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A Generic Proximal Algorithm for

Convex Optimization — Application to

Total Variation Minimization
Laurent Condat

Abstract—We propose new optimization algorithms to min-
imize a sum of convex functions, which may be smooth or
not and composed or not with linear operators. This generic
formulation encompasses various forms of regularized inverse
problems in imaging. The proposed algorithms proceed by
splitting: the gradient or proximal operators of the functions
are called individually, without inner loop or linear system to
solve at each iteration. The algorithms are easy to implement
and have proven convergence to an exact solution. The classical
Douglas–Rachford and forward–backward splitting methods, as
well as the recent and efficient algorithm of Chambolle–Pock, are
recovered as particular cases. The application to inverse imaging
problems regularized by the total variation is detailed.

Index Terms—Convex nonsmooth optimization, proximal split-
ting algorithm, regularized inverse problem, total variation

I. INTRODUCTION AND PROBLEM FORMULATION

Numerous problems in signal processing and imaging [1]–

[4], statistical learning and data mining [5], [6], or computer

vision [7], [8], can be formulated as optimization problems,

which consist in minimizing a sum of convex functions,

not necessarily differentiable, possibly composed with linear

operators. Each function is typically either a data-dependent

loss function, a.k.a. data fidelity term, or a regularization term

enforcing some properties on the solution. Using nonsmooth

penalties, e.g. based on the ℓ1 norm, has proved beneficial

in many fields, to constrain the solution to be regular and

parsimonious in some sense [5], [9]. A typical example of a

nonsmooth function composed with a linear operator is the

total variation seminorm, which is an efficient regularizer for

many ill-posed inverse problems in imaging [10].

To formulate the optimization problem of interest (2), let

us recall some classical definitions of convex optimization;

we refer the reader to a textbook of convex analysis, such as

[11], for more in-depth study. A function g defined on a real

Hilbert space X with values in R ∪ {+∞} is said proper if

its domain dom(g) = {x ∈ X ; g(x) < +∞} is nonempty. g
is said convex if g(ax+(1−a)x′) ≤ ag(x)+(1−a)g(x′) for

every x, x′ ∈ X and a ∈ [0, 1]. g is said lower semicontinuous

at x ∈ X if, for every v ∈ ]−∞, g(x)[, we can find a

neighborhood Ω of x such that f(Ω) ⊂ ]v,+∞]. The set

of convex, proper, lower semicontinuous functions from X to

R ∪ {+∞} is denoted by Γ0(X ). Let us define the Moreau
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proximity operator of g ∈ Γ0(X ) by

proxg : X → X , x 7→ argmin
x′∈X

1
2‖x− x′‖2 + g(x′). (1)

There exist simple explicit expressions for the proximity

operators of a large class of functions [12], [13]. An iterative

algorithm which aims at minimizing a sum of functions by

successive evaluations of their gradients or proximity operators

is called a proximal algorithm.

In this paper, we aim at solving the following generic

optimization problem, formulated in real Hilbert spaces X and

{Um}Mm=1, for some M ∈ N:

Find x̂ ∈ argmin
x∈X

f(x) + g(x) +
M
∑

m=1

hm(Lmx), (2)

where:

• f, g ∈ Γ0(X ), hm ∈ Γ0(Um).
• The operators Lm : X → Um are linear and bounded.

• f is differentiable on X and its gradient ∇f is β-

Lipschitz continuous, for some real constant β > 0, i.e.,

‖∇f(x)−∇f(x′)‖ ≤ β‖x− x′‖, ∀x, x′ ∈ X . (3)

• The set of minimizers is supposed nonempty.

• The following qualification constraint is satisfied:

(0, . . . , 0) ∈ sri
{

(Lmx− um)1≤m≤M | x ∈ dom(g) and

um ∈ dom(hm), ∀m = 1, . . . ,M
}

, where sri denotes

the strong relative interior.

Note that we allow some of the functions in (2) to be zero

and a linear operator Lm can be the identity Id. Also, we

recall that, given a nonempty closed convex set Ω ⊂ X , we

can define the indicator function ıΩ ∈ Γ0(X ) : x ∈ X 7→
{0 if x ∈ Ω, +∞ else}. Such functions are convenient to

enforce hard constraints on the solution: the problem of mini-

mizing f ∈ Γ0(X ) over Ω can be written as the minimization

of f+ıΩ over the whole space X . Since the proximity operator

of an indicator function is simply the projection onto the

set, proximal algorithms can be viewed as generalizations of

algorithms to find an element in the intersection of convex sets

by successive projections (POCS) [11], [13].

The main difficulty in solving (2) stems form the fact that

the spaces X and Um are typically of high dimension, hence

the denomination of large-scale optimization. For instance, if

the sought-after solution x̂ is an image, the dimension N of

X is the number of pixels in the image. For N = 106 and
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
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)

,

x(i+1) := ρ x̃(i+1) + (1 − ρ)x(i),
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ũ
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






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









For m = 1, . . . ,M,
⌊

ũ
(i+1)
m := proxσh∗

m

(

u
(i)
m + σLmx(i)

)

,

u
(i+1)
m := ρ ũ

(i+1)
m + (1− ρ)u

(i)
m ,

x̃(i+1) :=proxτg

(

x(i)−τ∇f(x(i))−τ

M
∑

m=1

L∗
m(2ũ

(i+1)
m −u

(i)
m )

)

,

x(i+1) := ρ x̃(i+1) + (1 − ρ)x(i).

Fig. 1. The two proposed algorithms to solve the convex optimization problem (2).

beyond, it is not possible to manipulate, at every iteration

of an algorithm, matrices of size N × N , like the Hessian

of a function. So, proximal algorithms, which only exploit

first-order information of the functions, are often the only

viable way to solve (2). In this paper, we place ourselves in

the case where it is not possible to apply, at every iteration

of an algorithm, an inverse operator like (Id + L∗
mLm)−1,

which amounts to solving a linear system, or operators like

proxhm◦Lm
or proxf+g . Also, we exclude nested strategies,

which consist in solving iteratively an optimization problem

at every iteration, as this raises theoretical and practical

convergence issues [14]. Thus, we propose two new proximal

algorithms to solve the problem (2) by full splitting; that is, at

every iteration, the only operations involved are evaluations of

∇f , proxg, proxhm
, Lm, or the adjoint operators L∗

m. Thus,

it is required that these evaluations are “simple”; that is, that

they can be performed in time like O(N) or O(N log(N)),
where N is the dimension of the ambiant space X or Um.

The paper aims at making known the optimization algo-

rithms proposed by the author in [15], to the signal and

image processing community. Thus, the two algorithms are

presented in Sect. II in a slightly simplified form, along with

the corresponding convergence results, but the mathematical

proofs are omitted. The relationship of the algorithm with

other methods of the literature is discussed. In Sect. III, we

detail as a proof of concept the application to inverse imaging

problems regularized by the total variation.

II. PROPOSED ALGORITHMS AND CONVERGENCE

ANALYSIS

The two proposed algorithms are in Fig. 1. Note that we

make use of h∗
m ∈ Γ0(Um), the Fenchel–Rockafellar conjugate

of hm, which satisfies the useful Moreau identity: for every

u ∈ Um and real σ > 0, proxσh∗

m
(u) = u−σ proxhm/σ(u/σ).

Some classical expressions of the gradient and proximity op-

erator are provided in Fig. 2. The two algorithms behave very

similarly in practice; which one is the most appropriate for a

particular problem depends on the way they are implemented,

since the different place of the extrapolation step 2◦̃(i+1)−◦(i)
can lead to different memory storage requirements.

The convergence results, whose proofs can be found in [15],

are the following:

g(x) proxτg(x) ∇g(x)

0 x 0
ıΩ(x) PΩ(x)

ı(R+)N (x)
(

max{xn, 0}
)N

n=1

‖x‖1 =
∑N

n=1 xn

(

sgn(xn)max{|xn| − τ, 0}
)N

n=1

ı{x′ ; Ax′=y}(x) x+ A†(y − Ax)
1
2
‖Ax− y‖2 (Id + τA∗A)−1(x+ τA∗y) A∗(Ax− y)

〈Ax, y〉 = 〈x,A∗y〉 x− τA∗y A∗y
1
2
〈Ax,x〉 (Id + τA)−1x Ax

Fig. 2. Expressions of the gradient and proximity operator of a convex
function g : X → R ∪ {+∞}, in some classical cases. In the tables, x
is an arbitrary element of some real Hilbert space X , τ a positive real, y an
arbitrary element of some real Hilbert space Y , A : X → Y a linear operator,
A† its Moore–Penrose pseudoinverse, Ω a subset of X .

Theorem 1. Suppose that the parameters in Algorithm 1 or

Algorithm 2 satisfy:

(i) τ
(β

2
+ σ

∥

∥

∥

M
∑

m=1

L∗
mLm

∥

∥

∥

)

< 1, where the Lipschitz con-

stant β is defined in (3) and ‖ · ‖ is the operator norm.

(ii) ρ ∈ ]0, 1].

Then both sequences (x̃(i))i∈N and (x(i))i∈N generated by

Algorithm 1 or Algorithm 2 converge (weakly if X has infinite

dimension) to an element x̂ ∈ X solution of the problem (2).

Theorem 2. Suppose that f = 0, that the spaces X and Um

have finite dimension, and that the parameters in Algorithm 1

or Algorithm 2 satisfy:

(i) τσ
∥

∥

∥

M
∑

m=1

L∗
mLm

∥

∥

∥
≤ 1.

(ii) ρ ∈ ]0, 2[.

Then both sequences (x̃(i))i∈N and (x(i))i∈N generated by

Algorithm 1 or Algorithm 2 converge to an element x̂ ∈ X
solution of the problem (2).

We refer to the mathematical article [15] for a more detailed

study of the convergence conditions, including error terms

and variable relaxation parameters. Moreover, the proposed

approach is primal-dual, in the sense that (u
(i)
1 , . . . , u

(i)
M )

converges to an element (û1, . . . , ûM ) ∈ U1 × · · · × UM
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solution to the dual problem of (2). Qualification constraints

other than the ones given in Sect. 1 can be found [16]. Also,

the problem (2) and the algorithms can be generalized to

include infimal convolutions, or to solve monotone inclusions

instead of optimization problems [17]. Finally, the metric can

be changed, with potential acceleration [18], [19].

A. Particular Cases and Related Work

The most classical splitting methods to minimize the sum

of two functions are the forward-backward and Douglas–

Rachford algorithms, see [13] and references therein. In our

notations, they allow to minimize f(x)+g(x) and g(x)+h(x),
respectively. Until recently, there was no convenient way of

solving a problem like (2) with nontrivial linear operators Lm.

A step forward regarding this issue was made in [20]: the

Chambolle–Pock algorithm allows to minimize g(x)+h(Lx).
Several other algorithms have been proposed recently for

particular instances of the problem (2) [4], [16], [21]–[25],

but only the algorithm in [16] is a rival to ours and allows to

solve the problem (2) in whole generality.

In the case f = 0, the proposed algorithms revert to the

ones of Chambolle–Pock, with additional relaxation. Indeed,

according to Theorem 2, we allow a value ρ close to 2,

instead of ρ = 1 in [20], which can significantly speed up the

convergence. Moreover, the convergence is guaranteed with

the choice στ
∥

∥

∑

m L∗
mLm

∥

∥ = 1, which we recommend in

practice, whereas the condition στ
∥

∥

∑m
i=1 L

∗
iLi

∥

∥ < 1 was

given in [20]. This new condition is important, since it allows

to recover the Douglas–Rachford algorithm as a particular case

of ours, when f = 0, M = 1, L1 = Id, by setting σ = 1/τ
to let τ appear as the only parameter.

If M = 0 and one simply wants to minimize f(x)+g(x), the

proposed algorithms revert to the forward-backward algorithm.

We remark that there are often several ways to assign the

functions of a given problem to the terms f , g, hm◦Lm in (2).

In particular, a function like 1
2‖A·−y‖2 in (4) can be assigned

either to f or to a term hm ◦ Lm with Lm = A. These two

formulations yield different algorithms. Although it is hard to

make general statements, assigning a function to f whenever

one can is probably better for the convergence speed, because

of the serial way the variables are updated: the step of gradient

descent with respect to f updates and improves the variable x,

and this updated version is used to update the dual variables

um. By contrast, the variables um are updated independently

and in parallel, with respect to the antagonist functions hm,

before being essentially averaged to form the new estimate of

x. So, except if the algorithm is run on a parallel architecture,

the higher is M , the slower is the convergence. For the same

reason, one should make use of the function g instead of a

term hm ◦ Id, especially because every iterate x̃(i), as well as

x(i) if ρ ≤ 1, belongs to dom(g); for instance, if g = ıΩ, then

x̃(i) ∈ Ω, for every i ≥ 1.

III. APPLICATION TO INVERSE PROBLEMS REGULARIZED

BY THE TOTAL VARIATION

A. Formulation of the Method

In this section, we consider inverse problems in imaging.

So, we first place ourselves in the space X = R
Nh×Nv of

grayscale images of size Nh columns times Nv rows, endowed

with the usual Euclidean inner product. We want to restore or

reconstruct an image x̂ by solving

Find x̂ ∈ argmin
x∈Ω

1
2‖Ax− y‖2 + λ.TV(x), (4)

where

• y, which lives in a real Hilbert space Y , represents the

available data.

• A : X → Y is the linear operator modeling the

acquisition process.

• Ω is a closed and convex subset of X .

• λ > 0 is a tradeoff parameter to tune, depending on the

properties of A and the noise level.

The discrete total variation, denoted by TV in (4), is defined as

follows. We define the discrete gradient operator D : X → X 2,

which maps an image x to a pair of images (uh, uv) with, for

every kh = 1, . . . , Nh, kv = 1, . . . , Nv,

uh[kh, kv] =
{

x[kh, kv] − x[kh − 1, kv] if kh ≥ 2, 0 else},

uv[kh, kv] =
{

x[kh, kv] − x[kh, kv − 1] if kv ≥ 2, 0 else
}

.

Note that ‖D∗D‖ ≤ 8 [20]. Then we have

TV(x) = ‖Dx‖1,2, where ‖(uh, uv)‖1,2 =
∑Nh

kh=1

∑Nv

kv=1

√

uh[kh, kv]2 + uv[kh, kv]2. Let us set

h = λ‖ · ‖1,2. For every σ > 0, we have

proxσh∗ : (uh, uv) 7→ (uh, uv)/max
{

√

u2
h + u2

v)/λ, 1
}

, (5)

which does not depend on σ, and for which the operations are

to be understood as pixelwise.

Hence, the problem (4) can be put under the form (2), with:

• f(x) = 1
2‖Ax−y‖2, whose gradient, given in Fig. 2, has

Lipschitz constant β = ‖A‖2.

• g(x) = ıΩ(x).
• M = 1, so that we omit the index m for simplicity,

U = X 2, λ.TV = h ◦ L with h = λ‖ · ‖1,2, L = D.

Now we turn our attention to the case of color images. A

color image x has three red (R), green (G), blue (B) channels

xR, xG, xB , which can be manipulated like grayscale images.

Equivalently, the pixel value of x at location k = (kh, kv) is

the vector x[k] =
[

xR[k] xG[k] xB[k]
]T

. It is well known that

the R, G, B channels of natural images are strongly correlated.

So, it is often better to work within a luminance-chrominance

representation where, in first approximation, the information

is decorrelated. So, we define the orthonormal change of basis

which maps a vector in the R, G, B basis to a vector of

luminance, green-red and yellow-blue opponent chrominance:





xL

xG/R

xY/B



 =







1√
3

1√
3

1√
3

−1√
2

1√
2

0
1√
6

1√
6

−2√
6











xR

xG

xB



 . (6)

Note that W−1 = W
T, where W is the 3× 3 matrix in (6).

Then we introduce the color total variation as a regularizer of

color images: TV(x) =
∑

k∈Nh×Nv

√

‖uh[k]‖2 + ‖uv[k]‖2,

where (uh,uv) = Dx is the pair of color images

such that (uL
h , u

L
v ) = µDxL, (u

G/R
h , u

G/R
v ) = DxG/R,

(u
Y/B
h , u

Y/B
v ) = DxY/B . The real parameter µ > 0 in the
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(a) (b) (c)

Fig. 3. Deconvolution example: the image (b) is a blurred and noisy version of the unknown image (a) to estimate. The restored image (c) is the solution to
the problem (4), obtained with the proposed Algorithm 1, after 300 iterations. The blurring filter is Gaussian (std. dev. 5), the noise is white and Gaussian
(std. dev. 3), λ = 0.02 in (4) and, in the algorithm, σ = 1e-4, τ = 0.99/(0.5 + 8σ), ρ = 1. The images uh, uv are initialized with zeros and x(0) = y.

previous definition plays a crucial role, as it controls the

balance between the regularization of the luminance and of

the chrominance in the reconstructed image. For µ = 1, the

color total variation reverts to the usual vectorial total variation

in the R, G, B basis [26]. But for many problems, a value of

µ closer to zero gives better results, since it reflects the prior

knowledge that the hue in natural images is smoother than the

luminance. We have ‖D‖ = max{µ, 1}‖D‖.

B. Experiments

We first consider the classical problem of deconvolution

of a grayscale image, as illustrated in Fig. 3. We solve the

problem (4) with A a lowpass convolution operator, with

symmetric boundary conditions, so that ‖A‖ = 1. We set

Ω = [0, 255]Nh×Nv , so that proxτg = PΩ is clipping: the pixel

values in the image larger than 255 or lower than 0 are set

to 255 and 0, respectively. This choice is known to be better

than Ω = X to limit the appearance of oscillation artifacts.

Note that many optimization algorithms in the literature allow

to perform deconvolution, but in most cases, artificial periodic

boundary conditions are assumed, in order to use the FFT to

invert convolutions in Fourier domain. Since only the operators

A and A∗ are called with the proposed algorithms, every type

of boundary conditions can be used. The method is flexible and

can be adapted without difficulty to spatially-varying blur [27],

by changing the operator A, or to the presence of Poisson-

Gaussian noise, by replacing the least-squares in f by the

appropriate negative log-likelihood [28].

To compare the convergence speed with a well known

algorithm, we solve the same problem (4) without the

constraint x ∈ Ω, i.e. g = 0, with the proposed Algorithm 1

and with the alternating direction method of multipliers

(ADMM) [29], also known as split Bregman [30]–[32]. In

our case, ADMM consists in iterating [32]:








z(i+1) := proxλ‖·‖1,2/α(Dx(i) − p(i)/α),

x(i+1) := (αD∗D +A∗A)−1(A∗y + αD∗z(i+1) +D∗p(i)),
p(i+1) := p(i) + α(z(i+1) −Dx(i+1)).

At every iteration, the linear system is solved approximately

with one Richardson iteration. Note that the guarantee of con-

vergence is lost in that case. We consider the same conditions

as in Fig. 3 and α = 1e-3. The number i of iterations to reach

a RMSE ‖x̂−x(i)‖/
√
NhNv of 2 gray levels is 3481 and 3608

with the proposed Algorithm 1 and ADMM, respectively.

(a) (b)

Fig. 4. Joint demosaicing-deconvolution of the image v depicted in (a). In (b),
the reconstructed image solution to (4) with λ = 1.5, µ = 0.2, obtained with
300 iterations of Algorithm 1. The blurring filter is Gaussian (std. dev. 2), the
noise is white and Gaussian (std. dev. 5), σ = 0.03, τ = 0.99/(0.5 + 8σ),

ρ = 1. u
(0)
h , u

(0)
v are set to zero and x(0),R = x(0),G = x(0),B = y.

The second experiment consists in reconstructing a color

image by joint deblurring-demosaicing-denoising, see [33],

[34] for a presentation of the problem. We solve (4) with

A = MB, where B is the same blurring operator as in the

first experiment, applied on each R, G, B channel, and M is

the Bayer mosaicing operator [33], [34]. We have ‖A‖ = 1.

We set Ω = [0, 255]Nh×Nv×3.

Matlab code implementing Algorithm 1 and generating the

images in Figs. 3,4 is available on the webpage of the author.

IV. CONCLUSION

We proposed two algorithms to exactly solve a large class

of convex optimization problems. The simplicity, universality

and ease of implementation of the algorithms make them well

suited to prototyping new methods, for instance to test various

types of regularization for some inverse problem. However,

the algorithms do not exploit any further structure of the

problem at hand that may be present. So, our future work will

focus on the theoretical study of the convergence rates, on the

development of possible accelerations, and on the practical

comparison, in terms of computation time and memory usage,

with other algorithms, for several typical large-scale problems.
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