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Abstract—This document contains notes I wrote a long time
ago, but which have remained unchanged since then. So, I am
releasing them, in case they would be useful to someone.

The problem considered is minimizing the least-squares, or
more generally a convex quadratic function, under the constraint
that the solution vector belongs to the unit simplex. Since
the elements of a vector in the simplex can be viewed as
proportions, this problem has a wide field of applications. The
one motivating this study is linear unmixing, which consists
in retrieving the proportions of pure elements at every pixel
of a multispectral image. Two algorithms have been proposed:
a convex optimization algorithm based on Douglas–Rachford
splitting, which converges to the exact solution; and an algorithm
which provides the exact solution in finite time, using an active set
strategy, which can be viewed as a modification of the Lawson–
Hanson nonnegative least-squares algorithm (not described here;
this was the work of Vincent Espitalier during his final master’s
project in 2015, unpublished).

I. MOTIVATION

In hyperspectral image processing, the data takes the form

of a stack of images acquired in different spectral bands; that

is, each pixel of the hyperspectral “cube” is actually a vector

whose elements are the radiance at different wavelengths,

for a given spatial location. In the linear mixture model,

which is the most widely used, the mixed spectrum in this

vector is assumed to be a linear combination of a relatively

small number of pure spectral signatures, called endmembers.

The unmixing problem, which is a key task in the analysis

chain of hyperspectral images [1], consists in identifying the

fractions, called abundances, in this linear combination. The

abundances must be nonnegative and sum up to one. This

leads to solving, for each pixel, the so-called fully constrained

least-squares problem, described in the next section. The

endmembers are known, either fixed a priori or estimated

directly from the data. This problem is traditionally solved by

using the fully constrained least-squares unmixing (FCLSU)

algorithm [2]. Several other algorithms have been proposed,

with demonstrated improvements in computational efficiency

over FCLSU [3]–[6]. But they remain expensive. This paper

aims at highlighting some aspects of the problem, which

seem to have been ignored in the literature of multispectral

unmixing.

II. PROBLEM FORMULATION

Given a spectrum vector y ∈ R
M and a dictionary matrix

A ∈ R
M×N , whose columns are the endmembers, where

M ≥ 1 is the number of spectral bands and N ≥ 1 is the

number of endmembers, the goal is to solve the constrained

least-squares optimization problem

Find x̂ ∈ argmin
x∈RN

1
2‖Ax− y‖2 s.t. x ∈ ∆, (1)

where the set

∆ =
{
x = [x1 · · · xN ]T ∈ R

N
∣∣ ∑N

n=1 xn = 1

and xn ≥ 0, ∀n = 1, . . . , N
}

(2)

is the standard, or unit, simplex of RN . Equivalently, we can

split the simplex constraint and rewrite (1) as

Find x̂ ∈ argmin
x∈RN

1
2‖Ax− y‖2 s.t. x ∈ ∆1 and x ∈ ∆+

(3)

where

∆1 ={x ∈ R
N |

∑N

n=1 xn = 1}, (4)

∆+ ={x ∈ R
N | xn ≥ 0, ∀n = 1, . . . , N

}
. (5)

Projecting a vector onto ∆1 or ∆+ is trivial:

P∆+
(y) = max(y, 0) = [max(y1, 0) · · · max(yN , 0)]T,

(6)

P∆1
(y) = y + 1

N
(1−

∑N
n=1 yn)1, (7)

where 1 = [1 · · · 1]T. But projecting onto the simplex ∆ =
∆1∩∆+ is far less trivial, although there exist fast algorithms

to perform the projection exactly and in finite time [7] (C and

Matlab code available on my webpage).

We notice that if M ≥ N and A has full column rank, i.e.

its columns are linearly independent, then the cost function

‖Ax−y‖2 is strongly convex; therefore the solution x̂ of (1)

is unique.

We can show that the simplex constraint induces sparsity:

there exists a solution x̂ with a number of nonzero elements

‖x‖0 ≤ rank(A) + 1, and except in degenerate cases, all the

solutions have this property.

So, we may distinguish two cases, which can both have a

practical interest: the overdetermined case with M ≥ N and

A of full column rank, and the underdetermined case with

M < N . In this second case, A is not of full column rank



2

and its columns are redundant; this corresponds to the search

in a large dictionary, without prior knowledge of what the

endmembers represented in y should be, but the solution is

expected to be sparse.

We can also notice that the problem (1) has the following

geometric interpretation: Ax̂ is the projection of y onto the

convex hull of the columns of A, by viewing all these vectors

as points in R
M . The algorithms which exist for this task,

like the one in [8], can be used to solve (1).

In the case of multispectral unmixing, one must solve the

problem (1) as many times as the number S of pixels in

the image, which can be large. Every time, the matrix A

is the same, but the vector ys is different. This specificity

makes it reasonable to perform some operations once for

all, like computing the matrix (ATA)−1, if this can speed

up the resolution of each problem (1). This version of (1)

with multiple right-hand-sides can be written as a constrained

matrix factorization problem [9], [10]: by putting the different

vectors ys in the columns of the matrix Y, the problem

becomes:

Find X̂ ∈ argmin
X∈RN×S

1
2‖AX−Y‖2 s.t. (8)

every column of X belongs to ∆.

Typical values of the sizes are M = 200, N = 30, S = 105,

which makes the problem quite different from solving (1)

only once but with large M and N .

We end this section with a brief review of classical opti-

mization problems, which are related to the problem (1). We

can remark that the constraints xn ≥ 0 in the simplex can be

replaced by box constraints 0 ≤ xn ≤ 1, because the sum-to-

one and nonnegativity constraints prevent any element in the

solution to be larger than one.

• If we simply minimize the least-squares 1
2‖Ax − y‖2

without any constraint, a (not necessarily unique) so-

lution is x̂ = A†y, where A† is the Moore-Penrose

pseudo-inverse of A. If ATA is invertible, then A† =
(ATA)−1AT, so that the unique solution is x̂ =
(ATA)−1ATy.

• If we keep the sum-to-one constraint and remove the

nonnegativity constraint, then the problem (1) has an

explicit solution

x̂ = Q−1ATy −
1TQ−1ATy − 1

1TQ−11
Q−11, (9)

where Q = ATA is supposed invertible.

• If the sum-to-one constraint is removed in our problem,

we end up with a nonnegative least-squares problem

(NNLS), a special case of a convex quadratic program

with box constraints [11]. A classical algorithm for

NNLS, which belongs to the family of active set methods,

is the one by Lawson and Hanson [12]. It is implemented

in Matlab by the function lsqnonneg. Faster variants

of this algorithm, particularly adequate to the case of

multiple right hand sides, have been proposed in [9],

[13]. We have modified the Lawson–Hanson algorithm

to enforce the sum-to-one constraint (unpublished work).

• The problem (3) takes the form of a quadratic program

with a single linear constraint and box constraints on the

variables [14]. This type of problem appears in other

fields of engineering, like in the training of support

vector machines (SVM), a classical technique in machine

learning with numerous applications. The idea of using

the accelerated projected gradient method for this class of

problems has appeared in [15]; we develop this strategy in

sect. III-C. The idea of using a spectral projected gradient

method for this class of problems has appeared in [14];

we develop this strategy in sect. III-D.

• Situated, in terms of complexity, between the projection

of a vector onto the simplex and the minimization of a

convex quadratic function with a single linear constraint

and box constraints, the continuous quadratic knapsack

problem has a diagonal quadratic cost function. Efficient

finite-time algorithms exist for this problem [16].

• The standard quadratic optimization problem [17] con-

sists in minimizing a quadratic function over the simplex,

but with emphasis on the difficult nonconvex case where

the function is indefinite. For this NP-hard problem, only

an approximate solution can be achieved in polynomial

time [17].

III. SOME ITERATIVE ALGORITHMS

Let us consider the generic convex optimization problem:

Find x̂ ∈ argmin
x∈RN

f(x) s.t. x ∈ Ω, (10)

where Ω ⊂ R
N is a closed convex set and f : RN → R ∪

{+∞} is a convex, lower semi-continuous [18] function, and

the set of minimizers is supposed nonempty. In order to solve

such an optimization problem, some methods will essentially

alternate between the evaluation of the gradient ∇f of the cost

function and the projection PΩ onto the constraint set. Other

methods will, instead, alternate between PΩ and the proximity

operator of f , which is defined as

proxf : RN → R
N , x 7→ argmin

x′∈RN

1
2‖x−x′‖2 + f(x′). (11)

Although this definition is implicit, there is a large class of

functions for which the proximity operator has a simple closed

form [19].

Now, there are several ways of recasting (1) or (3)

as (10), one of which is described in sect. III-B, but

the most natural choice is probably to set Ω = ∆ and

f(x) = 1
2‖Ax − y‖2 = 1

2x
TQx − bTx, where Q = ATA

is symmetric positive semi-definite and b = ATy. So,

∇f(x) = Qx− b.

We now develop some algorithms of the literature, which

converge to an exact solution of (1). We do not consider

algorithms which yield an approximate solution. For instance,

the method in [4] is based on a simplifying geometrical

assumption, causing it to return wrong results in certain cases,

as recognized by its authors [4], [5]. The well known FCLSU
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algorithm [2] is also an approximate algorithm; it is also

particularly slow.

The list of algorithms below is far from exhaustive. We can

mention, for instance, the interior point algorithm in [6].

A. Alternating Projection Unmixing (APU) Algorithm

The alternating projection unmixing (APU) algorithm has

been proposed in [5]. It is based on the observation that the

problem (1) can be interpreted as the projection of the vector

y onto a polytope of RM , whose vertices are the endmembers,

i.e. the columns of A. The sought-after abundances are simply

the barycentric coordinates of this projection with respect to

the simplex. Thus, the problem can be solved by Dykstra’s

projection algorithm, which finds the closest element in the

intersection of convex sets [18, Section 29.1].

B. Constrained Spectral Unmixing by Splitting and Aug-

mented Lagrangian (C-SUnSAL) Algorithm

The alternating direction method of multipliers (ADMM)

[20] enables to solve a class of optimization problems,

including (10) as particular case, for which it can take the

following form, used in [3]:

ADMM algorithm

input: the initial estimate x(0) ∈ Ω, the number of iterations

J , the parameters γ > 0.

output: the final estimate x(J) of a solution to (10).

1. Choose u(0) and v(0).

2. for j = 1, . . . , J , do

3. set x(j) = proxγf(u
(j−1) + v(j−1)).

4. set u(j) = PΩ(x
(j) − v(j−1)).

5. set v(j) = v(j−1) − x(j) + u(j).

6. end for

In [3], the ADMM is applied to the unmixing problem by

identifying (10) not with (1), but instead with (3), as follows:

• Ω = ∆+.

• f(x) = 1
2‖Ax−y‖2+ı∆1

(x), where ı∆1
(x) = {0 if x ∈

∆1,+∞ else}. We have

proxγf (x) = Hw −
1THw− 1

1TH1
H1, (12)

where H = (γATA+ I)−1 and w = x+ γATy.

It is known that the ADMM is equivalent to the Douglas–

Rachford algorithm, which we describe in sect. IV, but which

we apply differently.

C. Accelerated Projected Gradient Unmixing (APGU) Algo-

rithm

Let us suppose that, in the problem (10), f : RN → R is

convex and differentiable with β-Lipschitz continuous gradi-

ent, for some β > 0; that is

‖∇f(x)−∇f(x′)‖ ≤ β‖x− x′‖, ∀x,x′ ∈ R
N . (13)

Moreover, f is said to be µ-strongly convex, for some µ > 0,

if the function x 7→ f(x)− µ
2 ‖x‖

2 is convex. For convenience,

we extend this definition to the case µ = 0 of mere convexity.

In this setting, the accelerated projected gradient (APG)

algorithm to solve (10) is the following [21, Algorithm 4]:

APG algorithm

input: the initial estimate x(0) ∈ Ω, the number of iterations

J , the Lipschitz constant β > 0 and the strong convexity

constant µ ≥ 0.

output: the final estimate x(J) of a solution to (10).

1. set u(0) = x(0) and α0 = 1.

2. for j = 1, . . . , J , do

3. set x(j) = PΩ

(
u(j−1) − 1

β+µ
∇f(u(j−1))

)
.

4. set αj as the nonnegative root of

α2
j + αj(α

2
j−1 −

µ
β+µ

)− α2
j−1 = 0.

5. set γj = αj−1(1 − αj−1)/(α
2
j−1 + αj).

6. set u(j) = x(j) + γj(x
(j) − x(j−1)).

7. end for

The convergence results for Algorithm 2 are the following

[21, Proposition 5.1]:

• If µ = 0, then for every iterate x(j), j ≥ 1 and for every

x̂ solution to (10), we have:

f(x(j))− f(x̂) ≤
2β‖x(0) − x̂‖2

(j + 2)2
. (14)

• In the more favorable case µ > 0, the solution x̂ to (10)

is unique and the estimate x(j) converges linearly to x̂:

for every j ≥ 1,

µ

2
‖x(j) − x̂‖2 ≤ f(x(j))− f(x̂) (15)

≤

(
1−

√
µ

β + µ

)j−1
β‖x(0) − x̂‖2

2
. (16)

In our case, by identifying (1) and (10), we have:

• Ω = ∆,

• f(x) = 1
2‖Ax− y‖2, with ∇f(x) = ATAx−ATy,

• β = ‖ATA‖ = σ2
max, where σmax is the largest singular

value of A,

• µ = {σ2
min if M ≥ N , 0 else}, where σmin is the smallest

singular value of A.

D. Spectral Projected Gradient Unmixing (SPGU) Algorithm

The spectral projected gradient (SPG) method to solve

(10), with a differentiable function f , is the following:

SPG algorithm

input: the initial estimate x(0) ∈ Ω, the number of iterations

J , the parameters αmin, αmax.

output: the final estimate x(J) of a solution to (10).

1. choose α1 ∈ [αmin, αmax].
2. for j = 1, . . . , J , do

3. set d(j) = PΩ

(
x(j−1) − αj∇f(x(j−1))

)
− x(j−1).

4. determine λj ∈ (0, 1] by linesearch.

5. set x(j) = x(j−1) + λjd
(j).

1. using some rule, determine αj+1 ∈ [αmin, αmax].
6. end for
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The success of SPG in numerous applications stems from

the particularly efficient rule for the stepsize αj proposed by

Barzilai and Borwein [22].

To solve (1) with SPG, we agin set Ω = ∆ and f(x) =
1
2‖Ax − y‖2. We refer to [23] and [14] for more details on

the method.

IV. PROPOSED DOUGLAS–RACHFORD UNMIXING (DRU)

ALGORITHM

The Douglas–Rachford algorithm is a well known splitting

method for optimization [18, Section 27.2] [19]. Applied to

the problem (10), it takes the following form:

DR algorithm

input: the initial estimate x(0) ∈ Ω, the number of iterations

J , the parameters γ > 0 and λ ∈ ]0, 2[.

output: the final estimate x(J) of a solution to (10).

1. set v(0) = x(0).

2. for j = 1, . . . , J , do

3. set u(j) = proxγf (2x
(j−1) − v(j−1)).

4. set v(j) = v(j−1) + λ(u(j) − x(j−1)).
5. set x(j) = PΩ(v

(j)).
6. end for

In our case, by identifying (1) and (10), we have:

• Ω = ∆,

• f(x) = 1
2‖Ax− y‖2, with

proxγf(x) = (γATA+ I)−1(x+ γATy). (17)

The algorithm is proved to converge; that is, the estimate

x(j) converges to a solution x̂ of (1) as j → +∞.

In order to compute the proximity operator at each iteration,

the matrix H = (γATA + I)−1, of size N × N , can be

computed and stored once for all, as well as the vector

b = γATy. Then, at every iteration, the proximity operator is

reduced to a matrix-vector multiplication, with computation

time O(N2). If computing this inverse is too costly, it is

possible to compute, instead, the QR factorization or the SVD

of A. The pros and cons of each alternative depend on the

values of M and N .

An initial estimate x(0) of the solution is needed in the algo-

rithm. We suggest to compute the unconstrained solution and

to project it onto the simplex: x(0) = P∆

(
(ATA)−1ATy

)
.

Some further algorithmic aspects are detailed in the remain-

der of this section. Some tests made by Xiyan He show that the

proposed DRU algorithm (we recommend setting λ = 1.9; γ
must be tuned on a case-by-case basis) is faster than the APG

and ADMM algorithms discussed in the previous section.

A. Removing y

Set Ã = A − y1T, where 1 is the vector of size N with

all elements equal to one. That is, Ã is A after subtracting y

to every column. Then, for every x ∈ ∆1, we have 1
2‖Ax −

y‖2 = 1
2‖Ãx‖2. This trick allows to remove the need to store

and add or subtract at every iteration y or b = ATy. But Ã

depends on y, so this strategy may not be appropriate in the

case of multiple right hand sides.

B. Modification of A

In this section, we show an important and largely ignored

property, which is that the cost function Ψ(x) = 1
2‖Ax−y‖2

in (1) can be replaced by another one, without changing the

solution set of the problem, but with improving the problem

conditioning. Let A′ be equal to A after subtracting the

average of its columns to every column; that is,

A′ = A−
1

N
A11T, (18)

where 1 is the vector of size N with all elements equal to one.

We also define y′ by subtracting this same average column to

y; that is,

y′ = y −
1

N
A1. (19)

Then, for every x ∈ ∆1, we have

Ax− y = A′x− y′. (20)

Indeed, A′x − y′ = Ax − 1
N
A11Tx − y + 1

N
A1 = Ax −

1
N
A1− y + 1

N
A1 = Ax− y.

Moreover, for every x ∈ R
N , A′x does not depend on 1Tx:

for every c ∈ R, A′(x + c1) = A′x. Indeed, A′(x + c1) =
A′x+ cA1− c

N
A11T1 = A′x+ cA1− cA1 = A′x.

Furthermore, we can define the cost function

Ψ′′(x) =
1

2
‖A′x− y′‖2 +

η

2
(1Tx− 1)2, (21)

for some real η > 0. Clearly, if 1Tx = 1, Ψ(x) = Ψ′(x) =
Ψ′′(x), but else, minimizing Ψ′′ will tend to move x closer

to ∆1. In addition, the unconstrained minimization of Ψ′′

automatically yields a vector in ∆1.

Finally, we note that we can develop Ψ′′ as

Ψ′′(x) =
1

2
xTQ′x− b′Tx

(
+

η

2

)
, (22)

where Q′ = A′TA′+η11T and b′ = A′Ty′+η1. Moreover,

Q′ and b′ can be expressed directly in terms of Q and b:

b′ = ATy− 1
N
11TATy− 1

N
ATA1+ 1

N2 11
TATA1+η1 =

b− 1
N
Q1+ ( 1

N21
TQ1− 1

T
b

N
+ η)1.
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