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Abstract

We propose a new first-order splitting algorithm for solving jointly the pri-

mal and dual formulations of large-scale convex minimization problems in-

volving the sum of a smooth function with Lipschitzian gradient, a nonsmooth

proximable function, and linear composite functions. This is a full splitting ap-

proach, in the sense that the gradient and the linear operators involved are ap-

plied explicitly without any inversion, while the nonsmooth functions are pro-

cessed individually via their proximity operators. This work brings together and

notably extends several classical splitting schemes, like the forward–backward

and Douglas–Rachford methods, as well as the recent primal–dual method of

Chambolle and Pock designed for problems with linear composite terms.
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1 Introduction

Nonlinear and nonsmooth convex optimization problems are widely present in many

disciplines, including signal and image processing, operations research, machine

learning, game theory, economics, and mechanics. Solving ill-posed inverse prob-

lems in medical imaging by regularization is an example of high practical interest [1].

In many cases, the problem consists in finding a minimizer of the sum of composi-

tions of a convex function with a linear operator, where the involved functions may

be differentiable or not, and the variables may live in very high-dimensional spaces.

The first-order proximal splitting algorithms are dedicated to the resolution of such
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problems. They proceed by splitting [2–7], in that the original problem is decom-

posed into an iterative sequence of much easier subproblems, which involves the

functions individually. A smooth (or differentiable) function is processed by evalua-

tion of its gradient operator, while a nonsmooth function is processed via its Moreau

proximity operator [8]; that is why such methods are called proximal. The use of

proximal splitting methods is spreading rapidly in signal and image processing, es-

pecially to solve large-scale problems formulated with sparsity-promoting ℓ1 penal-

ties; we refer to [9] for a recent overview with a list of relevant references, and to

[1, 10–12] for examples of applications. In return, this quest of practitioners for effi-

cient minimization methods has caused a renewed interest among mathematicians

around splitting methods in monotone and nonexpansive operator theory, as can

be judged from the numerous recent contributions, e.g. [13–24]. The most classi-

cal operator splitting methods to minimize the sum of two convex functions are the

forward–backward method, proposed in [2] and further developed in [3, 4, 7, 25–28],

and the Douglas–Rachford method [3, 6, 7, 22]. In this work, we propose a new prox-

imal splitting method for the generic template problem of minimizing the sum of

three convex terms: a smooth function, a proximable function, and the composi-

tion of a proximable function with a linear operator. The method brings together

and encompasses as particular cases the forward–backward and Douglas–Rachford

methods, as well as a recent method for minimizing the sum of a proximable func-

tion and a linear composite term [14]. It is fully split in that the gradient, proximity,

and linear operators are applied individually; in particular, there is no implicit op-

eration like an inner loop or a applying the inverse of a linear operator. Moreover,

the proposed method is primal–dual, since it provides, in addition to the (primal)

solution, a solution to the dual convex optimization problem, in the frame of the

now classical Fenchel–Rockafellar duality theory [29–32]. Equivalently, the method

finds saddle-points of convex–concave functions with bilinear coupling, here the

Lagrangian associated to the primal and dual problems [33, 34].

The paper is organized as follows. In Section 2, we present the convex optimiza-

tion problem under investigation, along with the corresponding dual formulation

and primal–dual variational inclusion. In Section 3, we present the iterative algo-

rithms and provide conditions on the parameters under which convergence to a

primal and a dual solutions is ensured. We also discuss the links with other split-

ting methods of the literature. Section 4 is devoted to the proofs of convergence.

Finally, in Section 5, we present parallelized variants of the algorithms, adapted to

minimization problems with more than two proximable terms.

2 Problem Formulation

First, we introduce some definitions and notations. Let H be a real Hilbert space,

with its inner product 〈·, ·〉 and norm ‖ · ‖ = 〈·, ·〉1/2. We denote by Γ0(H ) the set of

proper, lower semicontinuous, convex functions from H to R∪ {+∞}. Let J belong

to Γ0(H ). Its domain is dom(J ) := {s ∈H : J (s) <+∞}, its Fenchel–Rockafellar con-

jugate J∗ ∈Γ0(H ) is defined by J∗(s) := sups ′∈H

[

〈s, s′〉− J (s′)
]

and its proximity op-

erator by proxJ (s) := argmins ′∈H

[

J (s′)+ 1
2
‖s− s′‖2

]

. We define the subdifferential of
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J as the set-valued operator ∂J : u ∈H 7→ {v ∈H : ∀u′ ∈H ,〈u′−u, v〉+J (u) ≤ J (u′)}.

If J is differentiable at s, then ∂J (s) = {∇J (s)}. The strong relative interior of a convex

subset Ω of H is denoted by sri(Ω). Finally, we denote by I the identity operator. For

background in convex analysis, we refer the readers to textbooks, like [32].

Throughout the paper, X and Y are two real Hilbert spaces. We aim at solving

the primal optimization problem:

Find x̂ ∈ argmin
x∈X

[

F (x)+G(x)+H(Lx)
]

, (1)

where

• F : X → R is convex, differentiable on X and its gradient ∇F is β-Lipschitz

continuous, for some β ∈ [0,+∞[ ; that is,

‖∇F (x)−∇F (x′)‖≤β‖x − x′
‖, for every (x, x′) ∈X

2. (2)

We note that the case β = 0 corresponds to ∇F being constant, which is the

case for instance if the term F is to be ignored in the problem (1), and therefore

set to zero.

• G ∈ Γ0(X ) and H ∈ Γ0(Y ) are “simple”, in the sense that their proximity op-

erators have a closed-form representation, or at least can be solved efficiently

with high precision.

• L : X →Y is a bounded linear operator with adjoint L∗ and induced norm

‖L‖ = sup
{

‖Lx‖ : x ∈X ,‖x‖ ≤ 1
}

<+∞. (3)

• The set of minimizers of (1) is supposed nonempty.

The corresponding dual formulation of the primal problem (1) is [32, Chapters

15 and 19]

Find ŷ ∈ argmin
y∈Y

[

(F +G)∗(−L∗y)+H∗(y)
]

, (4)

where we note that (F +G)∗(−L∗y) = minx′∈X

[

F∗(−L∗y −x′)+G∗(x′)
]

is an infimal

convolution [32, Proposition 15.2]. Without further assumption, the set of solutions

to (4) may be empty.

The proposed algorithms are primal–dual, in that they solve both the primal

and the dual problems (1) and (4), jointly. Another formulation of these two mini-

mization problems is to combine them into the search of a saddle point of the La-

grangian [32, Section 19.2]:

Find (x̂, ŷ) ∈ arg min
x∈X

max
y∈dom(H∗)

[

F (x)+G(x)−H∗(y)+〈Lx, y〉
]

. (5)

The classical Karush–Kuhn–Tucker theory asserts that, if the pair (x̂, ŷ) is a solu-

tion to the monotone variational inclusion

Find (x̂, ŷ )∈X ×Y such that

(
0

0

)

∈

(
∂G(x̂)+L∗ ŷ +∇F (x̂)

−Lx̂ +∂H∗(ŷ)

)

, (6)
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then x̂ is a solution to (1), ŷ is a solution to (4) [32, Theorem 19.1], and (x̂, ŷ ) is a solu-

tion to (5) [32, Proposition 19.18]. The converse does not hold in general and the set

of solutions to (6) may be empty. However, if the following qualification condition

holds:

0 ∈ sri
(

L(dom(G))−dom(H)
)

, (7)

then the set of solutions to (4) is nonempty [32, Theorem 15.23] and for every primal

solution x̂ to (1) and dual solution ŷ to (4) then (x̂, ŷ ) is a solution to (6) [32, Theorem

19.1].

Thus, in the following, we assume that the set of solutions to the inclusions (6) is

nonempty, keeping in mind that (7) is a sufficient condition for this to hold.

The advantage in solving (6) instead of the inclusion 0 ∈∇F (x̂)+∂G(x̂)+L∗∂H(Lx̂)

associated to (1) is twofold: (i) the composite function H ◦L has been split; (ii) we

obtain not only the primal solution x̂ but also the dual solution ŷ , and the proposed

algorithms actually use their intertwined properties to update the primal and dual

variables alternately and efficiently.

We may observe that there is “room” in the dual inclusion of (6) for an addi-

tional term ∇K ∗(ŷ), which yields a more symmetric formulation of the primal and

dual problems. The obtained variational inclusions characterize the following pri-

mal problem, which includes an infimal convolution:

Find x̂ ∈ argmin
x∈X

inf
y ′∈Y

[

F (x)+G(x)+H(Lx − y ′)+K (y ′)
]

, (8)

where the additional function K ∈ Γ0(Y ) is such that K ∗ is differentiable on Y with

a β′-Lipschitz continuous gradient, for some β′ ≥ 0. Also, since the proofs in Section

4 are derived in the general framework of monotone and nonexpansive operators,

it would be straightforward to adapt the study to solve more general monotone in-

clusions, where, in (6), the subgradients would be replaced by arbitrary maximally

monotone operators, the gradients by cocoercive operators and the proximity oper-

ators by resolvents. This more general framework has been considered in the later

work [24]. The intention of the author was to keep the study accessible to the prac-

titioner interested in the optimization problem (1).

3 Proposed Algorithms

The first proposed algorithm to solve (6) is the following:

Algorithm 3.1 Choose the proximal parameters τ > 0, σ > 0, the sequence of pos-

itive relaxation parameters (ρn )n∈N and the initial estimate (x0, y0) ∈ X ×Y . Then

iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣

1. x̃n+1 := proxτG

(

xn −τ(∇F (xn)+eF,n)−τL∗yn

)

+eG ,n ,

2. ỹn+1 := proxσH∗

(

yn +σL(2x̃n+1 − xn )
)

+eH ,n ,

3. (xn+1, yn+1) := ρn (x̃n+1, ỹn+1)+ (1−ρn )(xn , yn ),

(9)

where the error terms eF,n ∈ X , eG ,n ∈X , eH ,n ∈ Y model the inexact computation

of the operators ∇F , proxτG , proxσH∗ , respectively.
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We recall that proxσH∗ can be easily computed from proxH/σ if necessary, thanks

to Moreau’s identity proxσH∗ (y)= y −σproxH/σ(y/σ).

Algorithm 3.1 is not symmetric with respect to the primal and dual variables,

since the computation of ỹn+1 uses the over-relaxed version 2x̃n+1−xn of xn+1, while

the computation of x̃n+1 uses yn . If we switch the roles of the primal and dual vari-

ables, we obtain the following algorithm:

Algorithm 3.2 Choose the proximal parameters σ > 0, τ > 0, the sequence of pos-

itive relaxation parameters (ρn )n∈N and the initial estimate (x0, y0) ∈ X ×Y . Then

iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣

1. ỹn+1 := proxσH∗

(

yn +σLxn

)

+eH ,n ,

2. x̃n+1 := proxτG

(

xn −τ(∇F (xn)+eF,n )−τL∗(2ỹn+1 − yn )
)

+eG ,n ,

3. (xn+1, yn+1) := ρn(x̃n+1, ỹn+1)+ (1−ρn )(xn , yn ),

(10)

for some error terms eF,n ∈X , eG ,n ∈X , eH ,n ∈Y .

Now, we claim at once the convergence results for Algorithms 3.1 and 3.2. The

proofs are derived in Section 4.

Theorem 3.1 Let τ> 0,σ> 0 and the sequences (ρn)n∈N, (eF,n)n∈N, (eG ,n)n∈N, (eH ,n)n∈N,

be the parameters of Algorithm 3.1 and Algorithm 3.2. Let β be the Lipschitz constant

defined in (2). Suppose that β> 0 and that the following hold:

(i)
1

τ
−σ‖L‖2

≥
β

2
,

(ii) ∀n ∈N, ρn ∈ ]0,δ[, where we set δ := 2−
β
2

(
1
τ −σ‖L‖2

)−1
∈ [1,2[,

(iii)
∑

n∈N

ρn (δ−ρn ) =+∞,

(iv)
∑

n∈N

ρn‖eF,n‖ <+∞ and
∑

n∈N

ρn‖eG ,n‖<+∞ and
∑

n∈N

ρn‖eH ,n‖<+∞.

Then there exists a pair (x̂, ŷ) ∈ X ×Y solution to (6), such that, in Algorithm 3.1 or

in Algorithm 3.2, the sequences (xn )n∈N and (yn)n∈N converge weakly to x̂ and ŷ, re-

spectively.

Theorem 3.2 Let τ> 0,σ> 0 and the sequences (ρn)n∈N, (eF,n)n∈N, (eG ,n)n∈N, (eH ,n)n∈N,

be the parameters of Algorithm 3.1 and Algorithm 3.2. Suppose that F = 0, that the

error terms eF,n are all zero, and that the following hold:

(i) στ‖L‖2
< 1,

(ii) ∀n ∈N, ρn ∈ ]0,2[,

(iii)
∑

n∈N

ρn (2−ρn ) =+∞,

(iv)
∑

n∈N

ρn‖eG ,n‖<+∞ and
∑

n∈N

ρn‖eH ,n‖<+∞.

Then there exists a pair (x̂, ŷ ) ∈ X ×Y solution to (6), such that, in Algorithm 3.1

or in Algorithm 3.2, the sequences (xn)n∈N and (yn)n∈N converge weakly to x̂ and ŷ,

respectively.
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Theorem 3.3 Suppose that X and Y are of finite dimension. Let τ> 0, σ> 0 and the

sequences (ρn )n∈N, (eF,n)n∈N, (eG ,n )n∈N, (eH ,n)n∈N, be the parameters of Algorithm 3.1

and Algorithm 3.2. Suppose that F = 0, that the error terms eF,n are all zero, and that

the following hold:

(i) στ‖L‖2
≤ 1,

(ii) ∀n ∈N, ρn ∈ [ε,2−ε], for some ε> 0,

(iii)
∑

n∈N

‖eG ,n‖<+∞ and
∑

n∈N

‖eH ,n‖ <+∞.

Then there exists a pair (x̂, ŷ) ∈ X ×Y solution to (6), such that, in Algorithm 3.1 or

in Algorithm 3.2, the sequences (xn)n∈N and (yn )n∈N converge to x̂ and ŷ, respectively.

Remark 3.1 The difference between Theorems 3.2 and 3.3 is that στ‖L‖2 = 1 is

allowed in the latter. This is a significant improvement: in practice, one can set

σ= 1/(τ‖L‖2) in the algorithms and have only one parameter left, namely τ, to tune,

like in the Douglas–Rachford method.

Remark 3.2 If β, the Lipschitz constant defined in (2), is zero, then F is an affine

functional. Considering F as an affine functional, or setting F = 0 and aggregating

an affine functional with the term G, yield two equivalent formulations of the same

problem and exactly the same calculations in Algorithms 3.1 and 3.2. Thus, the con-

vergence results of Theorems 3.2 and 3.3 also hold if the assumption F = 0 is relaxed

to β= 0.

3.1 Relationship to Existing Optimization Methods

The proposed Algorithms 3.1 and 3.2 are able to solve the general problem (1) iter-

atively, by applying the operators ∇F , proxτG , proxσH∗ , L and L∗, without any other

implicit (inverse) operator or inner loop. In particular, no inverse operator of the

form (I +αL∗L)−1 is required. To the author’s knowledge, the only existing method

of the literature having this feature is the recent one of Combettes and Pesquet [21],

based on a different splitting of (6). Their algorithm requires two applications of ∇F ,

L, L∗ per iteration, against only one with the proposed algorithm. The convergence

speed of the two algorithms has not been compared in practical applications, yet.

We also note that a general and abstract framework has been proposed in [13], of

which the problem (1) could be considered as a particular instance. The algorithms

obtained along this line of research remain to be studied.

Some authors have studied the use of nested algorithms to solve (1), for practical

imaging problems [35–37]. This approach consists in embedding an iterative algo-

rithm as an inner loop inside each iteration of another iterative method. However,

the method is applicable if the number of inner iterations is kept small, a scenario

where convergence is not proven.

Now, in some particular cases, Algorithms 3.1 and 3.2 revert to classical splitting

methods of the literature.
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3.1.1 The Case F = 0

If the smooth term F is absent of the problem, Algorithms 3.1 and 3.2 exactly re-

vert to the primal–dual algorithms of Chambolle and Pock [14], which have been

proposed in other forms in [15, 16]. Chambolle and Pock proved the convergence

in the finite-dimensional case, assuming that τσ‖L‖2 < 1 and ρn ≡ 1, and without

error terms [14]. The convergence has been proved in a different way in [17] with a

constant relaxation parameter ρn ≡ ρ ∈ ]0,2[ and the same other hypotheses. Thus,

Theorems 3.2 and 3.3 extend the domain of convergence of these primal–dual algo-

rithms.

When F = 0, the primal–dual method in [19] and the method in [38] can be used

to solve (1), as well. They yield algorithms different from Algorithms 3.1 and 3.2.

However, these methods cannot be used to solve the problem (1) if F 6= 0, be-

cause they involve the proximity operator of F +G, which is usually intractable.

Even in the simple case where G is the quadratic function λ
2
‖M · −b‖2, for some

bounded linear operator M , element b and positive real λ, the proximity operator

of G requires applying the operator (I +λM∗M)−1, which may be feasible (e.g. using

the Fast Fourier Transform if M has shift-invariance properties) but slow and com-

plicated to implement (especially if particular care is paid to the treatment at the

boundaries for multi-dimensional problems). By contrast, considering λ
2
‖M ·−b‖2

as the function F in (1) yields an algorithm with simple applications of M and M∗.

If F = 0 and L = I , let us discuss the relationship of Algorithm 3.1 with the classi-

cal Douglas–Rachford splitting method [3, 6, 7, 22]. For simplicity, we suppose that,

for every n ∈ N, ρn = 1 and eF,n = eG ,n = eH ,n = 0. Also, we introduce the auxiliary

variable sn := xn −
1
σ yn . Then, we can rewrite Algorithm 3.1 as

Algorithm 3.3 Choose the proximal parameters τ> 0, σ> 0 and the initial estimate

(x0, s0) ∈X
2. Then iterate, for every n ≥ 0,

∣
∣
∣
∣
∣

1. xn+1 := proxτG

(

(1−τσ)xn +τσsn

)

,

2. sn+1 := sn − xn+1 +prox 1
σ H (2xn+1 − sn).

(11)

If, additionally, we set σ = 1/τ, Algorithm 3.3 exactly reverts to the Douglas-

Rachford method. In that case, it is known that sn converges weakly to a limit ŝ

and it was shown in [22] that xn converges weakly to a primal solution x̂ = proxτG (ŝ)

and yn = σ(xn − sn) converges weakly to a dual solution ŷ . The convergence also

follows from Theorem 3.3.

Interestingly, in the case στ< 1, Algorithm 3.3 was studied in [18] and presented

as a Douglas–Rachford method with inertia, because of the linear combination of

xn and sn used to compute xn+1. However, when reintroducing relaxation in the

algorithm, there is a slight difference between the algorithm proposed in [18] and

Algorithm 3.1.
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3.1.2 The Case H ◦L = 0

If the term H ◦L is removed from the formulation, the primal and dual problems are

uncoupled. Then, in Algorithm 3.1, we can keep only the computations involving

the primal variable, so that we obtain the iteration

xn+1 = ρn proxτG

(

xn −τ(∇F (xn)+eF,n)
)

+eG ,n + (1−ρn )xn , (12)

which is exactly the forward–backward splitting method [7, 26, 28]. It is known to

converge weakly to a primal solution x̂ if 0< τ< 2
β , (ρn )n∈N is a sequence in [ε,1] for

some ε> 0, and the error terms are absolutely summable. The convergence also fol-

lows from Theorem 3.1 under weaker assumptions. Indeed, the range of parameters

under which convergence of the stationary forward–backward iteration is ensured,

as given in Lemma 4.4, is wider than the one found in the literature.

On the other hand, if we set G = 0 and L = I , Algorithms 3.1 and 3.2 are differ-

ent from the forward–backward method, to minimize the sum of a function F , with

Lipschitz continuous gradient, and a proximable function H , along with the dual

problem.

4 Proofs of Convergence

In this section, we prove Theorems 3.1, 3.1 and 3.3.

First, we recall some definitions and properties of operator theory. We refer the

readers to [32] for more details. In the following, H is a real Hilbert space. Let M :

H â H be a set-valued operator. We denote by ran(M) := {v ∈ H : ∃u ∈ H , v ∈

Mu} the range of M , by gra(M) := {(u, v) ∈ H
2 : v ∈ Mu} its graph, and by M−1 its

inverse; that is, the set-valued operator with graph {(v,u) ∈H
2 : v ∈ Mu}. We define

zer(M) := {u ∈ H : 0 ∈ Mu}. M is said to be monotone iff ∀(u,u′) ∈ H
2,∀(v, v ′) ∈

Mu×Mu′, 〈u−u′, v −v ′〉 ≥ 0 and maximally monotone iff there exists no monotone

operator M ′ such that gra(M) ⊂ gra(M ′) 6= gra(M).

Let T : H → H be an operator. We define fix(T ) := {x ∈ H : T x = x}. T is

said to be nonexpansive iff it is 1-Lipschitz continuous on H , see (2), and firmly

nonexpansive iff 2T − I is nonexpansive. Let α ∈ ]0,1]. T is said to be α-averaged

iff there exists a nonexpansive operator T ′ such that T = αT ′+ (1−α)I . We denote

by A (H ,α) the set of α-averaged operators on H . Clearly, A (H ,1) is the set of

nonexpansive operators and A (H , 1
2

) is the set of firmly nonexpansive operators.

The resolvent (I + M)−1 of a maximally monotone operator M : H â H is de-

fined and single-valued on H and firmly nonexpansive. The subdifferential ∂J of

J ∈Γ0(H ) is maximally monotone and (I +∂J )−1 = proxJ .

Lemma 4.1 (Krasnosel’skii–Mann iteration) [7, Lemma 5.1] Let T : H → H be a

nonexpansive operator, (ρn )n∈N be a sequence in ]0,1[ and (en)n∈N be a sequence in

H . Suppose that fix(T ) 6= ;,
∑

n∈Nρn (1−ρn ) = +∞, and
∑

n∈Nρn‖en‖ < +∞. Let

s0 ∈H and (sn)n∈N be the sequence in H such that, for every n ∈N,

sn+1 = sn +ρn

(

T (sn)+en − sn

)

. (13)

Then (sn)n∈N converges weakly to ŝ ∈ fix(T ).
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Lemma 4.2 (Proximal point algorithm) Let M : H â H be maximally monotone,

(ρn)n∈N be a sequence in ]0,2[ and (en)n∈N be a sequence in H . Suppose that

zer(M) 6= ;,
∑

n∈Nρn(2−ρn ) =+∞, and
∑

n∈Nρn‖en‖ <+∞. Let s0 ∈H and (sn)n∈N

be the sequence in H such that, for every n ∈N,

sn+1 = sn +ρn

(

(I +M)−1(sn)+en − sn

)

. (14)

Then (sn)n∈N converges weakly to ŝ ∈ zer(M).

Proof Set T := (I +M)−1, T ′ := 2T − I , and, ∀n ∈N, ρ′
n := ρn/2 and e ′n := 2en . Then

∑

n∈Nρ′
n (1−ρ′

n ) =+∞,
∑

n∈Nρ′
n‖e ′n‖ <+∞, and we can rewrite (14) as

sn+1 = sn +ρ′
n

(

T ′(sn)+e ′n − sn

)

. (15)

Moreover, T ∈ A (H , 1
2

) [32, Corollary 23.8], so that T ′ ∈ A (H ,1), and fix(T ′) =

fix(T ) = zer(M) [32, Proposition 23.38]. Thus, we obtain the desired result by ap-

plying Lemma 4.1 to the iteration (15). �

Lemma 4.3 (Composition of averaged operators) [39, Theorem 3] Let α1 ∈ ]0,1[,

α2 ∈ ]0,1], T1 ∈A (H ,α1), and T2 ∈A (H ,α2). Then T1 ◦T2 ∈A (H ,α′), where

α′ :=
α1 +α2 −2α1α2

1−α1α2
. (16)

Lemma 4.4 (forward–backward iteration) Let M1 : H â H be maximally mono-

tone, let κ ∈ ]0,+∞[, let M2 : H → H be κ-cocoercive; that is, κM2 ∈ A (H , 1
2

). Sup-

pose that zer(M1 + M2) 6= ;. Let γ ∈ ]0,2κ], and set δ := 2−
γ

2κ . Furthermore, let

(ρn)n∈N be a sequence in ]0,δ[ such that
∑

n∈Nρn (δ−ρn ) =+∞, and let (e1,n)n∈N and

(e2,n)n∈N be sequences in H such that
∑

n∈Nρn‖e1,n‖<+∞ and
∑

n∈Nρn‖e2,n‖ <+∞.

Let s0 ∈H and (sn)n∈N be the sequence in H such that, for every n ∈N,

sn+1 = ρn

(

(I +γM1)−1
(

sn −γ(M2(sn)+e2,n)
)

+e1,n

)

+ (1−ρn )sn . (17)

Then (sn)n∈N converges weakly to ŝ ∈ zer(M1 +M2).

Proof Set T1 := (I +γM1)−1, T2 := I −γM2, and T := T1 ◦T2. Then T1 ∈A (H , 1
2

) [32,

Corollary 23.8] and T2 ∈ A (H ,
γ

2κ ) [32, Proposition 4.33]. Hence, Lemma 4.3 im-

plies that T ∈ A (H ,1/δ). Now, set T ′ := δT + (1−δ)I and, ∀n ∈ N, ρ′
n := ρn /δ and

e ′n := δ
(

T1(T2(sn)+e2,n )+e1,n −T1(T2(sn))
)

. Then we can rewrite (17) as (15). More-

over, T ′ is nonexpansive, fix(T ′) = fix(T ) = zer(M1 + M2) [32, Proposition 25.1(iv)]

and
∑

n∈Nρ′
n (1−ρ′

n ) =+∞. From the nonexpansiveness of T1, we obtain, ∀n ∈N,

‖e ′n‖ ≤ δ‖e1,n‖+δ
∥
∥T1

(

T2(sn)+e2,n

)

−T1

(

T2(sn)
)∥
∥≤ δ‖e1,n‖+δ‖e2,n‖. (18)

Hence,
∑

n∈Nρ′
n‖e ′n‖<+∞. Thus, the result follows from Lemma 4.1. �

Lemma 4.5 (Baillon–Haddad theorem) [32, Corollary 18.16]. Let J : H → R be con-

vex, differentiable on H and such that κ∇J is nonexpansive, for some κ ∈ ]0,+∞[.

Then ∇J is κ-cocoercive; that is, κ∇J is firmly nonexpansive.
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Lemma 4.6 [40, Lemma 3] Let (an)n∈N, (bn)n∈N, (cn)n∈N be sequences of reals, such

that the following hold:

(i) 0≤ an and 0 ≤ cn < 1 and 0 ≤ bn , ∀n ∈N,

(ii) an+1 ≤ cn an +bn , ∀n ∈N,

(iii)
∑

n∈N(1−cn ) =+∞,

(iv) bn/(1−cn ) → 0.

Then an → 0.

Proof of Theorem 3.1 for Algorithm 3.1 In essence, we show that Algorithm 3.1 has

the structure of a forward–backward iteration, when expressed in terms of nonex-

pansive operators on Z :=X ×Y , equipped with a particular inner product.

Let the inner product 〈·, ·〉I in Z be defined as

〈z, z ′
〉I := 〈x, x′

〉+〈y, y ′
〉, for every z = (x, y), z ′

= (x′, y ′) ∈Z . (19)

By endowing Z with this inner product, we obtain the Hilbert space denoted by Z I .

Let us define the bounded linear operator on Z ,

P :

(
x

y

)

7→

( 1
τ I −L∗

−L 1
σ I

)(
x

y

)

. (20)

In Z I , P is bounded, self-adjoint, and, from the assumptions β > 0 and (i), strictly

positive; that is, 〈z,P z〉I > 0, for every z 6= 0. Hence, we can define another inner

product 〈·, ·〉P and norm ‖ ·‖P = 〈·, ·〉1/2
P

in Z as

〈z, z ′
〉P := 〈z,P z ′

〉I , for every (z, z ′) ∈Z
2. (21)

By endowing Z with this inner product, we obtain the Hilbert space denoted by ZP .

Thereafter, ∀n ∈ N, we denote by zn := (xn , yn ) the iterates of Algorithm 3.1. Then,

our aim is to prove the existence of ẑ = (x̂, ŷ ) ∈Z such that (zn)n∈N converges weakly

to ẑ in ZP ; that is, for every z ∈Z , 〈zn − ẑ,P z〉I → 0 as n →+∞. Since P is bounded

from below in Z I , P−1 is well defined and bounded in Z I , so that the notions of

weak convergence in ZP and in Z I are equivalent.

Now, let us consider the error-free case eF,n = eG ,n = eH ,n = 0. For every n ∈ N,

the following inclusion is satisfied by z̃n+1 := (x̃n+1, ỹn+1) computed by Algorithm

3.1:

−

(
∇F (xn)

0

)

︸ ︷︷ ︸

B (zn )

∈

(
∂G(x̃n+1)+L∗ ỹn+1

−Lx̃n+1 +∂H∗(ỹn+1)

)

︸ ︷︷ ︸

A(z̃n+1)

+

( 1
τ I −L∗

−L 1
σ I

)

︸ ︷︷ ︸

P

(
x̃n+1 − xn

ỹn+1 − yn

)

︸ ︷︷ ︸

(z̃n+1−zn )

, (22)

or equivalently,

z̃n+1 = (I +P−1
◦ A)−1

◦ (I −P−1
◦B)(zn ). (23)

Considering now the relaxation step and the error terms, we obtain

zn+1 = ρn

(

(I +P−1
◦ A)−1

(

zn −P−1
◦B (zn)−e2,n

)

+e1,n

)

+ (1−ρn )zn , (24)
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where e1,n := (eG ,n ,eH ,n ) and e2,n := P−1(eF,n ,−2LeG ,n ), and we recognize the struc-

ture of the forward–backward iteration (17). Thus, it is sufficient to check the condi-

tions of application of Lemma 4.4 for the convergence result of Theorem 3.1 to fol-

low. To that end, set H := ZP , M1 := P−1 ◦ A, M2 := P−1 ◦B , and κ := ( 1
τ −σ‖L‖2)/β.

Then,

• The operator (x, y) 7→ ∂G(x)×∂H∗(y) is maximally monotone in Z I , by Theorem

20.40, Corollary 16.24, Propositions 20.22 and 20.23 of [32]. Moreover, the skew op-

erator (x, y) 7→ (L∗y,−Lx) is maximally monotone in Z I [32, Example 20.30] and has

full domain. Hence, A is maximally monotone [32, Corollary 24.4(i)]. Thus, M1 is

monotone in ZP and, from the injectivity of P , M1 is maximally monotone in ZP .

• Let us show the cocoercivity of M2. For every z = (x, y), z ′ = (x′, y ′) ∈Z , we have

‖M2(z)−M2(z ′)‖2
P =

〈

P−1
◦B(z)−P−1

◦B(z ′),B(z)−B(z ′)
〉

I (25)

=

〈
1
σ

(
1
στ I −L∗L

)−1 (

∇F (x)−∇F (x′)
)

,∇F (x)−∇F (x′)
〉

(26)

≤
1
σ

(
1
στ −‖L‖2

)−1
‖∇F (x)−∇F (x′)‖2 (27)

≤
β2

σ

(
1
στ −‖L‖2

)−1
‖x − x′‖2 =

β
κ‖x − x′‖2. (28)

We define the linear operator Q : (x, y) 7→ (x,0) of Z . Since P −βκQ is positive in Z I ,

we have

βκ‖x − x′
‖

2
=βκ〈(z − z ′),Q(z − z ′)〉I ≤ 〈(z − z ′),P (z − z ′)〉I = ‖z − z ′

‖
2
P . (29)

Putting together (28) and (29), we get

κ‖M2(z)−M2(z ′)‖P ≤ ‖z − z ′
‖P , (30)

so that κM2 is nonexpansive in ZP . Let us define on Z the function J : (x, y) 7→ F (x).

Then, in ZP , ∇J = M2. Therefore, from Lemma 4.5, κM2 is firmly nonexpansive in

ZP .

• We set γ := 1. Since κ≥ 1
2

from (i), γ ∈ ]0,2κ]. Moreover, δ= 2−
γ

2κ .

• Since P−1 and L are bounded and the norms ‖ ·‖I and ‖ ·‖P are equivalent, we get

from assumption (iv) that
∑

n∈Nρn‖e1,n‖P <+∞ and
∑

n∈Nρn‖e2,n‖P <+∞.

• The set of solutions to (6) is zer(A +B) = zer(M1 + M2) and it is nonempty by as-

sumption. �

Proof of Theorem 3.2 for Algorithm 3.1 We follow the same line of proof as for The-

orem 3.1. From assumption (i), P is still bounded from below and defines a valid

scalar product on Z . F = 0, so that B = 0 and (24) becomes

zn+1 = ρn

(

(I +P−1
◦ A)−1(zn)+en

)

+ (1−ρn )zn , (31)

where en := (eG ,n ,eH ,n) + (I + P−1 ◦ A)−1
(

zn + P−1(0,2LeG ,n )
)

− (I + P−1 ◦ A)−1(zn),

∀n ∈N. Since P , P−1, L are bounded and I +P−1 ◦ A is nonexpansive in ZP , we get

from assumption (iv) that
∑

n∈Nρn‖en‖P <+∞. We recognize in (31) the structure of

the proximal point algorithm (14) in ZP , as observed in [17]. Thus, the convergence

result of Theorem 3.2 follows from Lemma 4.2, whose conditions of application have
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been checked in the proof of Theorem 3.1. �

Proof of Theorem 3.3 for Algorithm 3.1 We keep the definitions and notations of

the proof of Theorem 3.1. We introduce S, the orthogonal projector in Z I onto

the closed subspace ran(P ). From assumption (i), P is only guaranteed to be pos-

itive; that is, 〈z,P z〉I ≥ 0, ∀z ∈Z . So, it does not define a valid inner product on Z .

However, R := P + I − S is strictly positive, so that we can define the Hilbert space

ZR by endowing Z with the inner product 〈z, z ′〉R := 〈z,Rz ′〉I , ∀(z, z ′) ∈ Z
2. R is

bounded from below, so that 〈·, ·〉R and 〈·, ·〉I are equivalent. Let T be the operator

defined by the steps 1. and 2. of Algorithm 3.1, in absence of error terms ; that is,

T : (x, y) 7→ (x̃, ỹ) with (x̃, ỹ ) =
(

proxτG (x−τL∗y),proxσH∗ (y +σL(2x̃−x))
)

. Let n ∈N.

We have z̃n+1 = T (zn )+ en, where en :=
(

eG ,n ,eH ,n +proxσH∗ (yn +σL(2x̃n+1 − xn))−

proxσH∗ (yn +σL(2x̃n+1 −2eG ,n − xn ))
)

. From the nonexpansiveness of proxσH∗ and

by assumption (iii),
∑

n∈N ‖en‖R < +∞. Further on, we can rewrite the steps 1. and

2. of Algorithm 3.1 as

x̃n+1 = proxτG (τun )+eG ,n , (32)

ỹn+1 = proxσH∗

(

2σLx̃n+1 +σvn)
)

+eH ,n , (33)

where (un , vn ) := P (xn , yn). Since P ◦S = P , this shows that T ◦S = T . For every n ∈N,

set z ′
n := Szn , e ′n := Sen , T ′ := S ◦T , so that we have

z ′
n+1 = ρn

(

T ′(z ′
n)+e ′n

)

+ (1−ρn )z ′
n . (34)

Let z, z ′ ∈Z . From (22), we have

0 ∈ A(T (z))+PT (z)−P z, (35)

0 ∈ A(T (z ′))+PT (z ′)−P z ′, (36)

so that (T (z),P z−PT (z)) and (T (z ′),P z ′−PT (z ′)) belong to gra(A). Hence, by mono-

tonicity of A in Z I , we get

0≤ 〈T (z)−T (z ′),P z −PT (z)−P z ′
+PT (z ′)〉I (37)

= 〈ST (z)−ST (z ′),P z −PT (z)−P z ′
+PT (z ′)〉I (38)

(because the right argument belongs to ran(P ))

= 〈ST (z)−ST (z ′),P (z − z ′)−PST (z)+PST (z ′)〉I (39)

= −‖ST (z)−ST (z ′)‖2
R +〈ST (z)−ST (z ′), z − z ′

〉R . (40)

Thus, by [32, Prop. 4.2], T ′ = S ◦T is firmly nonexpansive in ZR . Let z ∈ zer(A) 6= ;.

Then (T (z),P z −PT (z)) and (z,0) belong to gra(A), and by monotonicity of A in Z I ,

we get

0≤ 〈T (z)− z,P z −PT (z)〉I . (41)

But since P is positive, we also have

0≤ 〈T (z)− z,PT (z)−P z〉I . (42)
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Combining (41) and (42) yields 〈T (z) − z,PT (z) − P z〉I = 0 and, by [32, Corollary

18.17], PT (z)−P z = 0. This implies that ST (z) = ST (Sz) = Sz, so that Sz is a fixed

point of T ′ and fix(T ′) 6= ;. Conversely, by (35), z ∈ fix(T ′) ⇒ PT (z) = P z ⇒ T (z) ∈

zer(A). All together with assumption (ii), the conditions are met to apply Lemma 4.1

to the iteration (34), after a change of variables like in the proof of Lemma 4.2, so

that (z ′
n)n∈N converges to ẑ ′ ∈fix(T ′).

T is continuous, by continuity of the proximity operators from which it is de-

fined. Therefore, since z̃n+1 = T (z ′
n)+ en , ∀n ∈ N, and (en)n∈N converges to zero,

(z̃n)n∈N converges to ẑ := T (ẑ ′) ∈ zer(A). Moreover,

‖zn+1 − ẑ‖≤ ρn‖z̃n+1 − ẑ‖+|1−ρn |‖zn − ẑ‖, ∀n ∈N. (43)

For every n ∈N, set an := ‖zn−ẑ‖, bn := ρn‖z̃n+1−ẑ‖, cn := |1−ρn |. Then bn → 0 and,

by assumption (ii), cn ∈ [0,1−ε] ∀n ∈N,
∑

n∈N(1−cn) =+∞, and bn/(1−cn) → 0. So,

by Lemma 4.6, an → 0, so that (zn)n∈N converges to ẑ ∈ zer(A). �

Proof of Theorems 3.1, 3.2, 3.3 for Algorithm 3.2 For every n ∈ N, if the error terms

are zero, the following inclusion is satisfied by z̃n+1 := (x̃n+1, ỹn+1) computed by Al-

gorithm 3.2:

−

(
∇F (xn)

0

)

︸ ︷︷ ︸

B (zn )

∈

(
∂G(x̃n+1)+L∗ ỹn+1

−Lx̃n+1 +∂H∗(ỹn+1)

)

︸ ︷︷ ︸

A(z̃n+1)

+

( 1
τ I L∗

L 1
σ I

)

︸ ︷︷ ︸

P ′

(
x̃n+1 − xn

ỹn+1 − yn

)

︸ ︷︷ ︸

(z̃n+1−zn )

. (44)

Thus, after comparison of (22) and (44), it appears that the whole convergence anal-

ysis for Algorithm 3.1 applies to Algorithm 3.2, just replacing P by P ′ in the deriva-

tions. Therefore, both algorithms converge under the same assumptions.

5 Extension to Several Composite Functions

In this section, we focus on the following primal problem with m ≥ 2 composite

functions:

Find x̂ ∈ argmin
x∈X

[

F (x)+G(x)+
m∑

i=1

Hi (Li x)
]

, (45)

with the same assumptions on F and G as in the problem (1), m functions Hi ∈

Γ0(Yi ) defined on real Hilbert spaces Yi , and m bounded linear functions Li : X →

Yi . At the same time, we consider the dual problem

Find (ŷ1, . . . , ŷm ) ∈ arg min
y1∈Y1 ,...,ym∈Ym

[

(F +G)∗(−
∑m

i=1
L∗

i
yi )+

m∑

i=1

H∗
i (yi )

]

(46)

≡ Find (ŷ1, . . . , ŷm ) ∈ arg min
y1∈Y1 ,...,ym∈Ym

min
x′∈X

[

F∗(−
∑m

i=1 L∗
i

yi − x′)+G∗(x′)+
m∑

i=1

H∗
i (yi )

]

,

(47)
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and the corresponding monotone variational inclusion:

Find (x̂, ŷ1, . . . , ŷm ) ∈X×Y1×·· ·×Ym such that








0

0
...

0







∈








∂G(x̂)+
∑m

i=1
L∗

i
ŷi +∇F (x̂)

−L1 x̂ +∂H∗
1 (ŷ1)

...

−Lm x̂ +∂H∗
m (ŷm)








.

(48)

Thus, if (x̂, ŷ1, . . . , ŷm ) is solution to (48), then x̂ is solution to (45) and (ŷ1, . . . , ŷm )

is solution to (46). In the following, we suppose that the set of solutions to (48) is

nonempty.

To the author’s knowledge, the only method in the literature able to solve (48),

in whole generality and by full splitting (that is, without applications of operators

other than ∇F , proxG , proxH∗
i

, Li , L∗
i

), is the one in [21]. We note that another recent

method has been proposed in [23] to solve (45), in the more restrictive setting where

G = 0 and Li = I , for every i = 1, . . . ,m.

Although the primal and dual problems (45) and (46) are more general than the

problems (1) and (4), respectively, they can be recast as particular cases of them

using product spaces. To that end, we introduce the bold notation y = (y1, . . . , ym ) for

an element of the Hilbert space YYY :=Y1×·· ·×Ym, equipped with the inner product

〈y , y ′〉 :=
∑m

i=1〈yi , y ′
i
〉. We define the function H ∈ Γ0(YYY ) by H (y) :=

∑m
i=1 Hi (yi ) and

the linear function L : X →YYY by Lx := (L1x, . . . ,Lm x). We also define the error term

e H ,n := (eH1,n , . . . ,eHm ,n ), ∀n ∈N. We have the following properties, ∀y ∈YYY :

H∗(y) =
m∑

i=1

H∗
i (yi ), (49)

L∗y =

m∑

i=1

L∗
i yi , (50)

proxσH∗(y) =
(

proxσH∗
1

(y1), . . . ,proxσH∗
m

(ym)
)

, (51)

‖L‖2
=

∥
∥

m∑

i=1

L∗
i Li

∥
∥. (52)

Thus, we can rewrite (45) and (46) as

Find x̂ ∈ argmin
x∈X

[

F (x)+G(x)+H(Lx)
]

, (53)

Find ŷ ∈ argmin
y∈YYY

[

(F +G)∗(−L∗y)+H∗(y)
]

, (54)

which exactly take the form of (1) and (4), respectively. Accordingly, we can rewrite

Algorithms 3.1 and 3.2 by doing the appropriate substitutions, and we obtain the

two following algorithms, respectively:
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Algorithm 5.1 Choose the proximal parameters τ > 0, σ > 0, the sequence of pos-

itive relaxation parameters (ρn )n∈N and the initial estimate (x0, y1,0, . . . , ym,0) ∈ X ×

Y1 ×·· ·×Ym . Then iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. x̃n+1 := proxτG

(

xn −τ(∇F (xn)+eF,n)−τ
∑m

i=1
L∗

i
yi ,n

)

+eG ,n ,

2. xn+1 := ρn x̃n+1 + (1−ρn )xn ,

3. ∀i = 1, . . . ,m, ỹi ,n+1 := proxσH∗
i

(

yi ,n +σLi (2x̃n+1 − xn)
)

+eHi ,n ,

4. ∀i = 1, . . . ,m, yi ,n+1 := ρn ỹi ,n+1 + (1−ρn )yi ,n ,

(55)

for some error terms eF,n ∈X , eG ,n ∈X , eHi ,n ∈Yi .

Algorithm 5.2 Choose the proximal parameters σ > 0, τ > 0, the sequence of pos-

itive relaxation parameters (ρn )n∈N and the initial estimate (x0, y1,0, . . . , ym,0) ∈ X ×

Y1 ×·· ·×Ym . Then iterate, for every n ≥ 0,
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. ∀i = 1, . . . ,m, ỹi ,n+1 := proxσH∗
i

(

yi ,n +σLi xn

)

+eHi ,n ,

2. ∀i = 1, . . . ,m, yi ,n+1 := ρn ỹi ,n+1 + (1−ρn )yi ,n ,

3. x̃n+1 := proxτG

(

xn −τ(∇F (xn )+eF,n)−τ
∑m

i=1
L∗

i
(2ỹn+1 − yn )

)

+eG ,n ,

4. xn+1 := ρn x̃n+1 + (1−ρn )xn ,

(56)

for some error terms eF,n ∈X , eG ,n ∈X , eHi ,n ∈Yi .

By doing the same substitutions in Theorems 3.1, 3.2 and 3.3, we obtain the fol-

lowing spin-off theorems, respectively:

Theorem 5.1 Let τ > 0, σ > 0 and the sequences (ρn)n∈N, (eF,n)n∈N, (eG ,n )n∈N,

(eHi ,n){i=1,...,m,n∈N}, be the parameters of Algorithm 5.1 and Algorithm 5.2. Let β be

the Lipschitz constant defined in (2). Suppose that β> 0 and that the following hold:

(i)
1

τ
−σ

∥
∥

m∑

i=1

L∗
i Li

∥
∥≥

β

2
,

(ii) ∀n ∈N, ρn ∈ ]0,δ[, where we set δ := 2−
β
2

(
1
τ −σ‖

∑m
i=1 L∗

i
Li ‖

)−1
∈ [1,2[,

(iii)
∑

n∈N

ρn (δ−ρn ) =+∞,

(iv)
∑

n∈N

ρn‖eF,n‖ <+∞ and
∑

n∈N

ρn‖eG ,n‖<+∞ and, for i = 1, . . . ,m,

∑

n∈N

ρn‖eHi ,n‖ <+∞.

Then there exists (x̂, ŷ1, . . . , ŷm ) ∈ X ×Y1 × ·· ·×Ym solution to (48) such that, in Al-

gorithm 5.1 or in Algorithm 5.2, the sequence (xn)n∈N converges weakly to x̂ and, for

every i = 1, . . . ,m, the sequence (yi ,n )n∈N converges weakly to ŷi .
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Theorem 5.2 Let τ > 0, σ > 0 and the sequences (ρn)n∈N, (eF,n)n∈N, (eG ,n )n∈N,

(eHi ,n){i=1,...,m,n∈N}, be the parameters of Algorithm 5.1 and Algorithm 5.2. Suppose

that F = 0, that the error terms eF,n are all zero, and that the following hold:

(i) στ
∥
∥

m∑

i=1

L∗
i Li

∥
∥< 1,

(ii) ∀n ∈N, ρn ∈ ]0,2[,

(iii)
∑

n∈N

ρn (2−ρn ) =+∞,

(iv)
∑

n∈N

ρn‖eG ,n‖<+∞ and, for i = 1, . . . ,m,
∑

n∈N

ρn‖eHi ,n‖<+∞.

Then there exists (x̂, ŷ1, . . . , ŷm ) ∈ X ×Y1 × ·· ·×Ym solution to (48) such that, in Al-

gorithm 5.1 or in Algorithm 5.2, the sequence (xn)n∈N converges weakly to x̂ and, for

every i = 1, . . . ,m, the sequence (yi ,n )n∈N converges weakly to ŷi .

Theorem 5.3 Suppose that X and Y are of finite dimension. Let τ > 0, σ > 0 and

the sequences (ρn )n∈N, (eF,n)n∈N, (eG ,n)n∈N, (eHi ,n ){i=1,...,m,n∈N}, be the parameters of

Algorithm 5.1 and Algorithm 5.2. Suppose that F = 0, that the error terms eF,n are all

zero, and that the following hold:

(i) στ
∥
∥

m∑

i=1

L∗
i Li

∥
∥≤ 1,

(ii) ∀n ∈N, ρn ∈ [ε,2−ε], for some ε> 0,

(iii)
∑

n∈N

‖eG ,n‖<+∞ and, for i = 1, . . . ,m,
∑

n∈N

‖eHi ,n‖ <+∞.

Then there exists (x̂, ŷ1, . . . , ŷm ) ∈ X ×Y1 × ·· ·×Ym solution to (48) such that, in Al-

gorithm 5.1 or in Algorithm 5.2, the sequence (xn )n∈N converges to x̂ and, for every

i = 1, . . . ,m, the sequence (yi ,n )n∈N converges to ŷi .

Remark 5.1 If one of the functions in (45) is ‖M · −b‖2, for some bounded linear

operator M and element b, assigning this term to F or to one of the Hi ◦Li yields dif-

ferent algorithms. Which one is the most efficient depends on the problem at hand

and on the way the algorithms are implemented. But considering a smooth func-

tional as the term F , whenever one can, should be beneficial for the convergence

speed. Indeed, the proposed algorithms are serial, in the sense that the gradient de-

scent with respect to F updates the primal estimate before the proximal step with

respect to G, which itself “feeds” information into the proximal step with respect to

the Hi , in the Gauss–Seidel spirit, within the same iteration. By contrast, the dual

variables are updated with respect to the Hi independently, and then combined to

form the next primal estimate. For the same reason, considering a functional as the

term G, instead of another Hi ◦ I , should be beneficial as well, especially because we

have the feasibility x̃n ∈ dom(G) for every n ∈ N, e.g. to force x̃n to belong to some

closed convex subset of X .

16



6 Conclusion

The class of optimization problems captured by the template problem (45) is quite

large, as it covers the presence of a smooth function and several proximable func-

tions, composed or not with linear operators. The proposed algorithms proceed by

full splitting, as they only apply the gradient or proximity operators of the functions

and the linear operators or their adjoints, with parsimony—only once per iteration.

The auxiliary variables are restricted to a minimum number, eventually zero when

no relaxation is performed. Future work will consist in studying the convergence

rates and potential accelerations, probably by exhibiting bounds on the primal–dual

gap, and in validating experimentally the performances of the algorithms in large-

scale problems of practical interest. Also, it is desirable to make the proximal pa-

rameters σ and τ variable through the iterations, and to provide rules to find their

“best” values for the problem at hand.
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