021.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.
Found. Trends Mach. Learn., 4(1):1–106, 2012.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, New York, 2nd edition, 2017.

A. Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization. SIAM, 2017.

R. I. Boţ, E. R. Csetnek, and C. Hendrich. Recent developments on primal–dual splitting methods with
applications to convex minimization. In P. M. Pardalos and T. M. Rassias, editors, Mathematics
Without Boundaries: Surveys in Interdisciplinary Research, pages 57–99. Springer New York, 2014.

K. Bredies, K. Kunisch, and T. Pock. Total generalized variation. SIAM J. Imaging Sci., 3(3):
492–526, 2010.

S. Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach. Learn., 8(3–4):
231–357, 2015.

V. Cevher, S. Becker, and M. Schmidt. Convex optimization for big data: Scalable, randomized, and
parallel algorithms for big data analytics. IEEE Signal Process. Mag., 31(5):32–43, 2014.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications
to imaging. J. Math. Imaging Vision, 40(1):120–145, May 2011.

A. Chambolle and T. Pock. An introduction to continuous optimization for imaging. Acta Numerica,
25:161–319, 2016a.

A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual algorithm.
Math. Program., 159(1–2):253–287, Sept. 2016b.

C.-C. Chang and C.-J. Lin. LibSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):27, 2011.

P. Chen, J. Huang, and X. Zhang. A primal–dual fixed point algorithm for convex separable
minimization with applications to image restoration. Inverse Problems, 29(2), 2013.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In H. H.
Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212. Springer-Verlag,
New York, 2010.

P. L. Combettes and J.-C. Pesquet. Primal–dual splitting algorithm for solving inclusions with
mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Val. Var.
Anal., 20(2):307–330, 2012.

25

P. L. Combettes, L. Condat, J.-C. Pesquet, and B. C. Vũ. A forward–backward view of some
primal–dual optimization methods in image recovery. In Proc. of IEEE ICIP, pages 4141–4145,
Paris, France, Oct. 2014.

L. Condat. A primal-dual splitting method for convex optimization involving Lipschitzian, proximable
and linear composite terms. J. Optim. Theory Appl., 158(2):460–479, 2013.

L. Condat. A generic proximal algorithm for convex optimization—Application to total variation
minimization. IEEE Signal Process. Lett., 21(8):985–989, Aug. 2014.

L. Condat. Discrete total variation: New definition and minimization. SIAM J. Imaging Sci., 10(3):
1258–1290, 2017a.

L. Condat. A convex approach to K-means clustering and image segmentation. In Proc. of EMMCVPR.
In: M. Pelillo and E. Hancock eds., Lecture Notes in Computer Science vol. 10746, Springer, 2018,
pages 220–234, Venice, Italy, Oct. 2017b.

L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. Proximal splitting algorithms for convex
optimization: A tour of recent advances, with new twists. preprint arXiv:1912.00137, 2019a.

L. Condat, D. Kitahara, and A. Hirabayashi. A convex lifting approach to image phase unwrapping.
In Proc. of IEEE ICASSP, pages 1852–1856, Brighton, UK, 2019b.

D. Cremers, T. Pock, K. Kolev, and A. Chambolle. Convex relaxation techniques for segmentation,
stereo and multiview reconstruction. In Markov Random Fields for Vision and Image Processing.
MIT Press, 2011.

D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications. Set-Val.
Var. Anal., 25:829–858, 2017.

Y. Drori, S. Sabach, and M. Teboulle. A simple algorithm for a class of nonsmooth convex concave
saddle-point problems. Oper. Res. Lett., 43(2):209–214, 2015.

J. Duran, M. Moeller, C. Sbert, and D. Cremers. Collaborative total variation: A general framework
for vectorial TV models. SIAM J. Imaging Sci., 9(1):116–151, 2016.

R. Glowinski, S. J. Osher, and W. Yin, editors. Splitting Methods in Communication, Imaging,
Science, and Engineering. Springer International Publishing, 2016.

E. Gorbunov, F. Hanzely, and P. Richtárik. A unified theory of SGD: Variance reduction, sampling,
quantization and coordinate descent. In Proc. of Int. Conf. Artif. Intell. Stat. (AISTATS), PMLR
108, pages 680–690, Palermo, Sicily, Italy, June 2020.

N. Komodakis and J.-C. Pesquet. Playing with duality: An overview of recent primal–dual approaches
for solving large-scale optimization problems. IEEE Signal Process. Mag., 32(6):31–54, Nov. 2015.

J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning:
Strategies for improving communication efficiency. In NIPS Private Multi-Party Machine Learning
Workshop, 2016. paper arXiv:1610.05492.

P. Latafat, N. M. Freris, and P. Patrinos. A new randomized block-coordinate primal-dual proximal
algorithm for distributed optimization. IEEE Trans. Autom. Control, 64(10):4050–4065, Oct. 2019.

I. Loris and C. Verhoeven. On a generalization of the iterative soft-thresholding algorithm for the
case of non-separable penalty. Inverse Problems, 27(12), 2011.

26

G. Malinovsky, D. Kovalev, E. Gasanov, L. Condat, and P. Richtárik. From local SGD to local
fixed point methods for federated learning. In Proc. of 37th Int. Conf. Machine Learning (ICML),
PMLR 119, pages 6692–6701, 2020.

D. O’Connor and L. Vandenberghe. On the equivalence of the primal-dual hybrid gradient method
and Douglas–Rachford splitting. Math. Program., 179:85–108, 2020.

D. P. Palomar and Y. C. Eldar, editors. Convex Optimization in Signal Processing and Communica-
tions. Cambridge University Press, 2009.

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 3(1):127–239,
2014.

N. G. Polson, J. G. Scott, and B. T. Willard. Proximal algorithms in statistics and machine learning.
Statist. Sci., 30(4):559–581, 2015.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods
for minimizing a composite function. Math. Program., 144(1–2):1–38, Apr. 2014.

E. K. Ryu and W. Yin. Proximal-proximal-gradient method. preprint arXiv:1708.06908, 2017.

A. Salim, L. Condat, K. Mishchenko, and P. Richtárik. Dualize, split, randomize: Fast nonsmooth
optimization algorithms. preprint arXiv:2004.02635, 2020.

A. Salim, L. Condat, D. Kovalev, and P. Richtárik. An optimal algorithm for strongly convex
minimization under affine constraints. preprint arXiv:2102.11079. Accepted at AISTATS 2022,
2021.

K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth and
strongly convex distributed optimization in networks. In Proceedings of the 34th International
Conference on Machine Learning (ICML), volume 70, pages 3027–3036, 2017.

W. Shi, Q. Ling, G. Wu, and W. Yin. EXTRA: An exact first-order algorithm for decentralized
consensus optimization. SIAM J. Optim., 25(2):944–966, 2015.

S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. The MIT Press, 2011.

G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones. Operator splitting methods in control.
Foundations and Trends in Systems and Control, 3(3):249–362, 2016.

Unknown author. Every convex function is locally Lipschitz. The American Mathematical Monthly,
79(10):1121–1124, Dec. 1972.

B. C. Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv.
Comput. Math., 38(3):667–681, Apr. 2013.

Y.-X. Wang, J. Sharpnack, A. Smola, and R. Tibshirani. Trend filtering on graphs. Journal of
Machine Learning Research, 17(105):1–41, 2016.

M. Yan. A new primal-dual algorithm for minimizing the sum of three functions with a linear
operator. J. Sci. Comput., 76(3):1698–1717, Sept. 2018.

27

	Introduction
	Contributions
	Related Work
	Organization of the paper

	Minimization of 3 Functions with a Linear Operator
	Deriving the Nonstationary PD3O and PDDY Algorithms
	Convergence Analysis

	Distributed Proximal Algorithms
	Experiments
	Image Deblurring Regularized with Total Variation
	Image Deblurring Regularized with Huber-TV
	SVM with Hinge Loss

	Derivation of the Algorithms
	The Davis–Yin Algorithm
	The PD3O Algorithm
	The PDDY Algorithm
	bold0mu mumu R=0R=02005/06/28 ver: 1.3 subfig packageR=0R=0R=0R=0: The Loris–Verhoeven Algorithm
	bold0mu mumu F=0F=02005/06/28 ver: 1.3 subfig packageF=0F=0F=0F=0: The Chambolle–Pock and Douglas–Rachford Algorithms

	Derivation of the Distributed Algorithms
	The Distributed PD3O Algorithm and its Particular Cases
	The Distributed PDDY Algorithm
	The Distributed Condat–Vu Algorithm

