
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, PP. 679–693, MAY 2008 1

Reversible, Fast, and High-Quality

Grid Conversions
Laurent Condat, Member, IEEE, Dimitri Van De Ville, Member, IEEE and

Brigitte Forster-Heinlein, Member, IEEE

Abstract— A new grid conversion method is proposed to re-
sample between two 2-D periodic lattices with the same sampling
density. The main feature of our approach is the symmetric
reversibility, which means that when using the same algorithm for
the converse operation, then the initial data is recovered exactly.
To that purpose, we decompose the lattice conversion process into
(at most) three successive shear operations. The translations along
the shear directions are implemented by 1-D fractional delay
operators, which revert to simple 1-D convolutions, with appro-
priate filters that yield the property of symmetric reversibility. We
show that the method is fast and provides high-quality resampled
images. Applications of our approach can be found in various
settings, such as grid conversion between the hexagonal and the
Cartesian lattice, or fast implementation of affine transformations
such as rotations.

Index Terms— 2-D lattices, resampling, shears, fractional delay
filters, hexagonal grid, rotation.

I. INTRODUCTION

D IGITAL images are almost exclusively available on the

Cartesian lattice, despite the existence of other periodic

lattices with attractive properties. Probably, the main reasons

behind this omnipresence are the trivial correspondence be-

tween pixel position and pixel index, and the availability of

display devices with Cartesian geometry.

Resampling procedures come into play when converting

from one lattice to another. Mathematically, a 2-D lattice [1]–

[3] is a regular set of points of the plane, characterized by

two linearly independant vectors r1, r2 ∈ R
2, conveniently

grouped in a 2 × 2 matrix R = [r1 r2]. Lattice sites have

coordinates Rk, k ∈ Z
2, and the lattice sampling density

can be obtained as 1/ |det(R)| (lattice sites per unit surface).

For resampling 2-D data from one lattice, with matrix R,

onto another lattice, with matrix R
′, typical approaches are

based on reconstruction: a continuous-domain representation

lying in a shift-invariant function space is constructed, that

estimates the underlying (unknown) function f(x) by means
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of its samples f(Rk). Specifically, a generator function at

every lattice site is weighted by a coefficient, after which

the reconstruction is sampled on the target lattice. On the

Cartesian lattice, generator functions are typically obtained as

tensor-product extensions of 1-D versions. On non-Cartesian

lattices, such as the hexagonal one, intrinsically 2-D generator

functions are deployed; e.g., hex-splines [4] or box-splines [5].

The use of high-quality versions of these methods (say, beyond

linear interpolation) requires a prefiltering step that can be

computationally expensive. We highlight two main properties

of these approaches: (1) successive resampling operations

increasingly degrade the image quality; (2) the process is not

invertible by a similar procedure. The latter point is related to

the fact that the generator function is intricately linked to the

source lattice, only. For instance, when using a linear tensor-

product B-spline for Cartesian-to-hexagonal resampling, one

would consider the three-directional linear box-spline [5]–

[7] as an “equivalent” way to return from the hexagonal to

Cartesian lattice. However, the original image will not be

recovered after cascading both operations.

In this paper, we propose an alternative approach that is

driven by the property of “symmetric reversibility”; i.e., the

conversion between two arbitrary lattices with the same sam-

pling density has an exact inverse operation, that is achievable

with the same algorithm. Formally, we pursue

CR′→R ◦ CR→R′ = Id, ∀R,R′. (1)

Our method is based on two fundamental observations: (1)

a lattice can be turned into another one by at most three

successive shear operations; (2) shear operations can be carried

out by 1-D fractional delay operators that ensure the “sym-

metric reversibility” property. By construction, this approach

will be separable and simple to implement; i.e., through

1-D operations along selected directions. Additionally, 1-D

translators of arbitrary high order can be designed to guarantee

high quality results.

Many applications can benefit from this type of grid con-

version; in particular we propose the following settings:

Hexagonal-to-Cartesian Resampling

The hexagonal lattice of the so-called first type [8], depicted

in Fig. 1, is characterized by the matrix

Rhex =

√
2√
3

[
1 1/2

0
√
3/2

]
. (2)

Hexagonal sampling has numerous attractive properties, such

as more efficient representation of isotropic band-limited 2-D
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Fig. 1. The regular hexagonal lattice (a) and the square lattice (b), with the
same sampling density equal to 1.

signals [1], [9]. Recent technical progress has brought hexag-

onal sampling into the domain of consumer electronics and

there now exist imaging sensors that acquire on the hexagonal

lattice [10], [11]. This is likely to foster a renewed interest for

image processing on this lattice. A non-Cartesian acquisition

lattice may also be constrained for technical reasons, e.g. in

medical imaging devices. However, data sampled on such

a lattice generally have, at some stage of their processing

chain, to be resampled on the Cartesian lattice, typically for

visualization.

Hexagonal-to-Cartesian resampling can be performed fast

and efficiently with our new approach using 1-D filtering only.

The reversibility property ensures that no loss of information

is introduced during this conversion operation. One particular

useful application of the reversibility is when hexagonally-

sampled data needs to be stored or transmitted on a Cartesian

lattice. Our approach will produce a high-quality intermediate

representation of the data (that can be directly visualized),

which can be reconverted into the original data on the hexago-

nal lattice at the receiver side. That way, existing infrastructure

can be used to handle hexagonally-sampled data.

Cartesian-to-Hexagonal Resampling

Cartesian-to-hexagonal lattice conversion can be beneficial

for low-level image processing tasks. It is known that the

better isotropic properties of hexagonal sampling like twelve-

fold symmetry and six-connectivity [12] can be successfully

exploited for various image processing tasks [13]–[18]. Specif-

ically, morphological operations can take great advantage of

the hexagonal lattice [19]–[22]. In computer graphics also,

various algorithms have been adapted to the hexagonal lattice,

with a persistant result that a better quality can be obtained in

comparison with the same operation on a square lattice of same

density, for the same or lower computational cost [22]–[25]. In

this context, reversibility is reassuring, since it guarantees that

the image does not suffer from iterated conversions between

the Cartesian and the hexagonal lattice.

Image Rotation

Resampling procedures are also commonly required for ge-

ometric transformations; e.g., image rotation. Let us consider

the case of rotating the Cartesian lattice by an angle θ; i.e.,

R is the identity matrix and R
′ = R−θ is the rotation matrix

defined as

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (3)

For the particular setting of image rotation, our decomposition

of the conversion process into three shears has been reported

already in the literature—see [26] and references therein. How-

ever, our specific choice of fractional delay operations allows

our method to satisfy the original and appealing property of

symmetric reversibility:

R−θ ◦ Rθ = Id, ∀θ ∈ R. (4)

It is satisfying to know that one can rotate an image without

losing any information and that the same operation applied in

opposite sense will exactly recover the initial image.

Outline

This work is organized as follows. We present in Section II

our decomposition in shears. This suggests an easy and fast

algorithm, detailed in Section III. We stress the fact that the

proposed method is essentially discrete and only relies on

1-D shifts along rows or columns of the image. There is

no underlying continuous model fitted on the image, as is

the case with interpolation methods. On the other hand, our

approach is limited to the conversion between lattices having

the same sampling density, because we only use operations

that leave the sampling density invariant. In Section IV,

we present an in-depth analysis of our approach, including

the “frequency shuffle” theorem that demonstrates how high-

frequency components are affected by our method. Finally, in

Section V, we show the experimental results illustrating the

reversibility property, the efficiency of the implementation, and

the quality compared to interpolation techniques.

II. LATTICE CONVERSION: DECOMPOSITION INTO

SUCCESSIVE SHEARS

A. Mathematical Principle

In this section, we show that a succession of at most three

well-chosen shears can convert data between two arbitrary

lattices. Vectors of R
2 are written in bold lowercase in this

paper, e.g. x = [x1 x2]
T. We consider two given lattice

matrices R = [r1 r2] and R
′ = [r′1 r

′
2], with equal sampling

density such that |det(R)| = |det(R′)| = 1.

Definition 1 (Shear): We define a shear operation along

the direction a as the displacement of each point x in the

direction of a with magnitude proportional to 〈x, a⊥〉 where

a
⊥ = [−a2 a1]

T is orthogonal to a. The linear shear operator

x 7→ x+ λ〈x, a⊥〉a, (5)

with magnitude λ ∈ R, has the associated matrix representa-

tion

S = I+ λaa⊥T =

[
1− λa1a2 λa21
−λa22 1 + λa1a2

]
. (6)

It can be easily checked that for any shear, det(S) = 1. Its

eigenvalues are 1 too. This indicates that the sampling density

is preserved when applying a shear to a lattice.

Also, one fundamental property of a shear operation is that

its converse is the same shear in the opposite direction; i.e.,

S
−1 = I − λaa⊥T. Designing discrete shear operators while

maintaining this property is at the heart of the symmetric
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reversibility property of the conversion process between

lattices.

Given a lattice with matrix R, we are interested in shears

applied along “natural” directions of the lattice, that is, along

lines joining two lattice sites. To this purpose, it is more

convenient to characterize a shear by its matrix M in the basis

of the vectors of the lattice, instead of by its matrix S in the

canonical basis. Both matrices are related by the change of

basis S = RMR
−1. If the shear operation is performed along

the first coordinate axis of the lattice, then the shear matrix

M turns into a unit upper-triangular matrix

U =

[
1 µ
0 1

]
. (7)

Similarly, shearing along the second coordinate axis is asso-

ciated to a unit lower-triangular matrix

L =

[
1 0
µ 1

]
. (8)

Such shears are preferable, since they correspond to applying

simple and efficient row-by-row or column-by-column opera-

tions on the data.

We now define the unitary matrix P that characterizes the

conversion between the two lattices as

P =

[
p11 p12
p21 p22

]
= R

−1
R

′. (9)

The possible decompositions of P in shear operations depend

on the mutual orientations between the respective basis

vectors of both source and target lattices. Depending on them,

we can propose the following decompositions:

Decomposition 1 (ULU factorization): If the vectors r1

and r
′
1 are not colinear, that is p21 6= 0 in (9), then the

conversion matrix can be decomposed in three shears

P = U1L2U3 (10)

=

[
1 a
0 1

] [
1 0
b 1

] [
1 c
0 1

]
. (11)

The values of a, b, c can be uniquely identified as

a =
p11 − 1

p21
, b = p21, c =

p22 − 1

p21
. (12)

A more in-depth mathematical treatment of this decompo-

sition has been given in [27].

To provide a better insight into the decomposition process,

let us describe the successive shears of the decomposition in

more detail:

• The first shear operates on the initial lattice with matrix

R. We are looking for a shear operating along the first

vector r1 of this lattice, thus with matrix S1 = RU1R
−1,

where U1 has the form

U1 =

[
1 a
0 1

]
. (13)

• After the first shear, the lattice has matrix RU1. We look

for a shear operating along the second direction of this

lattice, thus with matrix S2 = (RU1)L2(RU1)
−1, where

L2 has the form

L2 =

[
1 0
b 1

]
. (14)

• The lattice has now matrix RU1L2. We look for a shear

operating along the first vector of this lattice, thus with

matrix S3 = (RU1L2)U3(RU1L2)
−1 where U3 has the

form

U3 =

[
1 c
0 1

]
. (15)

At the end, the lattice has matrix RU1L2U3 = R
′, or,

equivalently:

S3S2S1R = R
′. (16)

The last factorization (16) provides the geometric

interpretation of the decomposition, using shears along 1-D

directions of the supporting lattices. On the other hand,

the factorization (11), when read from the left to the right,

provides the practical way for implementing the conversion

between the two lattices, as detailed in the next section, since

the operations are directly expressed in the basis of the pixel

indices.

Decomposition 2 (LUL factorization): If the vectors r1 and

r
′
1 are colinear, but r2 and r

′
2 are not, that is p12 6= 0

in (9), then the decomposition of the conversion process in

three shears can be performed by switching the order of the

directions along which the shears are performed. Specifically,

we obtain

P = L1U2L3 (17)

=

[
1 0
a 1

] [
1 b
0 1

] [
1 0
c 1

]
, (18)

where a, b, c can be uniquely identified as

a =
p22 − 1

p12
, b = p12, c =

p11 − 1

p12
. (19)

Decomposition 3 (SUL factorization): In the particular

case where both r1 and r
′
1, and r2 and r

′
2 are colinear, then

P has the form

P =

[
σ 0
0 1/σ

]
(20)

and the lattice conversion actually consists in contracting the

image in the horizontal direction with factor σ and dilating it

in the vertical direction with factor σ. In this special case, a

decomposition of the form (11) or (18) is not possible. One

possibility is the so-called LULU decomposition [28], which

consists of four shears:

P = L1U2L3U4

=

[
1 0
−1 1

] [
1 1− 1

σ
0 1

] [
1 0
σ 1

] [
1 1−σ

σ2

0 1

]
.

Instead, we propose an alternative in three shears, using a

first shear along the diagonal direction r1 + r2:

P = S1U2L3 (21)

=

[
1− a a
−a 1 + a

] [
1 b
0 1

] [
1 0
c 1

]
, (22)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, PP. 679–693, MAY 2008 4

with

a = 1− σ, b = 1− 1

σ
, c = 1− σ2. (23)

We notice that the decomposition in three shears is not

unique; i.e., other shear directions will result in other factoriza-

tions. For the directions we have chosen, horizontal, vertical,

and diagonal, depending on the case, the decompositions are

unique and can be advantageously performed along the lattices

vectors. Assuming that the pixels are indexed accordingly, the

process turns into 1-D filtering along rows and columns of

the image. This suggests the efficient algorithm detailed in the

following. If other addressing schemes are used for indexing

the pixels, like the one of Middleton et al. [16], [18], this does

not have any influence on the performances of the algorithm,

as they also guarantee an easy access to the neighbors of a

given pixel.

B. Conversion between Cartesian and Hexagonal Lattices

Let us first illustrate our approach by considering the

conversion from the Cartesian to the hexagonal lattice. Since

the vector r1 of the hexagonal lattice is colinear with the

Cartesian vector [1 0]T , we use the decomposition (18); that

is,

Rhex =

[
1 0
a 1

] [
1 b
0 1

] [
1 0
c 1

]
, (24)

with a =
√
3−

√
6/

√
3, b =

√√
3/6, c = 2−

√
6/

√
3.

The three successive shears convert the data between the

successive lattices depicted in Fig. 2. The intuition behind this

is that two shears are required to transform the vector r2 of the

hexagonal lattice into the Cartesian vector [0 1]T and a third

shear then transforms r1 into [0 1]T. The practical process

consists of three steps that only involve 1-D operations:

• On each column of the image s with index k1, perform a

translation of magnitude −a.k1 (in the direction ↑). This

amounts to estimating the sample values f(L1k) from

the available pixel values f(k).
• On each row of the image with index k2, perform a

translation of magnitude −b.k2 (in the direction →). The

pixel values of the obtained image are estimates of the

sample values f(L1U2k).
• On each column of the image with index k1, perform a

translation of magnitude −c.k1 (in the direction ↑). The

pixel values of the final image v approximate the desired

samples f(Rhexk).

Following the same analysis, hexagonal to Cartesian con-

version is performed the same way as Cartesian to hexagonal

conversion, but in reversing the order of the translations and

making them in the opposite directions. This yields the three

steps:

• On each column of the image s with index k1, perform

a translation of magnitude c.k1 (in the direction ↑).

• On each row of the image with index k2, perform a

translation of magnitude b.k2 (in the direction →).

• On each column of the image with index k1, perform a

translation of magnitude a.k1 (in the direction ↑).

Clearly, the symmetric reversibility of the conversion

process is obtained if and only if the inverse operation of a

discrete translation with magnitude τ is the translation with

magnitude −τ . In section III, we design the 1-D translators

such that this property is satisfied.

Along with the conversion process in three shears we just

described, there is a way for converting an image from the

Cartesian lattice to a uniform hexagonal lattice in only two

shears. Of course, this hexagonal lattice is not the same as in

the previous section, but a rotated version: none of its natural

directions are horizontal or vertical. In fact,

R = [u1, u2] =

[
1 a
0 1

] [
1 0
b 1

]
, (25)

with a =
√
2/

√
3− 1 and b = (1 −

√
2
√
3− 3)/2, cor-

responds to the matrix of a uniform hexagonal lattice with

density 1. In a framework where an image would be resampled

from the Cartesian to an hexagonal lattice in order to benefit

from the advantages of hexagonal sampling, it would be inter-

esting to opt for this original lattice, since there is generally no

reason to enforce the horizontal or vertical direction as being

part of the lattice. Since only two resampling operations are

required instead of three with the classical hexagonal lattice,

the distortions introduced during the conversion will be of

lower magnitude. Conversely, when designing hexagonally-

arranged CCD sensors, it could be interesting to rotate them

in order to align them with the lattice proposed here, keeping

in mind that only two shears will then enable the conversion

to the Cartesian lattice.

Finally, we mention that we proposed a different decomposi-

tion for the conversion from the hexagonal to the Cartesian lat-

tice in [29], using the three natural directions of the hexagonal

lattice. This amounts to performing translations along not only

the rows and columns, but also the diagonals of the image.

The decomposition described in the present paper is easier to

implement, and turns out to provide images with slightly better

quality.

C. Application to Image Rotation

Now, when applied to the problem of image rotation,

our decomposition reverts to the one already known in the

literature [26], [30]–[32]. The matrix P = R−θ is the rotation

matrix with angle −θ, that can be decomposed as

P =

[
1 − tan( θ2 )
0 1

] [
1 0

sin(θ) 1

] [
1 − tan( θ2 )
0 1

]
.

(26)

We remark that only rotations with angle θ ∈ [−π/4, π/4]
have to be processed by this decomposition, since rotations

with larger magnitude can be decomposed as the composition

of such a rotation and a rotation with angle −π/2, π/2 or π,

which are trivially performed.

Decomposing the rotation in three shears provides

algorithms—for the same quality—being computationally less

complex than the full 2-D counterparts [26]. However, the

method proposed in [26], implementing the 1-D translations

using spline interpolation, is not reversible, in the following
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0

1 2

34

0 0

0

Fig. 2. The conversion from the Cartesian to the hexagonal lattice can be decomposed in three steps, using two intermediate lattices. Each of these three
conversions consists in a shear along one of the two vectors generating the lattice on which the shear is applied. The converse operation of hexagonal to
Cartesian conversion is simply obtained by reverting the order of the operations. On each subfigure, the displacements of the lattice sites caused by the shear
are indicated by arrows; each black dot is moved to the next gray one in the direction of the shear.

sense: the inverse of the rotation with angle θ exists, but it

does not correspond to rotation with angle −θ. Basically, the

rotation introduces some blur, while its inverse operates some

contrast enhancement. Our symmetrically reversible approach,

to the contrary, does not introduce any blur, as discussed later.

We note that for particular angles, 2-D nearest neighbor

interpolation is actually symmetrically reversible, and can be

computed efficiently using the modulo transform proposed

in [33]. The quality of this method is very poor, however.

2-D sinc interpolation (for which an efficient implementation

was given in [34]) is not reversible, since the Nyquist regions

of the source and target lattices do not coincide. It should

also be stressed that other decompositions of rotations have

been proposed in the literature [35]–[37], but they use scaling

operations in addition to shears; hence, they can not be made

reversible, since some loss of information is always implied

by a down-scaling.

D. Extensions to Higher Dimensions

An interesting question is whether the decomposition in

three shears for the 2-D case proposed in this work can be

extended to higher dimensions. In any dimension, a shear

matrix along a canonical direction has unit determinant and

differs from the identity by only one row. As a consequence

of the factorization result in [27], a unit square matrix of size

N×N can be factorized in at most 3N−3 such shear matrices,

since it can be decomposed in 3 triangular matrices, each of

which is simply decomposed in N − 1 shear matrices. To

our knowledge, it is still an open question whether one can

achieve a general factorization with less shears. The authors

of [38] conjecture that a decomposition in N + 1 shears

can be obtained. They base their hypothesis on their result

that in the 3-D case, a decomposition of a matrix in four

shears operating along one of the three canonical vectors is

always possible (except if P is a diagonal matrix) [38]. This

decomposition has been applied for implementing rotations in

3-D [39]. Therefore, applied to our context, one can convert

data between two 3-D lattices using four shears along well-

chosen directions. For instance, the conversion from the body-

centered-cubic lattice to the Cartesian lattice Z
3 is a practical

problem in computer graphics [40].

III. 1-D FRACTIONAL DELAY OPERATORS FOR IMAGE

TRANSLATION

A. Design Constraints for 1-D Translators

The important feature of our lattice-conversion procedure

is that it only involves 1-D translations. Since several shears

are successively applied to the image, the translation (a.k.a.

shift or delay) operators should be designed with the greatest

possible care. This section is devoted to the study of proper

ways for translating a discrete 1-D signal s = (s[k])k∈Z, while

respecting the property of symmetric reversibility.

The translation operator Tτ : s 7→ s′ is defined such that

s′[k] = s[k − τ ] ∀k ∈ Z. (27)
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While this operation is straightforward when τ is an integer,

we are faced with an interpolation problem in the general case.

Assuming the translation process is linear and shift-invariant,

it is implemented by a discrete convolution:

s′ = s ∗ hτ . (28)

where hτ is called a fractional delay filter. These filters have

a long history and play a key role in many signal processing

and communication systems, see [41] and references therein.

The shears require each row or column of the image to be

translated with a different shift τ , so we have to design a

family of filters hτ , for τ ∈ R. Further on, we denote the

Z-transform of a filter h by H(z) =
∑

k∈Z
h[k]z−k and its

Fourier transform ĥ(ω) = H(ejω).

We pursue two design principles:

1) Symmetry. Changing the sign of τ should correspond to

the same operation but in reverse order on the data:

H−τ (z) = Hτ (z
−1). (29)

For integer τ , the exact translation is achieved by a

simple shift, that is, Hτ (z) = z−τ . For the fractional

part of the delay, we only have to design the filters hτ

for τ ∈ [0, 1/2]. Then, for τ ∈ R, we select

Hτ (z) = z−dH|τ−d|(z
sgn(τ−d)) (30)

where d = sgn(τ)⌈|τ | + 1
2⌉ − 1.

2) Symmetric reversibility. As long as the filter Hτ (z) has

no roots on the unit circle, it will be invertible. However,

we want the inverse to be the translation in the opposite

direction. This condition can be expressed as

H−τ (z) =
1

Hτ (z)
. (31)

Formally, T−τ ◦ Tτ = Id for every τ ∈ R. This makes

the discrete shears and the whole conversion process

inherit the symmetric reversibility.

B. Two Extreme Cases

1) Nearest Neighbor: The most straightforward approach

for performing a translation is nearest neighbor interpolation,

which consists in assigning to s′[k] the value of the pixel

closest to the position k − τ . This corresponds to

Hτ (z) = 1 ∀τ ∈ [0, 1/2]. (32)

This elementary method is symmetrically reversible.

Moreover, the set of the pixel values of the initial and

converted images are the same, since this conversion method

just re-orders pixels of the initial image at different locations.

For example, a binary image will remain binary after

conversion on a different lattice with this method, which can

be advantageous in some applications. However, as shown in

Sect. IV, this “shuffling” method does not provide very high

quality.

2) Sinc: At the opposite side, assuming a band-limited

hypothesis on the underlying continuous process, Shannon’s

theorem [42] tells us that the ideal fractional delay operator is

defined as

Hτ (e
jω) = e−jωτ . (33)

which correspond to interpolation-based translation with the

sinc kernel:

s′[k] =
∑

l∈Z

s[l] sinc(k − l − τ) (34)

where sinc(x) = sin(πx)/(πx). The idea of using this ideal

translator in combination with a decomposition in shears

was proposed in [26] and [43] for 2-D and 3-D rotations,

respectively. However, the infinitely long response of sinc

interpolation requires much computation time and is prone to

the introduction of unwanted oscillations (ringing), due to the

fact that the band-limited hypothesis is actually false for most

natural images.

When applying the ideal translation to a signal s with

finite length T , it is usual to implicitly consider that the

underlying process is T -periodic. Using the FFT then provides

a convenient way for exactly performing this translation in

the Fourier domain. However, as already pointed out in [43],

this has to be done carefully. The method simply consists

in computing the FFT of s, then in multiplying each FFT

coefficient by a complex value of the form e−jτkδ/T with

appropriate value δ, and finally going back in the spatial

domain using the inverse FFT. But if T is even, the last

FFT coefficient, which corresponds to the energy component

at the Nyquist frequency, is real valued. In order for the

delayed signal to be real, its Nyquist coefficient should remain

real. This means that the Nyquist coefficient should not be

multiplied by a complex shift and should instead be left

unchanged. This particularity comes from the fact that in a

discrete real signal, the phase of its component at the Nyquist

frequency can not be determined. It is assumed to be zero by

convention, so the phase has to remain zero after translation.

Moreover, the FFT has a computation cost proportional to

T log(T ). This is more than the linear time corresponding to

implementing the translation in the spatial domain with short

realizable filters, as we present in the following.

C. All-Pass Fractional Delay Flters

Let us go back to the general case. In fact, (31) is equivalent

for the delay filter to be an all-pass filter, that is, to have

magnitude 1 in the frequency domain:

|Hτ (e
jω)| = 1, ∀ω ∈ R. (35)

So, an all-pass filter hτ is entirely characterized by its phase

response θh(ω) such that

ĥτ (ω) = ejθh(ω) (36)

Ideally, θh(ω) = −τω for every ω ∈ (−π, π).
We are interested in realizable filters having rational transfer

functions, in order to implement them in the spatial domain.

A realizable all-pass filter can be written under the form

Hτ (z) = zN
D(z)

D(z−1)
(37)
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Fig. 3. Phase delay of (a) h1,1
τ , (b) h1,2

τ (solid line) and h2,2
τ (dotted line),

for several τ in [0,0.5].

for some unique N ∈ Z and polynomial D such that

D(0) = 1. If −N is greater or equal than the degree of D,

then hτ is a causal filter; that is, hτ [k] = 0 for every k < 0.

In order to evaluate the quality of a realizable filter hτ ,

we have to study its phase properties. Two measures are

classically used: the phase delay −θh(ω)/ω and the group

delay −dθ(ω)/dω. In the ideal case, both should be constant

and equal to τ .

The only known class of realizable filters having explicit

formulas of their coefficients as a function of τ is the class

of Thiran filters [41], [44]. The Thiran filter tNτ of order N is

causal, hence it takes the form:

TN
τ (z) =

aN + aN−1z
−1 + · · ·+ a1z

−N+1 + z−N

1 + a1z−1 + · · ·+ aN−1z−N+1 + aNz−N
, (38)

with

ak = (−1)k
(
N

k

) N∏

n=0

τ −N + n

τ −N + n+ k
∀k ∈ 1..N, (39)

where
(
N
k

)
= N !/(k!(N − k)!) is the binomial coefficient.

The Thiran filters are designed to have maximally flat group

delay at the zero frequency. This is an asymptotic design

constraint that privileges the accurate translation of the low

frequency part of the signal. This design is in fact particularly

relevant for images, since it is well known that images have

their energy content essentially localized around the origin in

the frequency domain.

Thiran filters tNτ are stable (that is, its poles, the roots of

the denominator of TN
τ (z) are inside the complex unit circle)

if and only if τ > N − 1. In this stability interval, it achieves

its best performances for τ close to N . Moreover, its phase

properties are better for N−ǫ than for N+ǫ. For our purpose,

we want to design delay filters for τ ∈ [0, 1/2], which does not

suit with the stability interval of the Thiran filters. Moreover,

the constraint for the filter to be causal is not necessary for

1-D treatments on the rows and columns of images. Thus,

we design new all-pass filters having maximally flat group

delay, with a rational form that is not causal, and adapted for

τ ∈ [0, 1/2].

Definition 2 (Type I filters): We define the type I

causal/anti-causal filters h1,N
τ by

H1,N
τ (z) = z−NTN

N−τ(z
−1) (40)

=
1 + b1z

−1 + · · ·+ bN−1z
−N+1 + bNz−N

bNzN + bN−1zN−1 + · · ·+ b1z1 + 1
,

(41)

with

bk = (−1)k
(
N

k

) N∏

n=0

τ − n

τ − n− k
∀k ∈ 1..N. (42)

The numerator of H1,N
τ (z) is causal and its denominator

is anticausal. This design reverts to matching the interval

τ ∈ [N − 1/2, N ], where the Thiran filter tNτ has optimal

performance, in the interval τ ∈ [0, 1/2].
The filtering step on a signal s of finite length T with h1,N

τ

can be easily achieved in one single in-place backward pass:

for i from T-1 down to 0 do

for k from 1 to N do

s[i]+=b_k*(s[i-k]-s[i+k]);

In practice, the signals to be manipulated have finite length.

For the translation to be reversible without expanding the

size of the signal, periodic boundary conditions have to be

used. Then, an initialization step is required for the filtering

pass, that can be performed the same way as in [45], where

an algorithm based on inverse filtering is proposed for spline

interpolation. That is, the initialization is performed on a few

terms of the signals so that the error is below some prescribed

level of precision.

Definition 3 (Type II filter): We define the type II centered

filters h2,N
τ by

H2,N
τ (z) =

aNzN/2 + aN−1z
N/2−1 + · · ·+ a1z

−N/2+1 + z−N/2

zN/2 + a1zN/2−1 + · · ·+ aN−1z−N/2+1 + aNz−N/2
(43)

when N is even, with the ak given by (39), and otherwise

H2,N
τ (z) = z−1TN

1−τ (z
−1) (44)

=
z(N−1)/2 + c1z

(N−3)/2 + · · ·+ cNz(−N−1)/2

cNz(N+1)/2 + · · ·+ c1z(−N+2)/2 + z(−N+1)/2
, (45)

with

ck = (−1)k
(
N

k

) N∏

n=0

1− τ − n

1− τ − n− k
∀k ∈ 1..N. (46)

We remark that h1,1
τ = h2,1

τ . These type II filters revert to

using Thiran filters outside of their stability interval, where

they have optimal performances. The idea behind this design is

that the filter h1,N
τ is actually a combination of two filters (the

numerator and the denominator) that each translate the signal

by τ/2. A N+1-tap FIR delay filter will perform at its best if

its coefficients are equally positioned around 0. Intuitively, the

best way of predicting the sample value at location τ ∈ [0, 1/2]
is to use for the computation the pixel values at locations

−N/2, . . . , N/2 and not 0, . . . , N .
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However, the implementation of an all-pole filter that is

neither causal nor anti-causal is problematic. The spectral fac-

torization method that consists in factorizing a filter in stable

causal and anti-causal parts, as proposed in [45], requires the

computation of the roots of a polynomial of degree N , whose

coefficients depend on τ . An explicit expression of these roots

only exists if N ≤ 4, but already for N = 3, the formulas

become impracticable. For arbitrary values of N , we can use

an algebraic approach, that amounts to solving a linear system

using a fast LU decomposition for band-diagonal matrices,

similarly to the approach described in [46]. This is the method

we adopted. In the case N = 2, however, we can provide a

faster implementation, based on the following factorization:

H2,2
τ (z) =

(1 − α−τz
−1)(1 − ατz)

(1 − ατz−1)(1− α−τz)
, (47)

where

ατ =
−4 + τ2 +

√
12− 3τ2

3τ + 2 + τ2
. (48)

This yields the fast implementation

for i from 0 to T-1 do

s[i]+=alpha_tau*(s[i-1]-s[i+1]);

for i from T-1 down to 0 do

s[i]+=alpha_(-tau)*(s[i+1]-s[i-1]);

For all these implementations, boundaries have to be han-

dled carefully. However, it is common to first extend (by

padding or mirror extension) the image to a larger one before

applying the conversion process, in order to avoid the shuffling

of some parts of the images at the boundaries, caused by the

periodic conditions used in the shears. Such an extension of

the image is typically required for rotation, since the rotated

domain extends beyond the frame of the initial image. In that

case, it is not useful to consider the exact computation of the

few pixels on the boundaries, that will be cropped afterwards.

Finally, we note that the two extreme cases described

in section III-B can be seen as two limiting cases of the

proposed approach; i.e., for N = 0 and N → ∞, respectively.

Consequently, we denote these two methods by h0
τ and h∞

τ

in the following. In fact, as N increases, the phase delay of

the filters h1,N
τ and h2,N

τ approaches more and more the ideal

phase delay, which is τ within (−π, π) and 0 at ±π, as can

be seen in Fig. 3.

IV. IN-DEPTH ANALYSIS

A. Quasi-Translation

It is important to recognize that our method does not

introduce traditional blurring during the conversion process.

The use of all-pass filters leaves unchanged the magnitude

of all frequency components along the shear directions. Even

more, our filters h1,N
τ and h2,N

τ are quasi-translation filters,

also called Neville filters [47], of order 2N + 1. A filter

h is a Neville filter of order N and shift τ if ĥ(ω) =
e−jωτ+o(ωN−1). These filters perfectly translate polynomials

of degree at most N−1. Specifically, every polynomial signal

P (Z), where P (X) is a polynomial of degree at most 2N , is

transformed into P (Z) ∗ hi,N
τ = P (Z − τ). In other words,

the conversion process between lattices is exact if the pixel

values are samples of a 2-D polynomial with total degree at

most 2N .

B. Orthogonality

The conversion process is also orthogonal. For two images

u1 and u2 that are converted onto another lattice, forming the

images v1 and v2, respectively, we have: 〈u1, u2〉 = 〈v1, v2〉.
More formally, the conversion operator C is such that C−1 =
C∗, the adjoint operator of C, which is another way to see the

property of symmetric reversibility.

This property can be of great interest in applications. For

instance, quantizing a pixel value before or after the conversion

introduces the same distortion. Denoising could be performed

after the image has been converted onto another lattice and

before it is turned back onto the original lattice. This method

could even be applied locally; i.e., have an image block

converted to an adaptive lattice with one vector in the direction

of maximum local regularity, and then applying a separable

treatment that differentiates along and across the edges.

C. Shuffle the Frequencies

We first have to introduce some more notions on 2-D signals

and lattices. We define the Fourier transform of a function

f ∈ L2(R
2) as f̂(ω) =

∫
R2 f(x) exp(−jωT

x)dx. A discrete

image s = (s[k])k∈Z2 , whose pixels are localized on the lattice

with matrix R, can be interpreted in the continuous domain as

a Dirac “brush” distribution sδ(x) =
∑

k∈Z2 s[k]δ(x −Rk),
where δ(x) is the 2-D Dirac distribution. So, we define the

Fourier transform of the image accordingly, as

ŝ(ω) =
∑

k∈Z2

s[k] exp(−jωT
Rk). (49)

To a lattice with matrix R, we also associate its reciprocal

lattice with matrix 2πR̂ = 2π(R−1)T. The effect of sampling

a function f(x) on a lattice is to replicate its Fourier transform

at the dual lattice sites 2πR̂k, as described by the Poisson

summation formula (see [4]):
∑

k∈Z2

f(Rk) exp(−jωT
Rk) =

∑

k∈Z2

f̂(ω − 2πR̂k). (50)

Therefore, for a given lattice, we can define its Nyquist region

as the Voronoi cell of its reciprocal lattice; that is, the region

of the frequency plane consisting of all points closer to the

origin 0 than to any other dual lattice site. Indeed, if f̂ is non-

vanishing only in the Nyquist region, sampling f on the lattice

does not create aliasing, since the replicas f̂(ω − 2πR̂k) do

not overlap.

To interpret the effect of the conversion process on the

Fourier transform of the image, we state the following

Theorem. Basically, the main effect consists in shuffling

the (high-)frequency content of the image, so as to tile the

frequency plane differently. No information is lost in the

process.

Theorem 1 (Frequency shuffle): Let us consider an image

u sampled on a lattice Λ = {Rk | k ∈ Z
2} with matrix R
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Fig. 4. Nyquist regions of the Cartesian (left) and hexagonal lattices (right), respectively. The parts that are moved during the conversion process between
these two lattices are indicated in the same gray tint. (a) Decomposition in three shears proposed in this work. (b) Decomposition as we proposed in [29],
which includes one diagonal shear.

and a ∈ Λ, a vector of the lattice having minimal length (that

is, ra 6∈ Λ for every r ∈ (0, 1)). The image u is converted to

the lattice SΛ, where S is a single shear with direction a and

magnitude λ, as given by (6). We assume that the translations

are performed using 1-D sinc interpolation. So, by adapting

Eq. (34), the pixel values of the target image v are defined by

v[k] =
∑

l∈Z

u[k+ lR−1
a]sinc(l − λ〈Rk, a⊥〉). (51)

Then, the Fourier transforms of u and v are related as follows:

v̂(ω) = û(ω + 2πλ

⌊〈ω, a〉
2π

+
1

2

⌋
a
⊥), (52)

where ⌊·⌋ is the integer part operator.

Proof: In the spatial domain, the conversion process can

be decomposed in two steps: first, a convolution of uδ

with the function sinc(〈x, a〉/‖a‖2)sinc(〈x, a⊥〉) and then,

resampling the obtained function on SΛ. In the Fourier

domain, this convolution amounts to multiplying ûδ(ω) =
û(ω) by the function 11(−π,π)(〈ω, a〉)11(−π,π)(〈ω, a⊥〉/‖a‖2).
Then, resampling amounts to replicating this product at ev-

ery dual lattice site 2πŜRk = 2πS−T
R

−T
k = 2πR̂k −

2πλ〈R−T
k, a〉a⊥, for k ∈ Z

2. Using the 2πR̂-periodicity of

u, this yields

v̂(ω) =
∑

l∈Z

û(ω + 2πlλa⊥)11(−π,π)(〈ω, a〉 − 2πl). (53)

Since we can also write

û(ω) =
∑

l∈Z

û(ω)11(−π,π)(〈ω, a〉 − 2πl), (54)

(52) follows by identifying (53) and (54). �

This theorem states that converting an image from one

lattice to another by using sinc translation does not modify

its frequency content, but displaces it. More precisely, the

conversion amounts to applying block-wise shears to the

Fourier transform of the image. The accumulated displace-

ments for the three shears are illustrated in Fig. 4 (a), for the

conversion between the Cartesian and hexagonal lattices. Parts

of the Nyquist region containing high-frequency components

are shuffled around, so as to tile the plane with another

periodic pattern. Different choices for the directions of the

shears yield different shuffles. For example, in Fig. 4 (b),

the decomposition that uses one diagonal shear, as proposed
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in [29], is shown, resulting in a more symmetrical repartition

of the Nyquist region.

We notice that the central part of the Nyquist region is left

unchanged. This domain is defined as

Ω = {ω | 〈ω, ai〉 ∈ (−π, π); i = 1, . . . , N} (55)

where the {ai}i=1,...,N are the N vectors along which the

shears are applied. This means that for band-limited signals

with frequency components within Ω, three shears using sinc

translators is equivalent to 2-D sinc interpolation. Conse-

quently, we have a practical implementation of resampling

using 2-D sinc interpolation, for this class of band-limited

signals. Moreover, this property provides a way to compare

the quality of decompositions in three shears along different

directions; i.e., we can associate to each decomposition the

radius of the greatest circle included in Ω. This value is the

maximum frequency for isotropic band-limited signals, so that

they are unaltered by the conversion process when using sinc

translators. For instance, our choice of shears for the Cartesian

to hexagonal conversion, given by Eqn. (24), provides a circle

with radius

√√
3/2π ≈ 0.93π, which is close to the maximal

value of π achievable by true 2-D sinc interpolation. This

value is also about 4% larger than the radius associated to

the decomposition proposed in [29], which uses one diagonal

shear. So according to this criterion, the decomposition in

Eqn. (24) is superior. This is confirmed by the experimental

results in the next section.

Finally, when using one of the proposed filters—without

ideal phase response—additional (and much harder to quan-

tify) distortions of the frequency content occur.

V. EXPERIMENTAL RESULTS

A. Hexagonal-to-Cartesian Resampling

In order to evaluate the quality of the resampled image in a

hexagonal-to-Cartesian setting, we need a ground truth that is

available on both lattices. To this end, we use synthetic images

defined by an analytical function f(x). In the appendix, we

propose the zoneplate and an adapted version of the Shepp-

Logan phantom. We use them to produce images of size 512×
512 and 256× 256, respectively.

The experimental protocol goes as follows. First, we build

the initial image by sampling f on the hexagonal lattice. Then,

we convert it onto the Cartesian lattice by means of one of

the methods in the comparison. The obtained image is then

compared1 to the ground truth, obtained by sampling f on the

Cartesian lattice directly.

The experimental results are reported in Tab. I and are

illustrated in Fig. 5. We tested our method using different

filters, as well as three-directional box-spline interpolation [5]

of approximation order 2 and 4. As can be observed, the

quality increases rapidly with the order of the filter, but

1The PSNR is computed using the floating point values of the pixels for
both the reference and resampled image, without quantization. If the pixel
values were rounded to integers in the range [0, 255] before computing the
PSNR, an overall improvement of about 1dB could be observed. Such a gain
is caused by clipping, for high contrast images like the zoneplate and the
phantom, which have many pixels having gray level 0 or 255. Here, however,
we believe that there is no reason to introduce such a bias in the results.

even the simple order 1 filter achieved a satisfactory quality.

For high orders, our filters outperformed the sinc method,

and also for the zoneplate image, the 4th-order box-spline

interpolation, which can be considered as high-quality state-

of-the-art for hexagonal-to-Cartesian resampling. However, for

the Shepp-Logan image, which fits less well in the band-

limited assumption than the zoneplate does, the 4th-order

box-spline interpolation obtained the best results. However,

the box-spline interpolation has a much higher computational

complexity. In general, the quality of the images resampled

with our method was very good for order 2 delay filters.

It should be noted that our method is not stationary;

i.e., the procedure changes with the local neighborhood, and

the exact symmetry properties of the initial signal are lost

after conversion. This is visible in Fig. 5 where the error

images for the zoneplate pattern obtained with our method

only have a symmetry around the origin, while interpolation

with symmetric kernels provides a four-fold symmetry. The

asymmetry is low, however. With respect to this specific issue,

the decomposition proposed in [29] turns out to provide more

symmetrical results, but the same resampling experiments

give PSNRs lower by about 1dB in comparison with the

decomposition proposed in the present work, without diagonal

shear.

B. Cartesian-to-Hexagonal Resampling

In Fig. 6, we provide examples of images converted from

the Cartesian onto the hexagonal lattice. Even with the simple

order 1 filter, the converted image is free of visible artifacts.

Increasing the order of the filter makes no visible difference

for this image. For comparison, we also provide the image re-

sampled using bicubic interpolation. It appears slightly blurred

in comparison with the initial image and with the image

converted using our method.

Numerical results obtained by resampling the zoneplate and

phantom images from the Cartesian to the hexagonal lattice,

not reproduced here, are very similar to the ones in Tab. I.

C. Successive Image Rotations

In a final experiment, we performed 9 successive rotations

of angle 2π/9 on natural images. The cumulative effect was

then observed by comparing the final image against the initial

one. Notice that for the proposed technique, the final image

can be rotated back 9 times to recover the original image again.

The standard test images all had sizes of 512× 512, except

256 × 256 for the camera image. They were first extended

within a larger support, before applying the rotations, and

cropped to the initial size afterwards. The origins of the lattices

were placed at the centers of the images.

The results are reported in Tab. II and are illustrated in

Fig. 7. Performing the translations using nearest neighbor

interpolation clearly provides a poor quality. For the more

advanced delay filters, the method significantly outperforms

the classical bilinear interpolation, which provides blurred

images. The bicubic interpolation [48] is also outperformed

for h1,2
τ or higher order, while h2,4

τ or higher order provides

similar results to the cubic spline interpolation [45] (denoted



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, PP. 679–693, MAY 2008 11

TABLE I

PSNR RESULTS OBTAINED AFTER CONVERSION OF AN IMAGE FROM THE HEXAGONAL LATTICE TO THE CARTESIAN LATTICE.

interpolation proposed conversion method in three shears

image trilinear cubic box-spline h0
τ

h1,1
τ h1,2

τ h1,3
τ h2,2

τ h2,3
τ h2,4

τ h∞

τ

zoneplate 32.70 52.68 20.52 37.00 43.95 48.58 48.47 56.33 63.13 59.95
phantom 37.93 42.01 28.57 37.61 38.76 39.21 39.24 39.70 39.90 39.71

TABLE II

PSNR RESULTS FOR ROTATIONS EXPERIMENTS ON SEVERAL CLASSICAL IMAGES OF THE LITERATURE. 9 ROTATIONS OF ANGLE 2π/9 ARE PERFORMED.

interpolation 3 shears conversion in three shears with proposed filters

image bilinear bicubic SP3 O-MOMS +SP3 [26] h0
τ

h1,1
τ h1,2

τ h1,3
τ h2,2

τ h2,3
τ h2,4

τ h∞

τ

lena 31.57 37.13 40.26 41.87 38.94 24.74 34.74 36.90 37.89 37.93 39.11 39.79 40.95
barbara 24.67 27.55 31.29 34.40 29.32 20.30 25.11 27.67 29.36 29.46 32.06 33.81 36.67

baboon 23.13 26.46 29.16 30.83 27.61 18.86 23.92 25.69 26.61 26.66 27.86 28.63 30.01
lighthouse 24.49 29.29 33.20 35.89 31.35 19.40 27.11 29.76 31.23 31.29 33.25 34.45 36.31

goldhill 29.97 34.01 36.89 38.75 35.47 24.38 31.57 33.49 34.54 34.59 36.05 37.02 38.94
boat 28.17 32.80 35.44 36.82 34.24 22.26 30.26 32.03 32.87 32.91 33.96 34.60 35.73

camera 24.84 28.91 31.75 33.48 30.41 19.53 26.61 28.48 29.42 29.46 30.66 31.41 32.92
peppers 30.98 35.68 37.98 39.01 35.28 23.98 31.80 33.37 34.14 34.18 35.17 35.79 36.98

time 0.28 0.63 0.65 0.65 0.10 0.05 0.08 0.09 0.10 0.14 0.59 0.73 1.17

SP3), often considered as the reference for resampling tasks.

However, even with large orders, we do not achieve the

quality of the cubic O-MOMS interpolation [49], which can be

considered as the state-of-the-art method for interpolation on

the Cartesian lattice. A remarkable exception are the images

with high frequency patterns (trousers of Barbara and fence in

Lighthouse). We also report the results obtained by Unser et

al. [26] with the same decomposition in three shears, but using

cubic spline interpolation to perform the translations. This last

method is not symmetrically reversible, and provides similar

results to our approach with h2,2
τ or h2,3

τ .

Interpolation methods achieve a tradeoff between blurring,

aliasing and ringing, while our method does not introduce

any blur. Using the sinc filter h∞
τ creates ringing artifacts

that spread over the entire image. On the other hand, since

our filters have rational transfer functions, the artifacts have

magnitude that decay exponentially fast away from edges. The

artifacts created by our method appear as a mix of noise and

jittering effects near edges. Their magnitude decreases with

the order of the filter, but they also tend to spread further

away from edges at the same time. We have, in some sense,

to choose a tradeoff between aliasing and ringing. Since these

artifacts may be considered more disturbing than blur, the

practitioners not interested by reversibility, who want the best

tradeoff between quality and speed, may use the decomposi-

tion in shears in combination with 1-D spline interpolation, as

proposed in [26] for image rotation.

D. Computational Complexity

Resampling data between lattices essentially amounts to

computing samples whose locations fall between the sample

locations of the initial image. Each new value has to be

calculated as a suitable weighted average of the available

samples on the initial lattice, surrounding the new sample.

With classical resampling methods, for each new sample,

the weighting coefficients have to be computed by multi-

ple evaluations of some interpolation kernel, and then, the

weighted average itself is computed. This makes non-separable

2-D methods of high orders impracticable, because of the

increase in the size of the local neighborhood involved in the

calculation of each new sample, but also because the design

of high-order interpolation kernels is complex.

Even in the simplest case of bilinear interpolation on the

Cartesian lattice, 3 multiplications and 8 additions per pixel

are required to convert an image on another lattice. The pro-

posed method with h1,N
τ requires only 3N multiplications and

6N +3 additions per pixel, independently of the lattices. The

computation of the filters coefficients is negligible, because it

is done once for each row or column and not for every pixel.

In other words, we have to compute a new 1-D filter for each

row or column, versus a new 2-D filter for each pixel when

using classical resampling methods.

In Tab. II, we report the computation time in seconds for

one rotation with each proposed method, for C-code running

on an Apple Mac. Dual 2.7 Ghz PowerPC G5. All of our

filters up to h2,2
τ , for which we gave fast implementations, give

computation times significantly reduced when compared with

interpolation methods, even the simple bilinear interpolation.

The filters h2,2
τ and h1,3

τ provide a very good tradeoff between

quality and speed, and better than the reference bicubic inter-

polation. If better quality is desired, the filters h1,N
τ should

be used with higher N . The filters h2,N
τ are, in practice,

less interesting for N > 2, since their implementation is

not so easy and fast. However, the computation time remains

reasonable in comparison with 2-D interpolation methods.

Moreover, important savings of memory storage are possible

with our approach; buffer memory can be limited to one

column or row at a time. It is also important to notice that

the conversion process can be performed in-place on the

initial data, making the use of auxiliary memory unnecessary.

Consequently, the processing of very large images is made

easier. Separability also turns out to be a significant advantage

for hardware implementation and parallelization.
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Fig. 5. Results of conversion from the hexagonal to the Cartesian lattice. From the left to the right: resampled image from the zoneplate image, difference
between the resampled image and the ground truth (gray is zero), resampled image from the phantom image, difference between the resampled image and

the ground truth. From the top to the bottom: the first four rows are obtained with our decomposition in three shears with the filters h 0
τ

, h1,1
τ , h2,2

τ , h∞

τ
;

the last two rows are obtained by interpolation using the trilinear order 2 box-spline and the order 4 box-spline.
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Fig. 6. The “eye of Lena” defined on the Cartesian lattice (a) is resampled on the hexagonal lattice using (b) bicubic interpolation and (c) our conversion

method in three shears with the filter h1,1
τ . The image (a) can be perfectly recovered from (c), but not from (b).

VI. CONCLUSION

In this paper we have presented an original approach for

converting 2-D image data between two lattices with the same

sampling density. Our resampling method is first and foremost

reversible, a property not shared by the other methods of

the literature. From the quality point-of-view, our approach

provides decent results in comparison with the best interpo-

lation methods, while being often faster. In conclusion, we

summarize the key features of our work:

1) The decomposition of the conversion process can be

done in at most three shear operations.

2) Symmetric reversibility can be enforced thanks to the

combination of shear with all-pass fractional delay fil-

ters. Thus, no loss of information is introduced by the

conversion process.

3) The design and implementation is reduced to 1-D trans-

lators. Short delay filters can be used, making our

method substantially faster than classical interpolation

methods.

4) New 1-D all-pass delay filters are proposed. No blur and

good resampling quality are reported.

Last but not least, we used for the experimental validation a

new analytical differentiable phantom.

APPENDIX I

SYNTHETIC TEST IMAGES

A. Zoneplate Image

The function is a 2-D frequency chirp, defined by the

equation:

f(x) = 127.5 + 127.5 cos

(
1440/π

1 + 512/
√
8(x2

1 + x2
2)

)
, (56)

where the intensity range is [0, 255] and the image is defined

for the domain [−256, 255]2.

B. Shepp-Logan Image

We propose a blurred version of the modified Shepp-Logan

phantom. The original Shepp-Logan phantom is a grayscale

intensity image that consists of one large ellipse containing

several smaller ellipses [50], [51]. The modified Shepp-Logan

phantom is a variant of the latter, having higher contrast for

better visual perception. Both phantoms are standard images

used to test (medical) image processing algorithms. Example

source code implementing them is provided in Matlab. The an-

alytic function that we propose also includes a blurring effect

that is determined directly in the spatial domain. Specifically,

the perfect transitions at the boundaries of the ellipses are

replaced by sigmoidal edges. We define the 2-D analytical

function as

f(x) =

10∑

i=1

fi(x), (57)

where fi(x) represents the contribution of the i-th ellipse. The

ellipse’s parameters are: gray level Ai, center ci, semi-major

axis Li, semi-minor axis li, and angle φi of the major axis

with the horizontal axis. Its contribution is then computed as:

1) Determine bi, the point on the ellipse boundary lying

on the line (ci,x), the closest to x. We have: x− bi =

(x−ci)∗(1−1/ρi) where ρi =
(
(v1/Li)

2+(v2/li)
2
)1/2

and v = R−φi
(x−ci). Note that computing the closest

point to x on the boundary of the ellipse would be more

satisfactory, but this is a much more difficult problem.

2) use the distance from bi to x to compute

fi(x) =
Ai

1 + exp(sgn(ρi − 1)‖x− bi‖/σ)
. (58)

Note that if x = ci, then ρi = 0 and we set ‖x−bi‖ =
(li + Li)/2.

The parameter σ controls the amount of blur. If σ → 0,

we recover the classical Shepp-Logan phantom. We propose

σ = 1/4, which makes the transition at an edge spread

over about 3 pixels. Our phantom has the advantage of being

infinitely continuously differentiable (except at the centers of

the ellipses), while the Shepp-Logan phantom is not even

continuous. The blurred phantom is more realistic and bet-

ter representative of natural images acquired with practical

imaging devices.
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puter Science from the École Nationale Supérieure
d’Informatique et de Mathématiques Appliquées de
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