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Discrete Total Variation: New Definition and Minimization∗

Laurent Condat†

Abstract. We propose a new definition for the gradient field of a discrete image defined on a twice finer grid.
The differentiation process from an image to its gradient field is viewed as the inverse operation of
linear integration, and the proposed mapping is nonlinear. Then, we define the total variation of an
image as the `1 norm of its gradient field amplitude. This new definition of the total variation yields
sharp edges and has better isotropy than the classical definition.
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1. Introduction. In their seminal paper, Rudin, Osher, and Fatemi [1] introduced the
total variation (TV) regularization functional for imaging problems. Since then, a variety
of papers has demonstrated the effectiveness of TV minimization to recover sharp images
by preserving strong discontinuities, while removing noise and other artifacts [2, 3, 4]. TV
minimization also appears in clustering and segmentation problems by virtue of the coarea
formula [5, 6]. The TV can be defined in settings other than image processing; for instance, on
graphs [7]. Numerical minimization of the TV has long been challenging, but recent advances
in large-scale convex nonsmooth optimization, with efficient primal–dual splitting schemes and
alternating directions methods, have made the implementation of TV minimization relatively
easy and efficient [3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Yet, the rigorous definition of the
TV for discrete images has received little attention. For continuously defined two-dimensional
(2-D) functions, the TV is simply the L1 norm of the gradient amplitude. But for discrete
images, it is a nontrivial task to properly define the gradient using finite differences, as is
well known in the community of computer graphics and visualization [20, 21]. The classical,
so-called “isotropic” definition of the discrete TV is actually far from being isotropic, but it
performs reasonably well in practice. In this paper, we propose a new definition of the discrete
TV, which corrects some drawbacks of the classical definition and yields sharper edges and
structures. The key idea is to associate, in a nonlinear way, an image with a gradient field
on a twice finer grid. The TV of the image is then simply the `1 norm of this gradient field
amplitude.

In section 2, we review the classical definitions of the discrete TV and their properties.
In section 3, we introduce our new definition of the TV in the dual domain, and in section 4,
we study the equivalent formulation in the primal domain. An algorithm to solve problems
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regularized with the proposed TV is presented in section 5. The good performance of the
proposed TV on some test imaging problems is demonstrated in section 6.

2. Classical definitions of the discrete TV and their properties. A function s(t1, t2)
defined in the plane R2, under some regularity assumptions, has a gradient field ∇s(t1, t2) =(
∂s
∂t1

(t1, t2), ∂s∂t2 (t1, t2)
)
, defined in R2 as well. We can then define the TV of s as the L1,2 norm

of the gradient: TV(s) =
∫

R2 |∇s(t1, t2)|dt1dt2, where |(a, b)| is a shorthand notation for the
2-norm

√
a2 + b2. The TV has the desirable property of being isotropic or rotation-invariant:

a rotation of s in the plane does not change the value of its TV.
A (grayscale) discrete image x of size N1×N2 has its pixel values x[n1, n2] defined at the

locations (n1, n2) in the domain Ω = {1, . . . , N1} × {1, . . . , N2}, where n1 and n2 are the row
and column indices, respectively, and the pixel with index (1, 1) is at the top left image corner.
The pixel values are supposed to lie between 0 (black) and 1 (white). The challenge is then
to define the discrete TV of x using only its pixel values, while retaining the mathematical
properties of the continuous TV. The so-called anisotropic TV is defined as

(1) TVa(x) =
N1∑
n1=1

N2∑
n2=1

∣∣x[n1 + 1, n2]− x[n1, n2]
∣∣+
∣∣x[n1, n2 + 1]− x[n1, n2]

∣∣,
assuming Neumann (symmetric) boundary conditions: a finite difference across a boundary,
like x[N1 + 1, n2]− x[N1, n2], is assumed to be zero. The anisotropic TV is well known to be
a poor definition of the discrete TV, as it yields metrication artifacts: its minimization favors
horizontal and vertical structures, because oblique structures make the TV value larger than
expected. Therefore, one usually uses the so-called isotropic TV, defined as

(2) TVi(x) =
N1∑
n1=1

N2∑
n2=1

√(
x[n1 + 1, n2]− x[n1, n2]

)2 +
(
x[n1, n2 + 1]− x[n1, n2]

)2
using Neumann boundary conditions as well.

It is hard to quantify the isotropy of a functional like the TV, since the grid Z2 is not
isotropic and there is no unique way of defining the rotation of a discrete image. However, it
is natural to require, at least, that after a rotation of ±90o, or a horizontal or vertical flip, the
TV of the image remains unchanged. It turns out that this is not the case with the isotropic
TV, with a change factor as large as

√
2 after a horizontal flip; see in Table 1 the TV of an edge

at +45o and at −45o. In spite of this significant drawback, the isotropic TV is widely used for
its simplicity. We can note that a straightforward way to restore the four-fold symmetry is to
define the TV as the average of TVi applied to the image rotated by 0o, 90o, −90o, 180o. But
the drawbacks of TVi, stressed below, would be maintained, like the tendency to blur oblique
edges and the too-low value for an isolated pixel or a checkerboard.

An attempt to define a more isotropic TV has been made with the upwind TV [22], defined
as

TVu(x) =
N1∑
n1=1

N2∑
n2=1

√√√√ (
x[n1, n2]− x[n1 + 1, n2]

)2
+ +

(
x[n1, n2]− x[n1 − 1, n2]

)2
+

+
(
x[n1, n2]− x[n1, n2 + 1]

)2
+ +

(
x[n1, n2]− x[n1, n2 − 1]

)2
+

,(3)



1260 LAURENT CONDAT

(I) (II) (IIf) (III)

(IV) (V) (Vn) (VI)

(VII) (VIII) (IX) (X)

Figure 1. Some patterns for which we report the value of the TV in Table 1. Black and white correspond
to 0 and 1, respectively. In (III), the transition goes through the levels 0, 1/8, 7/8, 1. In (IV), the transition
goes through the levels 0, 1/2, 1. In (VII), the transition goes through the levels 0, 1/2, 1, 1/2, 0.

where (a)+ means max(x, 0). The upwind TV is indeed more isotropic and produces sharp
oblique edges, but as shown below, it is not invariant by taking the image negative, i.e.,
replacing the image x by 1− x. Since TVu(x) 6= TVu(1− x) = TVu(−x), the upwind TV is
not a seminorm, contrary to the other forms considered in this paper. In practice, it penalizes
correctly small dark structures over a light background, but not the opposite; see the striking
example in Figure 10 (e).

Another formulation of the discrete TV called “Shannon Total Variation” was proposed
recently [23], at the time the present paper was finalized; so, this formulation, which has good
isotropy properties, is not included in our comparisons. It aims at estimating the continuous
TV of the Shannon interpolate of the image by using a Riemann sum approximation of the
corresponding integral. This way, aliasing is removed from the images at the price of slightly
more blurred edges.

To evaluate the different definitions of the discrete TV, we consider typical patterns of size
N×N , depicted in Figure 1, and we report the corresponding value of the TV in Table 1, when
N is large, i.e., ignoring the influence of the image boundaries. For some patterns, we consider
its horizontally flipped version, denoted by a “f”; see patterns (II) and (IIf) in Figure 1. Its
negative version is denoted by an “n”; see patterns (V) and (Vn). In Table 1, the value is
in green if it is an appropriate value for this case, and in red if not. In this respect, some
considerations must be reported. An isolated pixel, like in patterns (VIII) or (VIIIn), can be
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Table 1
Asymptotic value of the TV, when the image is of size N ×N and N → +∞, for the examples depicted in

Figure 1. An “f” means a horizontal flip and an “n” means taking the image negative. TVa, TVi, TVu, TVp

are the anisotropic, isotropic, upwind, proposed TV defined in (1), (2), (3), (8), respectively.

TVa TVi TVu TVp

(I) N N N N

(II) 2N
√

2N
√

2N 2N
(IIf) 2N 2N

√
2N 2N

(III) 2N
√

2N
√

2N
√

2N
(IIIf) 2N (

√
37 + 1)N/4

√
2N

√
2N

(IV) 2N
√

2N
√

2N
√

2N
(IVf) 2N (1 + 1/

√
2)N

√
2N

√
2N

(V) 2N 2N
√

2N 2N
(Vn) 2N 2N 2N 2N
(VI) 4N 2

√
2N 2N 4N

(VIf) 4N (2 +
√

2)N 2N 4N
(VIn) 4N 2

√
2N 2

√
2N 4N

(VII) 4N 2
√

2N (
√

2 + 1)N 2
√

2N
(VIIf) 4N (3/

√
2 + 1)N (

√
2 + 1)N 2

√
2N

(VIIn) 4N 2
√

2N 2
√

2N 2
√

2N
(VIII) 4 2 +

√
2 2 4

(VIIIn) 4 2 +
√

2 4 4
(IX) N2 N2 N2/

√
2 N2

(X) 2N2 √
2N2 N2 2N2

viewed as the discretization by cell-averaging, i.e., x[n1, n2] =
∫ n1+1/2
n1−1/2

∫ n2+1/2
n2−1/2 s(t1, t2)dt1dt2,

of the indicator function (1 inside, 0 outside) s(t) of a square of size one pixel. According
to the coarea formula, the continuous TV of the indicator function of a set is equal to the
perimeter of that set. So, it is natural to ask the TV value in pattern (VIII) to be equal to
4. The isotropic TV and upwind TV take too small values. This is a serious drawback, since
they do not penalize noise as much as they should, and penalizing noise is the most important
property of a functional used to regularize ill-posed problems. For the checkerboard (X), it
is natural to expect a value of 2N2. It is important that this value is not lower, because
an inverse problem like demosaicking consists of demultiplexing luminance information and
chrominance information modulated at this highest frequency [24, 25]. Interpolation on a
quincunx grid also requires penalizing the checkerboard sufficiently. The isotropic TV gives
a value of

√
2N2, which is too small, and the upwind TV gives an even smaller value of N2.

Then, an important property of the TV is to be convex and one-homogeneous, so that the
TV of a sum of images is less than or equal to the sum of their TV. Consequently, viewing
the checkerboard as a sum of diagonal lines, like the one in (VI), disposed at every two pixels,
the TV of the diagonal line (VI) cannot be lower than 4N . That is, the lower value of 2

√
2N ,

achieved by the isotropic TV, is not compatible with the value of 2N2 for the checkerboard
and with convexity of the TV. We can notice that the line in (VI) cannot be explained as
the discretization by cell-averaging of a continuously defined diagonal ridge. So, it is coherent
that its jagged nature is penalized. By contrast, the pattern in (VII) can be viewed as the
discretization by cell-averaging of a diagonal ridge, depicted in Figure 2 (c). So, a TV value of
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(a) (b) (c)

Figure 2. In (a), (b), (c), we have continuously defined images whose cell-average discretization yields
Figure 1 (III), (IV), (VII), respectively.

2
√

2N is appropriate for this case. Furthermore, the line in (VI) can be viewed as the difference
of two edges like in (II), one of which shifted by one pixel. So, by convexity, the value of the
TV for the edge in (II) cannot be lower than 2N . The value of

√
2N , which we could hope

for by viewing (II) as a diagonal edge discretized by point sampling, is not accessible. Again,
after a small blur, the discrete edges in (III) and (IV) become compatible with a diagonal
edge discretized by cell-averaging; see the edges in Figure 2 (a) and (b), respectively. So, the
expected value of the TV is

√
2N in these cases. It is true that a TV value of

√
2N would be

nice for the binary edge (II), especially for partitioning applications [6], and that the isotropic
TV achieves this value, but the price to pay with the isotropic TV is a higher value of 2N for
the flipped case (IIf), which does not decrease much by blurring the edge to (IIIf) or (IVf).
Therefore, minimizing the isotropic TV yields nice binary edges at the diagonal orientation
like in (II), but significantly blurred edges for the opposite orientation, as can be observed in
Figure 8 (c), Figure 5 (d), and Figure 12 (b).

We can mention, mainly citing the literature of computational fluid or solid mechanics,
the use of staggered grid discretizations of partial differential equations, or marker and cell
method [26], wherein different variables, like the pressure and velocity, are located at different
positions on the grid, i.e., at cell centers or at cell edges. This idea is also applied in so-called
mimetic finite difference methods [27, 28]. Transposed to the present context, pixel values
are located at the pixel centers, whereas a finite difference like x[n1 + 1, n2] − x[n1, n2] is
viewed as the vertical component of the gradient at the spatial position (n1 + 1

2 , n2), i.e., at
an edge between two pixels [29]. This interpretation is insightful, but it does not specify how
to define the norm of the gradient. The proposed approach is different from this framework
in two respects. First, we define the image gradient field not only at the pixel edges, but also
at the pixel centers. Second, a finite difference like x[n1 + 1, n2] − x[n1, n2] is not viewed as
an estimate of a partial derivative, but as its local integral; we develop this interpretation in
section 4.

3. Proposed discrete TV: Dual formulation. It is well known that in the continuous
domain, the TV of a function s can be defined by duality as

(4) TV(s) = sup
{
〈s,−div(u)〉 : u ∈ C1

c (R2,R2), |u(t)| ≤ 1 ∀t ∈ R2
}
,

where C1
c (R2,R2) is the set of continuously differentiable functions from R2 to R2 with compact

support, and div is the divergence operator. So, the dual variable u has its amplitude bounded
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by one everywhere.
In the discrete domain, the TV can be defined by duality as well. First, let us define the

discrete operator D, which maps an image x ∈ RN1×N2 to the vector field Dx ∈ (R2)N1×N2

made of forward finite differences of x; that is,

(Dx)1[n1, n2] = x[n1 + 1, n2]− x[n1, n2],(5)
(Dx)2[n1, n2] = x[n1, n2 + 1]− x[n1, n2],(6)

for every (n1, n2) ∈ Ω, with Neumann boundary conditions. Note that for ease of implemen-
tation, it is convenient to have all images and vector fields of the same size N1 ×N2, indexed
by (n1, n2) ∈ Ω, keeping in mind that for some of them the last row or column is made of
dummy values equal to zero, which are constant and should not be viewed as variables; for
instance, (Dx)1[N1, n2] = (Dx)2[n1, N2] = 0, for every (n1, n2) ∈ Ω. So, TVi(x) = ‖Dx‖1,2,
where the `1,2 norm is the sum over the indices n1, n2 of the 2-norm |(Dx)[n1, n2]|.

Then, the isotropic TV of an image x can be defined by duality as

(7) TVi(x) = max
u∈(R2)N1×N2

{
〈Dx, u〉 : |u[n1, n2]| ≤ 1 ∀(n1, n2) ∈ Ω

}
,

with the usual Euclidean inner product.
The scalar dual variables u1[n1, n2] and u2[n1, n2], like the finite differences (Dx)1[n1, n2]

and (Dx)2[n1, n2], can be viewed as located at the points (n1 + 1
2 , n2) and (n1, n2 + 1

2), re-
spectively. So, the anisotropy of the isotropic TV can be explained by the fact that these
variables, which are combined in the constraint |u[n1, n2]| ≤ 1, are located at different posi-
tions. We propose to correct this half-pixel shift by interpolation: we look for the dual images
u1 and u2, whose values u1[n1, n2] and u2[n1, n2] are located at the pixel edges (n1 + 1

2 , n2)
and (n1, n2 + 1

2), respectively, such that when interpolated, the constraint |u[n1, n2]| ≤ 1 is
satisfied both at pixel centers and at pixel edges. So, the proposed TV, denoted TVp, is
defined in the dual domain as

TVp(x) = max
u∈(R2)N1×N2

{
〈Dx, u〉

: |(Llu)[n1, n2]| ≤ 1, |(L↔u)[n1, n2]| ≤ 1, |(L•u)[n1, n2]| ≤ 1 ∀(n1, n2) ∈ Ω
}
,(8)

where the three operators Ll, L↔, L• interpolate bilinearly the image pair u = (u1, u2) on
the grids (n1 + 1

2 , n2), (n1, n2 + 1
2), (n1, n2), for (n1, n2) ∈ Ω, respectively. That is,

(Llu)1[n1, n2] = u1[n1, n2],(9)

(Llu)2[n1, n2] = (u2[n1, n2] + u2[n1, n2 − 1] + u2[n1 + 1, n2] + u2[n1 + 1, n2 − 1])/4,(10)

(L↔u)1[n1, n2] = (u1[n1, n2] + u1[n1 − 1, n2] + u1[n1, n2 + 1] + u1[n1 − 1, n2 + 1])/4,(11)
(L↔u)2[n1, n2] = u2[n1, n2],(12)
(L•u)1[n1, n2] = (u1[n1, n2] + u1[n1 − 1, n2])/2,(13)
(L•u)2[n1, n2] = (u2[n1, n2] + u2[n1, n2 − 1])/2,(14)
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for every (n1, n2) ∈ Ω, replacing the dummy values u1[0, n2], u2[n1, 0], u1[N1, n2], u2[n1, N1],
(Llu)1[N1, n2], (Llu)2[N1, n2], (L↔u)1[n1, N2], (L↔u)2[n1, N2] by zero.

Thus, we mimic the continuous definition (4), where the dual variable is bounded ev-
erywhere, by imposing that it is bounded on a grid three times more dense than the pixel
grid. Actually, for the dual variable to be bounded everywhere after bilinear interpolation,
the fourth lattice of pixel corners (n1 + 1

2 , n2 + 1
2) must be added; that is, we can define a

variant of the proposed approach in which we add to the constraint set in (8) the additional
constraints |(L+u)[n1, n2]| ≤ 1, where the operator L+ interpolates bilinearly the image pair
u on the grid (n1 + 1

2 , n2 + 1
2), as follows:

(L+u)1[n1, n2] = (u1[n1, n2] + u1[n1, n2 + 1])/2,(15)
(L+u)2[n1, n2] = (u2[n1, n2] + u2[n1 + 1, n2])/2.(16)

In the MATLAB code accompanying this paper (M107524 01.zip [local/web 1.98MB]), this
variant is implemented as well. The author observed empirically that this variant, in general,
brings very minor changes in the images, which are not worth the extra computational burden.
That is why in the rest of this paper, we focus on the version with the dual variables and the
gradient defined on three lattices, and not on this variant with four lattices.

Our definition of the discrete TV, using interpolation in the dual domain, is not new: it
was proposed in [30] and called staggered grid discretization of the TV. With the isotropic
TV, the projection of the image pair u onto the l∞,2 norm ball, which amounts to simple
pixelwise shrinkage, can be used. But using the same algorithms with the proposed TV
requires projecting u onto the set {u : ‖Llu‖∞,2 ≤ 1, ‖L↔u‖∞,2 ≤ 1, ‖L•u‖∞,2 ≤ 1}. There
is no closed form for this projection. We emphasize that in [30], and certainly in other
papers using this dual staggered grid discretization, this projection is not implemented, and is
replaced by an approximate shrinkage; see [30, eq. (64)]. This operation is not a projection onto
the set above, since it is not guaranteed to yield an image pair satisfying the bound constraints,
and it is not a firmly nonexpansive operator [31]; this means that the convergence guarantees of
usual iterative fixed-point algorithms are lost, and that if convergence occurs, there is no way
to characterize the obtained solution, which depends on the algorithm, the initial conditions,
and the parameters. By contrast, we will propose a generic splitting algorithm, with proved
convergence to exact solutions of problems involving the proposed TV, in section 5.

4. Proposed discrete TV: Primal formulation. We have defined the proposed TV im-
plicitly in (8) as the optimal value of an optimization problem, expressed in terms of the dual
image pair u. In the frame of the Fenchel–Rockafellar duality [31], we can define the proposed
TV as the optimal value of an equivalent optimization problem, expressed in terms of what
we will consider as the gradient field of the image.

Proposition 1. Given an image x, the proposed TV has the following primal formulation,
equivalent to the dual formulation (8):

(17) TVp(x) = min
vl,v↔,v•∈(R2)N1×N2

{
‖vl‖1,2+‖v↔‖1,2+‖v•‖1,2 : L∗lvl+L

∗
↔v↔+L∗•v• = Dx

}
,

where ·∗ denotes the adjoint operator.

M107524_01.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1075247/suppl_file/M107524_01.zip
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Before proving Proposition 1, we give more compact forms of the primal and dual defini-
tions of the proposed TV. For this, let us define the linear operator L as the concatenation
of Ll, L↔, L•, and the `∞,∞,2 norm ‖ · ‖∞,∞,2 of a field as the maximum over the three
components and the pixels of the 2-norm of its vectors. Then we can rewrite (8) as

(18) TVp(x) = max
u∈(R2)N1×N2

{
〈Dx, u〉 : ‖Lu‖∞,∞,2 ≤ 1

}
.

Let the vector field v be the concatenation of the three vector fields vl, v↔, and v•, which
appear in (17). Let the `1,1,2 norm of v be the sum of the `1,2 norm of its three components
vl, v↔, v•. We have L∗v = L∗lvl + L∗↔v↔ + L∗•v•. Then we can rewrite (17) as

(19) TVp(x) = min
v∈((R2)N1×N2)3

{
‖v‖1,1,2 : L∗v = Dx

}
.

Proof of Proposition 1. Let us consider a (primal) convex optimization problem of the
following form: minimizev{F (L∗v) + G(v)}, for two convex, lower semicontinuous functions
F and G and a linear operator L∗. It has a Fenchel–Rockafellar dual problem of the following
form: maximizeu{−F ∗(u)−G∗(−Lu)}, where F ∗ and G∗ are the Legendre–Fenchel conjugates
of F and G, respectively [31]. Moreover, strong duality holds, and the primal and dual
problems have the same optimal value; that is, if a minimizer v̂ of the primal problem and
a maximizer û of the dual problem exist, we have −F ∗(û) − G∗(−Lû) = F (L∗v̂) + G(v̂). In
our case, F is the convex indicator function of the set {v : L∗v = Dx}; that is, the function
which maps its variable to 0 if it belongs to this set, to +∞ else. G is the `1,1,2 norm. Then
it is well known that F ∗ maps u to 〈u,Dx〉, and that the Legendre–Fenchel conjugate of the
`1,2 norm is the convex indicator function of the `∞,2 norm ball [2, 3]. So, we see that (8), up
to an unimportant change of sign of u, is indeed the dual problem associated to the primal
problem (17); they share the same optimal value, which is TVp(x).

In the following, given an image x, we denote by vl, v↔, and v•, the vector fields solution
to (17) (or any solution if it is not unique). We denote by v the vector field, which is
the concatenation of vl, v↔, and v•. So, for every (n1, n2) ∈ Ω, its elements vl[n1, n2],
v↔[n1, n2], v•[n1, n2] are vectors of R2, located at the positions (n1 + 1

2 , n2), (n1, n2 + 1
2),

(n1, n2), respectively. Then we call v the gradient field of x. Thus, the proposed TV is the
`1,2 norm of the gradient field v associated to the image x, the solution to (17), and defined on
a grid three times more dense than the one of x. The mapping from x to its gradient field v is
nonlinear and implicit: given x, one has to solve the optimization problem (17) to obtain its
gradient field and the value TVp(x). We can notice that the feasible set in (17) is nonempty,
since the constraint is satisfied by the vector field defined by

vl,1 = (Dx)1, vl,2 = 0,(20)

v↔,1 = 0, v↔,2 = (Dx)2,(21)
v•,1 = 0, v•,2 = 0.(22)

This vector field has an `1,2 norm equal to ‖(Dx)1‖1 +‖(Dx)2‖1, which is exactly TVa(x), the
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value of the anisotropic TV of x. Therefore, we have the following property: for every image
x,

(23) TVp(x) ≤ TVa(x).

Furthermore, we have

(L∗lvl + L∗↔v↔ + L∗•v•)1[n1, n2] = vl,1[n1, n2] + (v↔,1[n1, n2] + v↔,1[n1, n2 − 1]

+ v↔,1[n1 + 1, n2] + v↔,1[n1 + 1, n2 − 1])/4(24)
+ (v•,1[n1, n2] + v•,1[n1 + 1, n2])/2,

(L∗lvl + L∗↔v↔ + L∗•v•)2[n1, n2] = v↔,2[n1, n2] + (vl,2[n1, n2] + vl,2[n1, n2 + 1]

+ vl,2[n1 − 1, n2] + vl,2[n1 − 1, n2 + 1])/4(25)

+ (v•,2[n1, n2] + v•,2[n1, n2 + 1])/2,

using, again, zero boundary conditions. So, the quantity (L∗lvl + L∗↔v↔ + L∗•v•)1[n1, n2]
is the sum of the vertical part of the elements of the vector field v falling into the square
[n1, n1 + 1]× [n2− 1

2 , n2 + 1
2 ], weighted by 1/2 if they are on an edge of the square, and by 1/4

if they are at one of its corners. Similarly, (L∗lvl + L∗↔v↔ + L∗•v•)2[n1, n2] is the sum of the
horizontal part of the elements of v falling into the square [n1− 1

2 , n1+ 1
2 ]×[n2, n2+1]. Equating

these two values to (Dx)1[n1, n2] and (Dx)2[n1, n2], respectively, is nothing but a discrete and
2-D version of the fundamental theorem of calculus, according to which the integral of a
function on an interval is equal to the difference of its antiderivative at the interval bounds.
So, we have defined the differentiation process from an image x to its gradient field v as the
linear inverse problem of integration: integrating the gradient field v allows to recover the
image x. Among all vector fields consistent with x in this sense, the gradient field v is selected
as the simplest one, i.e., the one of minimal `1,2 norm.

Let us be more precise about this integration property connecting v to x. We first note that
it is incorrect to interpret the pixel value x[n1, n2] as a point sample of an unknown function
s(t1, t2), i.e., x[n1, n2] = s(n1, n2), and the values vl,1[n1, n2], v↔,1[n1, n2], v•,1[n1, n2] as point
samples of ∂s/∂t1 at (n1 + 1

2 , n2), (n1, n2 + 1
2), (n1, n2), respectively. Indeed, if that were the

case, and viewing (24) as a kind of extended trapezoidal rule for numerical integration, the
right-hand side of (24) would be divided by three. Instead, one can view x as the cell-average
discretization of an unknown function s(t1, t2), i.e., x[n1, n2] =

∫ n1+1/2
n1−1/2

∫ n2+1/2
n2−1/2 s(t1, t2)dt1dt2,

and v as the gradient field of s, in a distributional sense. For this, let us define the one-
dimensional (1-D) box and hat functions

(26) Π(t) =


1 if t ∈ (−1

2 ,
1
2),

1
2 if t = ±1

2 ,
0 else,

Λ(t) = Π(t) ∗Π(t) = max(1− |t|, 0),

where ∗ denotes the convolution. We also define the 2-D box function Π(t1, t2) = Π(t1)Π(t2)
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and the function ψ(t1, t2) = Λ(t1)Π(t2). The function or distribution ∂s/∂t1 is such that

(Dx)1[n1, n2] = x[n1 + 1, n2]− x[n1, n2] = (s ∗Π)(n1 + 1, n2)− (s ∗Π)(n1, n2)(27)

=
∫ n1+1

n1

( ∂s
∂t1
∗Π
)

(t1, n2)dt1(28)

=
( ∂s
∂t1
∗ ψ
)

(n1 + 1
2 , n2).(29)

Then, the same equality holds when replacing ∂s/∂t1 by the distribution

ṽ1(t1, t2) =
∑

(n1,n2)∈Ω

vl,1[n1, n2]δ(t1 − n1 − 1
2 , t2 − n2) + v↔,1δ(t1 − n1, t2 − n2 − 1

2)

+ v•,1[n1, n2]δ(t1 − n1, t2 − n2),(30)

where δ(t1, t2) is the 2-D Dirac distribution. Indeed,

(ṽ1 ∗ ψ)(n1 + 1
2 , n2) = vl,1[n1, n2] + (v↔,1[n1, n2] + v↔,1[n1, n2 − 1]

+ v↔,1[n1 + 1, n2] + v↔,1[n1 + 1, n2 − 1])/4(31)
+ (v•,1[n1, n2] + v•,1[n1 + 1, n2])/2,

which, according to (24), is equal to (L∗lvl+L∗↔v↔+L∗•v•)1[n1, n2], which in turn is equal to
(Dx)1[n1, n2], by definition of v in (17). Altogether, the scalar field v1, the vertical component
of the gradient field v, identified to the distribution ṽ1, plays the same role as the partial
derivative ∂s/∂t1 of s in the sense that they both yield the pixel values of x by integration. The
same relationship holds between v2 and ∂s/∂t2. To summarize, v is the discrete counterpart
of the gradient of the unknown continuously defined scene s, whose cell-average discretization
yields the image x. So, it is legitimate to call v the gradient field of x. Note that there
exists no function s such that ∇s is the Dirac brush (ṽ1, ṽ2), so v is no more than a discrete
equivalent of ∇s.

We can notice that, given the image x, the gradient field v solution to (17) is not always
unique. For instance, for the 1-D signal x = (0, 0, 1/2, 1, 1), viewed as an image with only
one row, one can set vl = 0, v↔ = 0, v• = (0, 0, 1, 0, 0). Another possibility is to take
vl = 0, v• = 0, v↔ = (0, 1/2, 1/2, 0, 0). This possible nonuniqueness of v, which is very rare
in practice, does not have any impact on the images obtained by TV minimization. We leave
the study of theoretical aspects of the proposed TV and gradient field for future work, like
showing Gamma-convergence of the proposed TV.

We end this section with a remark about the fact that the grid for the gradient field is twice
finer than the one of the image. This factor of two appears naturally, according to the following
sampling-theoretic argument. Let us consider a 2-D sine function s(t1, t2) = sin(at1 + bt2 + c),
for some a, b, c in (−π, π), which is sampled to give the image x, with x[n1, n2] = s(n1, n2). We
have |∇s(t1, t2)|2 = (a2 +b2) cos2(at1 +bt2 +c) = (a2 +b2) cos(2at1 +2bt2 +2c)/2+(a2 +b2)/2.
So, by taking the squared amplitude of the gradient, the frequency of the sine is doubled.
According to Shannon’s theorem, the function |∇s|2 must be sampled on a grid twice finer than
the one of x for its information content to be kept. Since, by virtue of the Fourier transform,
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every sufficiently regular function can be decomposed in terms of sines, this argument applies
to an arbitrary 2-D function s, not only to a sine. The picture does not change by applying
the square root, passing from |∇s|2 to |∇s|, the integral of which is the TV of s. Thus, as
long as the amplitude of the gradient is the information of interest, it must be represented on
a twice finer grid; else aliasing occurs and the value of the TV becomes unreliable.

5. Algorithms for TV minimization. In this section, we focus on the generic convex
optimization problem:

(32) Find x̂ ∈ arg min
x∈RN1×N2

{F (x) + λTV(x)} ,

where the sought-after image x̂ has size N1×N2, λ > 0 is the regularization parameter, and F
is a convex, proper, lower semicontinuous function [31]. A particular instance of this problem
is image denoising or smoothing: Given the image y, one solves

(33) Find x̂ ∈ arg min
x∈RN1×N2

{1
2‖x− y‖

2 + λTV(x)
}
,

where the norm is the Euclidean norm. This problem is a particular case of (32) with F (x) =
1
2‖x−y‖

2. More generally, many inverse problems in imaging can be written as follows: Given
the data y and the linear operator A,

(34) Find x̂ ∈ arg min
x∈RN1×N2

{1
2‖Ax− y‖

2 + λTV(x)
}
.

Again, this problem is a particular case of (32) with F (x) = 1
2‖Ax− y‖

2. Another instance is
TV minimization subject to a linear constraint; for instance, to regularize an ill-posed inverse
problem in the absence of noise. Given the data y and the linear operator A, one solves

(35) Find x̂ ∈ arg min
x∈RN1×N2

{TV : Ax = y} .

This problem is a particular case of (32) with λ = 1 and F (x) = ı{x : Ax=y}(x), where the
convex indicator function ıΓ of a set Γ maps its variable x to 0 if x ∈ Γ, to +∞ else.

When the TV is the anisotropic, isotropic, or upwind TV, which is a simple function
composed with the finite differentiation operator D, there are efficient primal–dual algorithms
to solve a large class of problems of the form (32); see, e.g., [3, 17, 18] and references therein.
In section 6, we use the overrelaxed version [32] of the Chambolle–Pock algorithm [3]. With
the proposed TV, it is not straightforward to apply these algorithms. In fact, (32) can be
rewritten as

(36) Find (x̂, v̂) ∈ arg min
x∈RN1×N2 ,v∈((R2)N1×N2)3

{F (x) + λ ‖v‖1,1,2 : L∗v = Dx} .

So, one has to find not only the image x̂, but also its gradient field v̂, minimizing a separable
function, under a linear coupling constraint. Let us introduce the function G(v) = λ ‖v‖1,1,2
and the linear operator C = −L∗, so that we can put (36) into the standard form:

(37) Find (x̂, v̂) ∈ arg min
x∈RN1×N2 ,v∈((R2)N1×N2)3

{F (x) +G(v) : Cv +Dx = 0} .
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The dual problem is

(38) Find û ∈ arg min
x∈u∈(R2)N1×N2

{F ∗(−D∗u) +G∗(−C∗u)} ,

which, in our case, is

(39) Find û ∈ arg min
x∈u∈(R2)N1×N2

{F ∗(−D∗u) : ‖Lu‖∞,∞,2 ≤ λ} .

We now assume that the function F is simple in the sense that it is easy to apply the
proximity operator [31, 33] proxαF of αF , for any parameter α > 0. For the denoising
problem (33), proxαF (x) = (x + αy)/(1 + α). For the regularized least-squares problem
(34), proxαF (x) = (Id +αA∗A)−1(x+αA∗y). For the constrained problem (35), proxαF (x) =
x+A†(y−Ax), where A† is the Moore–Penrose pseudoinverse of A. We also need the proximity
operator of αG = αλ‖ · ‖1,1,2, which is
(40)(

proxαG(v)
)
c
[n1, n2] = vc[n1, n2]− vc[n1, n2]

max(|vc[n1, n2]|/(αλ), 1)
∀(n1, n2) ∈ Ω, ∀c ∈ {l,↔, •}.

We can notice that ‖D‖2 ≤ 8 [2] and ‖C‖2 = ‖L‖2 ≤ 3. So, we have all the ingredients
to use the Alternating Proximal Gradient Method [34], a particular case of the Generalized
Alternating Direction Method of Multipliers [35].

Algorithm 1 To solve (36).
Choose the parameters 0 < τ < 1/‖D‖2, 0 < γ < 1/‖C‖2, µ > 0, and the initial estimates
x(0), v(0), u(0).
Then iterate, for i = 0, 1, . . . x(i+1) := proxτµF

(
x(i) − τD∗(Dx(i) + Cv(i) + µu(i))

)
,

v(i+1) := proxγµG
(
v(i) − γC∗(Dx(i+1) + Cv(i) + µu(i))

)
,

u(i+1) := u(i) + (Dx(i+1) + Cv(i+1))/µ.

Assuming that there exists a solution to (36), for which a sufficient condition is that there
exists a minimizer of F , Algorithm 1 is proved to converge [34, 35]: the variables x(i), v(i),
u(i) converge, respectively, to some x̂, v̂, û, solution to (36) and (39).

It is easy to show that the same algorithm can be used to compute the gradient field v of
an image x, solution to (17); we simply replace x(i) by x. This yields the following algorithm.

Algorithm 2 To find v solution to (17), given x.

Choose the parameters 0 < γ < 1/‖C‖2, µ > 0, and the initial estimates v(0), u(0).
Then iterate, for i = 0, 1, . . .⌊
v(i+1) := proxγµG

(
v(i) − γC∗(Dx+ Cv(i) + µu(i))

)
,

u(i+1) := u(i) + (Dx+ Cv(i+1))/µ.



1270 LAURENT CONDAT

In practice, we recommend setting τ = 0.99/8 and γ = 0.99/3 in Algorithm 1 and Algo-
rithm 2, so that it only remains to tune the parameter µ.

Furthermore, let us consider the regularized least-squares problem (34) in the case where
the proximity operator of the quadratic term cannot be computed. It is possible to modify
Algorithm 1 by changing the metric in the Generalized Alternating Direction Method of
Multipliers [35] to obtain a fully split algorithm, which only applies A and A∗ at every iteration,
without having to solve any linear system. So, we consider the more general problem

(41) Find x̂ ∈ arg min
x∈RN1×N2

{
F (x) + 1

2‖Ax− y‖
2 + λTVp(x)

}
,

or equivalently,

(42) Find (x̂, v̂) ∈ arg min
x∈RN1×N2 ,v∈((R2)N1×N2)3

{
F (x) + 1

2‖Ax− y‖
2 +G(v) : Cv +Dx = 0

}
,

where again, G(v) = λ ‖v‖1,1,2 and C = −L∗. The algorithm, with proved convergence to
exact solutions of (41) and its dual, is as follows.

Algorithm 3 To solve (42).
Choose the parameters τ > 0, µ > 0, such that τ < 1/(‖D‖2 + µ‖A‖2), 0 < γ < 1/‖C‖2,
and the initial estimates x(0), v(0), u(0).
Then iterate, for i = 0, 1, . . . x(i+1) := proxτµF

(
x(i) − τD∗(Dx(i) + Cv(i) + µu(i))− τµA∗(Ax(i) − y)

)
,

v(i+1) := proxγµG
(
v(i) − γC∗(Dx(i+1) + Cv(i) + µu(i))

)
,

u(i+1) := u(i) + (Dx(i+1) + Cv(i+1))/µ.

The proposed TV, like the other forms, could be used as a constraint, instead of being
used as a functional to minimize [36, 37].

Many other algorithms could be applied to solve problems involving the proposed TV.
The most appropriate algorithm for a particular problem must be designed on a case-by-case
basis. Therefore, it is beyond the scope of this paper to do any comparison of algorithms in
terms of convergence speed.

6. Experiments. In this section, we evaluate the proposed TV on several test problems.
First, we report in Figure 1 the value of the proposed TV for the patterns shown in Figure 1.
For each image, the value was determined by computing the associated gradient field, using
Algorithm 2; these gradient fields are depicted in Figure 3. According to the discussion in
sections 2 and 4, the proposed TV, which is a seminorm, takes appropriate values in all cases.
We observe that, for binary patterns, the gradient field, and thus the value of the TV, is the
same as with the anisotropic TV; that is, it is given by (20)–(22). Thus, the staircased nature
of oblique binary patterns is penalized.

In the remainder of this section, we study the behavior of the proposed TV in several
applications, based on TV minimization. MATLAB code implementing the corresponding op-
timization algorithms and generating the images in Figures 3– 12 is available as supplementary
material (M107524 01.zip [local/web 1.98MB]).

M107524_01.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1075247/suppl_file/M107524_01.zip
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(I) (II) (III) (IV) (V)

(VI) (VII) (VIII) (IX) (X)

Figure 3. We have the same patterns as in Figure 1, with the associated gradient fields, which are the
solutions to (17). The vectors vl[n1, n2], v↔[n1, n2], v•[n1, n2], are represented by red, blue, and green arrows,
starting at (n1 + 1

2 , n2), (n1, n2 + 1
2 ), (n1, n2), respectively.

6.1. Smoothing of a binary edge. We consider the smoothing problem (33) with the
proposed TV, where the initial image y (N1 = N2 = 256) is an oblique binary edge, obtained
by point sampling a continuously defined straight edge with slope 5/16. The central part of
y is depicted in Figure 7 (a). So, we solve

(43) Find (x̂, v̂) ∈ arg min
x∈RN1×N2 ,v∈((R2)N1×N2)3

{1
2‖x− y‖

2 + λ ‖v‖1,1,2 : L∗v = Dx
}

using Algorithm 1 (µ = 0.05, 2000 iterations). The central part of the smoothed image x̂,
as well as the corresponding gradient field v̂, are depicted in Figure 7 (b), for λ = 2; see the
caption of Figure 3 for the representation of the gradient field by colored arrows. The result
for stronger smoothing with λ = 20 is depicted in Figure 7 (c).

We observe that the edge undergoes a slight blur, which remains concentrated over one or
two pixels vertically, even for a strong smoothing parameter λ. This is expected, since such
a slightly blurred edge has a lower TV value than the binary edge in y. Importantly, the
minimization of the proposed TV tends to make all the gradient vectors of the field v̂ aligned
with the same orientation, which is exactly perpendicular to the underlying edge with slope
5/16. This shows that not only the amplitude but also the orientation of the gradient vectors
obtained with the proposed approach are meaningful.

6.2. Smoothing of a disk. We consider the smoothing problem (33), with λ = 6, where y
is the image of a white disk of radius 32 over a black background (N1 = N2 = 99), depicted in
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Figure 8 (a). To simulate cell-average discretization, a larger (16N1)×(16N2) binary image was
constructed by point sampling a 16 times larger disk, and then y was obtained by averaging
over the 16×16 blocks of this image. In the continuous domain, it is known that TV smoothing
of a disk of radius R and amplitude one over a zero background, with zero/Dirichlet boundary
conditions, gives the same disk, with lower amplitude 1 − 2λ/R, assuming λ < R/2 [38].
Here, we consider a square domain of size N1 × N2 with symmetric/Neumann boundary
conditions, so the background is expected to become lighter after smoothing, with amplitude
2πλR/(N1N2−πR2). We can notice that the total intensity remains unchanged and equal to
πR2 after smoothing. Moreover, according to the coarea formula, the TV of the image of a
disk is 2πR—the perimeter of the disk—multiplied by the difference of amplitude between the
disk and the background. Thus, in the discrete domain, we expect the smoothed image x̂ to be
similar to y, after an affine transform on the pixel values, so that the pixel values in the interior
of the disk and in the background are 1 − 2λ/R = 0.625 and 2πλR/(N1N2 − πR2) ≈ 0.183,
respectively; this reference image is depicted in Figure 8 (b).

The images x̂ obtained by solving (33) with the anisotropic, isotropic, upwind, and pro-
posed TV (using 2000 iterations of Algorithm 1 with µ = 0.1), are shown in Figure 8. The
following observations can be made.
− With the anisotropic TV the perimeter of the disk is evaluated in the sense of the

Manhattan distance, not the Euclidean distance. So, the TV of the disk is overestimated.
Since blurring an edge does not decrease the TV, TV minimization lets the TV value decrease
by shrinking the shape of the disk and attenuating the amplitude of the edge more than it
should.
− With the isotropic TV, the bottom, right, and top-left parts of the edge are sharp, but

the other parts are significantly blurred. Contrary to the other three forms, the isotropic TV
does not yield a symmetric image; the image is only symmetric with respect to the diagonal
at −45o.
− The upwind TV performs relatively well.
− The proposed TV outperforms the other three forms. Except at the top, bottom, left,

and right ends, the edge is sharper than with the upwind TV. The edge has the same spread
everywhere, independently of the local orientation, which is a clear sign of the superior isotropy
of the proposed approach. Since the proposed TV does not blur a horizontal or vertical edge
after smoothing, the fact that the top, bottom, left, and right ends of the disk edge are blurred
here shows the truly nonlocal nature of the proposed TV; this is due to the higher number
of degrees of freedom optimized during TV minimization, with not only the image but also
its three gradient subfields. The other forms of the TV have less flexibility, with the gradient
fully determined by local finite differences on the image.

The gradient field v̂, the solution to (43), is depicted in Figure 4. We can observe its quality
with all the arrows pointing towards the disk center, showing that the gradient orientation is
perpendicular to the underlying circular edge everywhere.

6.3. Smoothing of a square. We consider the smoothing problem (33), with λ = 6, where
y is the image of a white square, of size 64 × 64, over a black background (N1 = N2 = 100),
depicted in Figure 9 (a). In the continuous domain, the solution of the smoothing problem,
when the function y is equal to 1 inside the square [−1, 1]2 and 0 outside, λ < 1/(1 +

√
π/2),
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Figure 4. Zoom on the top-left part of the disk edge in Figure 8 (f), with the associated gradient field.

and with zero boundary conditions, contains a square of same size, but with rounded and
blurred corners and lower amplitude [39, 40]. The following closed-form expression can be
derived:

(44) x(t1, t2) =


0 if |t1| > 1 or |t2| > 1,
0 else, if r ≤ λ,
1− λ(1 +

√
π/2) else, if r ≥ 1/(1 +

√
π/2),

1− λ/r else,

where r = 2− |t1| − |t2|+
√

2(1− |t1|)(1− |t2|). Since symmetric, instead of zero, boundary
conditions are considered here, x(t1, t2) is actually the maximum of this expression and a
constant, which can be calculated. So, the reference result in the discrete case was simulated
by point sampling this function x(t1, t2) on a fine grid, with λ = 6/32, in a large 1600× 1600
image, which was then reduced by averaging over its 16× 16 blocks. This reference image is
depicted in Figure 9 (b).

The image x̂, solution to (33) with the anisotropic, isotropic, upwind, and proposed TV
(using 2000 iterations of Algorithm 1 with µ = 0.3), is shown in Figure 9. The anisotropic
TV yields a square without any rounding of the corners. This shows again that the metric
underlying anisotropic TV minimization is not the Euclidean one. With the isotropic TV, the
asymmetric blur of the corners contaminates the top and left sides of the square. Only the
top-left corner has the correct aspect. With the upwind TV, the level lines at the corners are
more straight than circular. The proposed TV yields the image closest to the reference image.

6.4. Denoising of the bike. We consider the application of the smoothing/denoising prob-
lem (33), or (43) with the proposed TV, to remove noise in a natural image. The initial image
y, depicted in Figure 10 (a), is a part of the classical Bike image, depicted in Figure 10 (b),
corrupted by additive white Gaussian noise of standard deviation 0.18. λ is set to 0.16. With
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(a) (b) (c) (d)

Figure 5. Inpainting experiment; see subsection 6.5. The region to reconstruct is in blue in (a). In (b),
we have one solution of anisotropic TV minimization. In (c), we have the solution of isotropic, upwind, and
proposed TV minimization. In (d), we have the solution of isotropic TV minimization for the flipped case.

the anisotropic TV, the noise is removed, but the contrast of the spokes is more attenuated
than with the other forms of the TV. With the isotropic TV, the noise is less attenuated
and some small clusters of noise remain. This is also the case, to a much larger extent, with
the upwind TV: the dark part of the noise is removed, but not the light part, and a lot of
small light clusters of noise remain. This drawback of the isotropic and upwind TV can be
explained by the too-low penalization of a single isolated pixel, as reported in Table 1 and
in section 2. The proposed TV (using 1000 iterations of Algorithm 1 with µ = 1) yields the
best result: The noise is removed, the spokes have an elongated shape with less artifacts and
a good contrast. Concerning the computation time, on a Apple Macbook Pro laptop with a
2.3 GHz CPU and 8 GB RAM running MATLAB R2015b, the Chambolle–Pock algorithm
and Algorithm 1 ran in 35s and 102s for the isotropic and proposed TV, respectively, with a
similar number of iterations.

6.5. Inpainting of an edge. We consider an inpainting problem, which consists of recon-
structing missing pixels by TV minimization. The image is shown in Figure 5 (a), with the
missing pixels in blue. We solve the constrained TV minimization problem (35), where A is
a masking operator, which sets to zero the pixel values in the missing region and keeps the
other pixels values unchanged. We have A† = A∗ = A. The image y, shown in Figure 5 (b),
has its pixel values in the missing region equal to zero.

With the anisotropic TV, the solution is not unique, and every image with nondecreasing
pixels values horizontally and vertically is a solution of the TV minimization problem. One
solution, equal to y, is shown in Figure 5 (b). The result with the isotropic, upwind, and
proposed TV (using 1000 iterations of Algorithm 1, with µ = 1) is the same and corresponds
to what is expected; it is shown in Figure 5 (c). The gradient field v̂ associated to the solution
with the proposed TV is not shown, but it is the same as in Figure 3 (III).

We also consider the flipped case, where y is flipped horizontally. The solution with the
isotropic TV is shown in Figure 5 (d). It suffers from a strong blur. Indeed, as reported in
Table 1, the value of the isotropic TV for slightly blurred edges at this orientation, like in the
cases (IIIf) and (IVf), is too high. So, when minimizing the TV, the TV value is decreased
by the introduction of an important blur. By contrast, the anisotropic, upwind, and proposed
TV are symmetric, so they yield flipped versions of the images shown in Figure 5 (b) and (c).
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6.6. Upscaling of a disk. We consider the upscaling problem, which consists of increas-
ing the resolution of the image y of a disk, shown in Figure 11 (a), by a factor of 4 in both
directions. Upscaling is viewed as the inverse problem of downscaling: the downscaling op-
erator A maps an image to the image of its averages over 4× 4 blocks, and we suppose that
y = Ax] for some reference image x] that we want to estimate. Here, y is of size 23 × 23,
and the reference image x] shown in Figure 11 (b), of size 92 × 92, was constructed like in
subsection 6.2: To approximate cell-average discretization, a larger 1472× 1472 image x0 was
constructed by point sampling a 16 times larger disk, and x] was obtained by averaging over
the 16×16 blocks of this image; that is, x] = AAx0. Then y was obtained as y = Ax]. Hence,
the upscaled image is defined as the solution to the constrained TV minimization problem
(35). We have A† = 16A∗.

The results with the anisotropic, isotropic, upwind, and proposed TV (using 2000 iter-
ations of Algorithm 1, with µ = 1) are shown in Figure 11 (c)–(f). With the anisotropic
TV, the result is very blocky. With the isotropic TV, the disk edge is jagged, except at the
top-left and bottom-right ends. The result is much better with the upwind TV, and even
better with the proposed TV, which has the most regular disk edge. The distance ‖x̂ − x]‖
between the upscaled image and the reference image is 2.91, 1.59, 1.23, with the isotropic,
upwind, proposed TV, respectively. So, this error is 23% lower with the proposed TV than
with the upwind TV.

6.7. Deconvolution of a disk. We consider the deconvolution, a.k.a. deblurring, problem,
which consists of estimating an image x] given its blurred and noisy version y. x] is the image
of a disk, constructed like in subsection 6.2 and shown in Figure 6 (b). The initial image y,
depicted in Figure 6 (a), was obtained by applying a Gaussian filter of standard deviation
(spread) 3.54 pixels, to x] and adding white Gaussian noise of standard deviation 0.05. The
image was restored by solving, for the proposed TV, (42) with F = 0, and for the other TV
forms, (34). In all cases, A = A∗ is the convolution with the Gaussian filter, with symmetric
boundary conditions, and λ is set to 0.1. Algorithm 3 was used in all cases, for simplicity,
with C = −Id for all but the proposed TV. The distance ‖x̂−x]‖ between the restored image
and the reference image is 4.10, 3.56, 2.78, 1.46, with the anisotropic, isotropic, upwind,
proposed TV, respectively. We observe in Figure 6 (c)–(f) that the noise is well removed
in all cases. Again, the proposed TV provides the roundest and least blurred edge of the
disk. This increased quality comes, again, with a moderate increase of the computation time:
on an Apple Macbook Pro laptop with a 2.3 GHz CPU and 8 GB RAM running MATLAB
R2015b, 4000 iterations of the algorithm ran in 10s and 17s for the isotropic and proposed
TV, respectively. Indeed, the factor of three for the size of the gradient field only impacts
some of the operations, not all.

6.8. Segmentation of the parrot. We consider a convex approach to color image seg-
mentation. Given the set Σ = {ck ∈ [0, 1]3 : k = 1, . . . ,K} of K ≥ 2 colors ck, expressed
as triplets of R,G,B values, and the color image y ∈ (R3)N1×N2 , we would like to find the
segmented image

(45) x̂ = arg min
x∈ΣN1×N2

{
1
2‖x− y‖

2 + λ
2

K∑
k=1

per(Ωk)
}
,
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(a) Initial image (b) Reference image (c) Restored, anisotropic TV

(d) Restored, isotropic TV (e) Restored, upwind TV (f) Restored, proposed TV

Figure 6. Deconvolution experiment; see subsection 6.7. The initial image in (a) is obtained from the
ground-truth image in (b) by convolution with a Gaussian filter and the addition of white Gaussian noise.

for some λ > 0, where Ωk = {(n1, n2) ∈ Ω : x[n1, n2] = ck} and per denotes the perimeter.
That is, we want a color image, whose color at every pixel is one of the ck, close to y, but
at the same time having homogeneous regions. However, this nonconvex “Potts” problem is
very difficult, and even NP-hard [6]. And a rigorous definition of the perimeter of a discrete
region is a difficulty in itself. So, we consider a convex relaxation of this problem [6]: We
look for the object ẑ ∈ ∆N1×N2 such that, at every pixel, ẑ[n1, n2] = (ẑk[n1, n2])Kk=1 is an
assignment vector in the simplex ∆ = {(ak)Kk=1 :

∑K
k=1 ak = 1 and ak ≥ 0 ∀k}. The elements

ẑk[n1, n2] ∈ [0, 1] are the proportions of the colors ck at pixel (n1, n2); that is, the segmented
image x̂ is obtained from ẑ as

(46) x̂[n1, n2] =
K∑
k=1

ẑk[n1, n2]ck ∀(n1, n2) ∈ Ω.

Now, by virtue of the coarea formula, the segmentation problem can be reformulated as [6]

(47) Find ẑ = arg min
z∈∆N1×N2

{
〈z, p〉+ λ

K∑
k=1

TV(zk)
}
,
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where the Euclidean inner product is

〈z, p〉 =
∑

(n1,n2)∈Ω

K∑
k=1

zk[n1, n2]pk[n1, n2], with pk[n1, n2] = ‖y[n1, n2]− ck‖2.(48)

The problem (47) can be put into a form similar to (32):

(49) Find ẑ ∈ arg min
z∈(RK)N1×N2

{
F(z) + λTV(z)

}
,

with the TV of z having a separable form with respect to k, i.e., TV(z) =
∑K

k=1 TV(zk), and
F(z) having a separable form with respect to the pixels, i.e., F(z) =

∑
(n1,n2)∈Ω Fn1,n2(z[n1, n2]),

where

(50) Fn1,n2(a) = ı∆(a) + 〈a, p[n1, n2]〉.

For any α > 0, we have proxαFn1,n2
(a) = P∆(a− αp[n1, n2]), where P∆ is the projection onto

the simplex, which can be computed efficiently [41]. So, the primal–dual algorithms described
in section 5 can be used for the segmentation problem as well. With the proposed TV, we
must introduce K gradient fields vk, associated to the images zk. We used 1000 iterations of
Algorithm 1, with µ = 50.

We compare the performances of the anisotropic, isotropic, upwind, proposed TV on this
problem, with y a part, of size 399×400, of the classical Parrot image, shown in Figure 12 (a).
We set λ = 0.09, and we set the K = 6 colors as some kind of black, white, yellow, blue,
green, and brown, visible in Figure 12 (b)–(e). In this respect, we would like the edges, which
are the interfaces between the regions Ωk, to be sharp, and their perimeter to be correctly
measured by the TV of the assignment images ẑk. But these two goals are antagonistic: the
coarea formula is not well satisfied for discrete binary shapes, as we have seen in section 2;
the length of oblique binary edges is overestimated by the anisotropic, isotropic, and proposed
TV, and the length of small structures, like in the extreme case of a single isolated pixel, is
underestimated by the upwind TV. This seems like an intrinsic limitation and the price to
pay for convexity in a spatially discrete setting. As visible in Figure 12 (b), the anisotropic
TV yields sharp edges, but their length is measured with the Manhattan distance, not the
Euclidean one. So, the edges tend to be vertical and horizontal. With the isotropic TV, for half
of the orientations, the edges are significantly blurred, as is visible on the dark region over a
green background in the bottom-left part of the image in Figure 12 (c). The upwind TV tends
to introduce more regions made of a few pixels, because their perimeter is underestimated;
see the eye of the parrot in Figure 12 (d). The best tradeoff is obtained with the proposed
TV: there is a slight one or two pixel-wide blur at the edges, but this blur cannot be avoided
for the perimeter of the regions to be correctly evaluated.
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(a) Initial image (central part)

(b) Smoothed image (central part), proposed TV, λ = 2

(c) Smoothed image (central part), proposed TV, λ = 20

Figure 7. Smoothing experiment; see subsection 6.1. In (b) and (c), we have the central part of the images
and their gradient fields obtained by smoothing the binary edge in (a), with λ = 2 and λ = 20, respectively.
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(a) Initial image

(b) Reference image

(c) Smoothed image, anisotropic TV

Figure 8. Smoothing experiment; see subsection 6.2. In (c), we have the image obtained by smoothing the
image in (a) using the anisotropic TV. In (b), we have the ideal result one would like to obtain. Every image
is represented in grayscale on the left and in false colors on the right to better show the spread of the edges. The
fact that in (b) the disk interior and the background are rendered with the same blue false color is a coincidence
due to the limited number of colors in the colormap “prism” of MATLAB.
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(d) Smoothed image, isotropic TV

(e) Smoothed image, upwind TV

(f) Smoothed image, proposed TV

Figure 8, continued. In (d), (e), (f), we have the images obtained by smoothing the image in (a) using the
isotropic TV, upwind TV, proposed TV, respectively.
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(a) Initial image

(b) Reference image

(c) Smoothed image, anisotropic TV

Figure 9. Smoothing experiment; see subsection 6.3. In (c), we have the image obtained by smoothing the
image in (a) using the anisotropic TV. In (b), we have the ideal result one would like to obtain. Every image
is represented in grayscale on the left and in false colors on the right to better show the spread of the corners.
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(d) Smoothed image, isotropic TV

(e) Smoothed image, upwind TV

(f) Smoothed image, proposed TV

Figure 9, continued. In (d), (e), (f), we have the images obtained by smoothing the image in (a) using the
isotropic TV, upwind TV, proposed TV, respectively. The fact that in (e) the square interior and the background
are rendered with the same blue false color is a coincidence due to the limited number of colors in the colormap
“prism” of MATLAB.
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(a) Initial image

(b) Reference image

Figure 10. Denoising experiment; see subsection 6.4. The initial noisy image in (a) is the ground-truth
image in (b) after corruption by additive white Gaussian noise.
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(c) Denoised image, anisotropic TV

(d) Denoised image, isotropic TV

Figure 10, continued. In (c), (d), we have the images obtained by denoising the image in (a) using the
anisotropic TV and isotropic TV, respectively.
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(e) Denoised image, upwind TV

(f) Denoised image, proposed TV

Figure 10, continued. In (e), (f), we have the images obtained by denoising the image in (a) using the
upwind TV and proposed TV, respectively.
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(a) Initial image (b) Reference image

(c) Upscaled image, anisotropic TV (d) Upscaled image, isotropic TV

(e) Upscaled image, upwind TV (f) Upscaled image, proposed TV

Figure 11. Upscaling experiment; see subsection 6.6. The images in (b)–(f), when reduced by averaging
over 4× 4 blocks, yield the image in (a) exactly.
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(a) Initial image

(b) Segmented image, anisotropic TV (c) Segmented image, isotropic TV

(d) Segmented image, upwind TV (e) Segmented image, proposed TV

Figure 12. Segmentation experiment; see subsection 6.8.
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7. Conclusion. We proposed a new formulation for the discrete total variation (TV) semi-
norm of an image. Indeed, the classical, so-called isotropic, TV suffers from poor behavior
on oblique structures for half of the possible orientations. It is important to have a sound
definition of the TV to at least be able to compare different convex regularizers for imag-
ing problems, based on their intrinsic variational and geometrical properties and not on the
quality of their implementation.

Our new definition of the gradient field of an image has potential applications going far
beyond TV minimization; for instance, one can consider edge detection based on the gradient
amplitude, nonlinear diffusion, and PDE flows based on the gradient orientation. We will
explore some of these problematics in future work. The extension of the proposed TV to color
or multichannel images will be investigated as well.

Acknowledgment. The author would like to thank Antonin Chambolle for helpful discus-
sions, especially on the analytic solution of smoothing a square.
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