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ABSTRACT

Proximal splitting algorithms are well suited to solving large-scale nonsmooth
optimization problems, in particular those arising in machine learning. We propose
a new primal–dual algorithm, in which the dual update is randomized; equivalently,
the proximity operator of one of the function in the problem is replaced by a
stochastic oracle. For instance, some randomly chosen dual variables, instead of
all, are updated at each iteration. Or, the proximity operator of a function is called
with some small probability only. A nonsmooth variance-reduction technique
is implemented so that the algorithm finds an exact minimizer of the general
problem involving smooth and nonsmooth functions, possibly composed with linear
operators. We derive linear convergence results in presence of strong convexity;
these results are new even in the deterministic case, when our algorithms reverts
to the recently proposed Primal–Dual Davis–Yin algorithm. Some randomized
algorithms of the literature are also recovered as particular cases (e.g., Point-SAGA).
But our randomization technique is general and encompasses many unbiased
mechanisms beyond sampling and probabilistic updates, including compression.
Since the convergence speed depends on the slowest among the primal and dual
contraction mechanisms, the iteration complexity might remain the same when
randomness is used. On the other hand, the computation complexity can be
significantly reduced. Overall, randomness helps getting faster algorithms. This
has long been known for stochastic-gradient-type algorithms, and our work shows
that this fully applies in the more general primal–dual setting as well.

1 INTRODUCTION

Optimization problems arise virtually in all quantitative fields, including machine learning, data
science, statistics, and many other areas (Palomar & Eldar, 2009; Sra et al., 2011; Bach et al.,
2012; Cevher et al., 2014; Polson et al., 2015; Bubeck, 2015; Glowinski et al., 2016; Chambolle &
Pock, 2016; Stathopoulos et al., 2016). In the big data era, they tend to be very high-dimensional,
and first-order methods are particularly appropriate to solve them. When a function is smooth, an
optimization algorithm typically makes calls to its gradient, whereas for a nonsmooth function, its
proximity operator is called instead. Iterative optimization algorithms making use of proximity
operators are called proximal (splitting) algorithms (Parikh & Boyd, 2014). Over the past 10 years
or so, primal–dual proximal algorithms have been developed and are well suited for a broad class
of large-scale optimization problems involving several functions, possibly composed with linear
operators (Combettes & Pesquet, 2010; Boţ et al., 2014; Parikh & Boyd, 2014; Komodakis & Pesquet,
2015; Beck, 2017; Condat et al., 2023a; Combettes & Pesquet, 2021; Condat et al., 2022c).

However, in many situations, these deterministic algorithms are too slow, and this is where ran-
domized algorithms come to the rescue; they are variants of the deterministic algorithms with a
cheaper iteration complexity, obtained by calling a random subset, instead of all, of the operators
or updating a random subset, instead of all, of the variables, at every iteration. Stochastic Gradient
Descent (SGD)-type methods (Robbins & Monro, 1951; Nemirovski et al., 2009; Bottou, 2012;
Gower et al., 2020; Gorbunov et al., 2020; Khaled et al., 2020b) are a prominent example, with
the huge success we all know. They consist in replacing a call to the gradient of a function, which
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can be itself a sum or expectation of several functions, by a cheaper stochastic gradient estimate.
By contrast, replacing the proximity operator of a possibly nonsmooth function by a stochastic
proximity operator estimate is a nearly virgin territory. This is an important challenge, because
many functions of practical interest have a proximity operator, which is expensive to compute. We
can mention the nuclear norm of matrices, which requires singular value decompositions, indicator
functions of sets on which it is difficult to project, or optimal transport costs (Peyré & Cuturi, 2019).

In this paper, we propose RandProx (Algorithm 2), a randomized version of the Primal–Dual Davis–
Yin (PDDY) method (Algorithm 1), which is a proximal algorithm proposed recently (Salim et al.,
2022b) and further analyzed in Condat et al. (2022c). In RandProx, one proximity operator that
appears in the PDDY algorithm is replaced by a stochastic estimate. RandProx is variance-reduced
(Hanzely & Richtárik, 2019; Gorbunov et al., 2020; Gower et al., 2020); that is, through the use
of control variates, the random noise is mitigated and eventually vanishes, so that the algorithm
converges to an exact solution, just like its deterministic counterpart. Algorithms with stochastic
errors in the computation of proximity operators have been studied, for instance in Combettes &
Pesquet (2016), but the errors are typically assumed to decay or some stepsizes are made decaying
along the iterations, with a certain rate. By contrast, in variance-reduced algorithms such as RandProx,
which has fixed stepsizes, error compensation is automatic.

We analyze RandProx and prove its linear convergence in the strongly convex setting, with additional
results in the convex setting; we leave the nonconvex case, which requires different proof techniques,
for future work. We mention relationships between our results and related works in the literature
throughout the paper. In special cases, RandProx reduces to Point-SAGA (Defazio, 2016), the
Stochastic Decoupling Method (Mishchenko & Richtárik, 2019), ProxSkip, SplitSkip and Scaffnew
(Mishchenko et al., 2022), and randomized versions of the PAPC (Drori et al., 2015), PDHG
(Chambolle & Pock, 2011) and ADMM (Boyd et al., 2011) algorithms. They are all generalized
and unified within our new framework. Thus, RandProx paves the way to the design of proximal
counterparts of variance-reduced SGD-type algorithms, just like Point-SAGA (Defazio, 2016) is the
proximal counterpart of SAGA (Defazio et al., 2014).

2 PROBLEM FORMULATION

Let X and U be finite-dimensional real Hilbert spaces. We consider the generic convex optimization
problem:

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x) + h(Kx)

)
, (1)

where K : X → U is a nonzero linear operator; f is a convex Lf -smooth function, for some Lf > 0;
that is, its gradient ∇f is Lf -Lipschitz continuous (Bauschke & Combettes, 2017, Definition 1.47);
and g : X → R ∪ {+∞} and h : U → R ∪ {+∞} are proper closed convex functions whose
proximity operator is easy to compute.

We will assume strong convexity of some functions: a convex function ϕ is said to be µϕ-strongly
convex, for some µϕ ≥ 0, if ϕ − µϕ

2 ∥ · ∥2 is convex. This covers the case µϕ = 0, in which ϕ is
merely convex.

2.1 PROXIMITY OPERATORS AND PROXIMAL ALGORITHMS

We recall that for any function ϕ and parameter γ > 0, the proximity operator of γϕ is (Bauschke &
Combettes, 2017): proxγϕ : x ∈ X 7→ argminx′∈X

(
γϕ(x′) + 1

2∥x
′ − x∥2

)
. This operator has a

closed form for many functions of practical interest (Parikh & Boyd, 2014; Pustelnik & Condat, 2017;
Gheche et al., 2018), see also the website http://proximity-operator.net. In addition,
the Moreau identity holds:

proxγϕ∗(x) = x− γ proxϕ/γ(x/γ),

where ϕ∗ : x ∈ X 7→ supx′∈X
(
⟨x, x′⟩ − ϕ(x′)

)
denotes the conjugate function of ϕ (Bauschke &

Combettes, 2017). Thus, one can compute the proximity operator of ϕ from the one of ϕ∗, and
conversely.
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Proximal splitting algorithms, such as the forward–backward and the Douglas–Rachford algorithms
(Bauschke & Combettes, 2017), are well suited to minimizing the sum, f + g or g+h in our notation,
of two functions. However, many problems take the form (1) with K ̸= Id, where Id denotes the
identity, and the proximity operator of h ◦K is intractable in most cases. A classical example is the
total variation, widely used in image processing (Rudin et al., 1992; Caselles et al., 2011; Condat,
2014; 2017) or for regularization on graphs (Couprie et al., 2013), where h is some variant of the ℓ1
norm and K takes differences between adjacent values. Another example is when h is the indicator
function of some nonempty closed convex set Ω ⊂ U ; that is, h(u) = (0 if u ∈ Ω, +∞ otherwise),
in which case the problem (1) can be rewritten as

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x)

)
s.t. Kx ∈ Ω.

If g = 0 and Ω = {b} for some b ∈ ran(K), where ran denotes the range, the problem can be further
rewritten as the linearly constrained smooth minimization problem

Find x⋆ ∈ argmin
x∈X

f(x) s.t. Kx = b.

This last problem has applications in decentralized optimization, for instance (Xin et al., 2020;
Kovalev et al., 2020; Salim et al., 2022a). Thus, the template problem (1) covers a wide range of
optimization problems met in machine learning (Bach et al., 2012; Polson et al., 2015), signal and
image processing (Combettes & Pesquet, 2010; Chambolle & Pock, 2016), control (Stathopoulos
et al., 2016), and many other fields. Examples include compressed sensing (Candès et al., 2006),
object discovery in computer vision (Vo et al., 2019), ℓ1 trend filtering (Kim et al., 2009), group lasso
(Yuan & Lin, 2006), square-root lasso (Belloni et al., 2011), Dantzig selector (Candès & Tao, 2007),
and support-vector machines (Cortes & Vapnik, 1995).

2.2 THE DUAL PROBLEM, SADDLE-POINT REFORMULATION, AND OPTIMALITY CONDITIONS

In order to analyze algorithms solving such problems, we introduce the dual problem to (1):

Find u⋆ ∈ argmin
u∈U

(
(f + g)∗(−K∗u) + h∗(u)

)
, (2)

where K∗ : U → X is the adjoint operator of K. We can also express the primal and dual problems
as a combined saddle-point problem:

Find (x⋆, u⋆) ∈ argmin
x∈X

max
u∈U

(
f(x) + g(x) + ⟨Kx, u⟩ − h∗(u)

)
. (3)

For these problems to be well-posed, we suppose that there exists x⋆ ∈ X such that

0 ∈ ∇f(x⋆) + ∂g(x⋆) +K∗∂h(Kx⋆), (4)

where ∂(·) denotes the subdifferential (Bauschke & Combettes, 2017). By Fermat’s rule, every x⋆

satisfying (4) is a solution to (1). Equivalently to (4), we suppose that there exists (x⋆, u⋆) ∈ X × U
such that {

0 ∈ ∇f(x⋆) + ∂g(x⋆) +K∗u⋆

0 ∈ −Kx⋆ + ∂h∗(u⋆)
. (5)

Every (x⋆, u⋆) satisfying (5) is a primal–dual solution pair; that is, x⋆ is a solution to (1), u⋆ is a
solution to (2), and (x⋆, u⋆) is a solution to (3).

3 PROPOSED ALGORITHM: RandProx

There exist several deterministic algorithms for solving the problem (1); see Condat et al. (2023a)
for a recent overview. In this work, we focus on the PDDY algorithm (Algorithm 1) (Salim et al.,
2022b; Condat et al., 2022c). In particular, our new algorithm RandProx (Algorithm 2) generalizes
the PDDY algorithm with a stochastic estimate of the proximity operator of h∗.
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Algorithm 1 PDDY algorithm
(Salim et al., 2022b)

input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0
v0 := K∗u0

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
ut+1 := proxτh∗

(
ut + τKx̂t

)
vt+1 := K∗ut+1

xt+1 := x̂t − γ(vt+1 − vt)
end for

Algorithm 2 RandProx
[new]

input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; ω ≥ 0

v0 := K∗u0

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
ut+1 := ut + 1

1+ωR
t
(
proxτh∗(ut+τKx̂t)− ut

)
vt+1 := K∗ut+1

xt+1 := x̂t − γ (1 + ω) (vt+1 − vt)
end for

3.1 THE PDDY ALGORITHM

We recall the general convergence result for the PDDY algorithm (Condat et al., 2022c, Theorem 2):

If γ ∈ (0, 2/Lf ), τ > 0, τγ∥K∥2 ≤ 1, then (xt)t∈N converges to a primal solution
x⋆ of (1) and (ut)t∈N converges to a dual solution u⋆ of (2).

The PDDY algorithm is similar and closely related to the PD3O algorithm (Yan, 2018), as discussed
in Salim et al. (2022b); Condat et al. (2022c). It is also an instance (Algorithm 5) of the Asymmetric
Forward–Backward Adjoint (AFBA) framework of Latafat & Patrinos (2017). We note that the
popular Condat–Vũ algorithm (Condat, 2013; Vũ, 2013) can solve the same problem but has more
restrictive conditions on γ and τ .

In the PDDY algorithm, the full gradient ∇f can be replaced by a stochastic estimator which is
typically cheaper to compute (Salim et al., 2022b). Convergence rates and accelerations of the PDDY
algorithm, as well as distributed versions of the algorithm, have been derived in Condat et al. (2022c).
In particular, if µf > 0 or µg > 0, the primal problem (1) is strongly convex. In this case, a varying
stepsize strategy accelerates the algorithm, with a O(1/t2) decay of ∥xt − x⋆∥2, where x⋆ is the
unique solution to (1). But strong convexity of the primal problem is not sufficient for the PDDY
algorithm to converge linearly, and additional assumptions on h and K are needed. We will prove
linear convergence when both the primal and dual problems are strongly convex; this is a natural
condition for primal–dual algorithms.

We note that h is Lh-smooth, for some Lh > 0, if and only if h∗ is µh∗-strongly convex, for some
µh∗ > 0, with µh∗ = 1/Lh. In that case, the dual problem (2) is strongly convex.

3.2 RANDOMIZATION MECHANISM FOR THE PROXIMITY OPERATOR OF h∗

We propose RandProx (Algorithm 2), a generalization of the PDDY algorithm (Algorithm 1) with
a randomized update of the dual variable u. Let us formalize the random operations using random
variables and stochastic processes. We introduce the underlying probability space (S,F , P ). Given
a real Hilbert space H, an H-valued random variable is a measurable map from (S,F) to (H,B),
where B is the Borel σ-algebra of H. Formally, randomizing some steps in the PDDY algorithm
amounts to defining

(
(xt, ut)

)
t∈N as a stochastic process, with xt being a X -valued random variable

and ut a U -valued random variable, for every t ≥ 0. We use light notations and write our randomized
algorithm RandProx using stochastic operators Rt on U ; that is, for every t ≥ 0 and any rt ∈ U ,
Rt(rt) is a U -valued random variable, which can be interpreted as rt plus ‘random noise’ (formally,
rt is itself a U-valued random variable, but algorithmically, Rt is applied to a particular outcome in
U , hence the notation as an operator on U). To fix the ideas, let us give two examples.

Example 1. The first example is compression (Alistarh et al., 2017; 2018; Horváth et al., 2022;
Mishchenko et al., 2019; Albasyoni et al., 2020; Beznosikov et al., 2020; Condat et al., 2022b):
U = Rd for some d ≥ 1 and Rt is the well known rand-k compressor or sparsifier, with 1 ≤ k < d:
Rt multiplies k coordinates, chosen uniformly at random, of the vector rt by d/k and sets the other
ones to zero. An application to compressed communication is discussed in Section A.3.
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Example 2. The second example, discussed in Section A.1, is the Bernoulli, or coin flip, operator

Rt : rt 7→

{
1
pr

t with probability p,

0 with probability 1− p,
(6)

for some p > 0. In that case, with probability 1− p, the outcome of Rt(rt) is 0 and rt does not need
to be calculated; in particular, in the RandProx algorithm, proxτh∗ is not called, and this is why one
can expect the iteration complexity of RandProx to decrease. Thus, in this example, Rt(rt) does
not really consist of applying the operator Rt to rt; in general, the notation Rt(rt) simply denotes a
stochastic estimate of rt.

Example 3. The third example, discussed in Section A.2, is sampling, which makes it possible to
solve problems involving a sum

∑n
i=1 hi of functions, by calling the proximity operator of only one

randomly chosen function hi, instead of all functions, at every iteration. The Point-SAGA algorithm
(Defazio, 2016) is recovered as a particular case of RandProx in this setting.

Hereafter, we denote by Ft the σ-algebra generated by the collection of (X × U)-valued random
variables (x0, u0), . . . , (xt, ut), for every t ≥ 0. In this work, we consider unbiased random
estimates: for every t ≥ 0,

E
[
Rt(rt) | Ft

]
= rt,

where E[·] denotes the expectation, here conditionally on Ft, and rt is the random variable

rt := proxτh∗(ut + τKx̂t)− ut,

as defined by RandProx. Note that our framework is general in that for t ̸= t′, Rt and Rt′ need not
be independent nor have the same law. In simple words, at every iteration, the randomness is new but
can have a different form and depend on the past, so that the operators Rt can be defined dynamically
on the fly in RandProx.

We characterize the operators Rt by their relative variance ω ≥ 0 such that, for every t ≥ 0,

E
[∥∥Rt(rt)− rt

∥∥2 | Ft

]
≤ ω

∥∥rt∥∥2 . (7)

This assumption is satisfied by a large class of randomization strategies, which are widely used
to define unbiased stochastic gradient estimates. We refer to Beznosikov et al. (2020), Table 1 in
Safaryan et al. (2021), Zhang et al. (2023), Szlendak et al. (2022) for examples. In the Example 1
above of rand-k, ω = d

k − 1. In Example 2, ω = 1
p − 1. In Example 3, ω = n − 1. The value

of ω is supposed known and is used in the RandProx algorithm. Note that ω = 0 if and only if
Rt = Id, in which case there is no randomness and RandProx reverts to the original deterministic
PDDY algorithm.

Thus, Rt(rt) = rt + et, with the variance of the error et proportional to ∥rt∥2. In particular, if
rt = 0, there is no error and Rt(0) = 0. The stochastic operators Rt will be applied to a sequence
of random vectors that will converge to zero, and hence the error will converge to zero as well, due
to the relative variance property (7). RandProx is therefore a variance-reduced method (Hanzely
& Richtárik, 2019; Gorbunov et al., 2020; Gower et al., 2020): the random errors vanish along the
iterations and the algorithm converges to an exact solution of the problem.

To characterize how the error on the dual variable propagates to the primal variable after applying
K∗, we also introduce the relative variance ωran ≥ 0 in the range of K∗ and the offset ζ ∈ [0, 1]
such that, for every t ≥ 0,

E
[∥∥K∗(Rt(rt)− rt

)∥∥2 | Ft

]
≤ ωran

∥∥rt∥∥2 − ζ
∥∥K∗rt

∥∥2 . (8)

It is easy to see that (8) holds with ωran = ∥K∥2ω and ζ = 0, so this is the default choice without
particular knowledge on K∗. But in some situations, e.g. sampling like in Section A.2, a much
smaller value of ωran and a positive value of ζ can be derived.
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3.3 DESCRIPTION OF THE ALGORITHM

Let us now describe how the PDDY and RandProx algorithms work. An iteration consists in 3 steps:

1. Given xt and ut, the updated value of the primal variable is predicted to be x̂t.
2. The points x̂t and ut are used to update the dual variable to its new value ut+1.
3. The primal variable is corrected from x̂t to xt+1, by back-propagating the difference

ut+1 − ut using K∗.

In RandProx, randomization takes place in Step 2. On average, this decreases the progress from ut

to ut+1, and in turn from x̂t to xt+1 in Step 3, but the progress from xt to x̂t, due to the unaltered
proximal gradient descent step in Step 1, is kept. Therefore, randomization can be used to balance the
progress speed on the primal and dual variables, depending on the relative computational complexity
of the gradient and proximity operators. The random errors are kept under control and convergence is
ensured using underrelaxation: let us define, for every t ≥ 0,

ût+1 := proxτh∗

(
ut + τKx̂t

)
. (9)

The PDDY algorithm updates the dual variable by setting ut+1 := ût+1. In RandProx, let us define

ũt+1 := ut +Rt
(
ût+1 − ut

)
= ût+1 + et

for some zero-mean random error et, keeping in mind that ũt+1 is typically cheaper to compute than
ût+1. Then underrelaxation is applied: we set

ut+1 := ρũt+1 + (1− ρ)ut (10)

for some relaxation parameter ρ ∈ (0, 1]; we use ρ = 1
1+ω in the algorithm. That is, the update

of the dual variable consists in a convex combination of the old estimate ut and the new, better in
expectation but noisy, estimate ũt+1. Noise is mitigated by underrelaxation, because the error et is
multiplied by ρ, so that its variance is multiplied by ρ2. So, even if ω is arbitrarily large, ωρ2 is kept
small. Underrelaxation slows down the progress on the dual variable of the algorithm towards the
solution, but if the iterations become faster, this is beneficial overall.

4 CONVERGENCE ANALYSIS OF RandProx

Our most general result, whose proof is in the Appendix, is the following:

Theorem 1. Suppose that µf > 0 or µg > 0, and that µh∗ > 0. In RandProx, suppose that
0 < γ < 2

Lf
, τ > 0, and γτ

(
(1− ζ)∥K∥2 + ωran

)
≤ 1, where ωran and ζ are defined in (8).1 For

every t ≥ 0, define the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
1

τ
+ 2µh∗

)∥∥ut − u⋆
∥∥2 , (11)

where x⋆ and u⋆ are the unique solutions to (1) and (2), respectively. Then RandProx converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (12)

where

c := max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
< 1. (13)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

In Theorem 1, if γ ≤ 2
Lf+µf

, we have max(1− γµf , γLf − 1)2 = (1− γµf )
2 ≤ 1− γµf , so that

in that case the rate c in (13) satisfies

c ≤ 1−min

(
γ(µf + µg)

1 + γµg
,

2τµh∗

(1 + ω)(1 + 2τµh∗)

)
< 1.

1The condition γ < 2
Lf

is given for simplicity. Larger values of γ can be used when µg > 0, as long as
c < 1 in (13).
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Table 1: The different particular cases of the problem (1) for which we derive an instance of RandProx,
with the number of the theorem where its linear convergence is stated, and the corresponding condition
on h and K. λ is a shorthand notation for λmin(KK∗) and ı{b} : x 7→ (0 if x = b, +∞ otherwise).

f g h K
Deterministic

algorithm
Randomized

algorithm Theorem Condition ensuring
linear convergence

any any any any PDDY RandProx 1 µh∗ > 0
any 0 any any PAPC RandProx 2 µh∗ >0 or λ>0
any 0 any Id forward-backward (FB) RandProx-FB 3 —
any 0 ı{b} any PAPC RandProx-LC 4 —
0 any any any Chambolle–Pock (CP) RandProx-CP 7 µh∗ > 0
0 any any Id ADMM RandProx-ADMM 8 µh∗ > 0

any any any Id Davis–Yin (DY) RandProx-DY 9 µh∗ > 0

Remark 1 (choice of τ ) Given γ, the rate c in (13) is smallest if τ is largest. So, there seems to be no
reason to take τγ

(
(1− ζ)∥K∥2 + ωran

)
< 1, and τγ

(
(1− ζ)∥K∥2 + ωran

)
= 1 should be the best

choice in most cases. Thus, one can set τ = 1
γ((1−ζ)∥K∥2+ωran)

and keep γ as the only parameter to
tune in RandProx.

In the rest of this section, we discuss some particular cases of (1), for which we derive stronger
convergence guarantees than in Theorem 1 for RandProx. Other particular cases are studied in the
Appendix; for instance, an instance of RandProx, called RandProx-ADMM, is a randomized version
of the popular ADMM (Boyd et al., 2011). The different particular cases are summarized in Table 1.

4.1 PARTICULAR CASE g = 0

In this section, we assume that g = 0. Then the PDDY algorithm becomes an algorithm proposed for
least-squares problems (Loris & Verhoeven, 2011) and rediscovered independently as the PDFP2O
algorithm (Chen et al., 2013) and as the Proximal Alternating Predictor-Corrector (PAPC) algo-
rithm (Drori et al., 2015); let us call it the PAPC algorithm. It has been shown to have a primal–dual
forward–backward structure (Combettes et al., 2014). Thus, when g = 0, RandProx is a randomized
version of the PAPC algorithm.

We note that f∗ is strongly convex, which is not the case of (f + g)∗ in general. Let us define
λmin(KK∗) as the smallest eigenvalue of KK∗. λmin(KK∗) > 0 if and only if ker(K∗) = {0},
where ker denotes the kernel. If λmin(KK∗) > 0, f∗(−K∗·) is strongly convex. Thus, when g = 0,
λmin(KK∗) > 0 and µh∗ > 0 are two sufficient conditions for the dual problem (2) to be strongly
convex. We indeed get linear convergence of RandProx in that case:

Theorem 2. Suppose that g = 0, µf > 0, and that λmin(KK∗) > 0 or µh∗ > 0. In RandProx,
suppose that 0 < γ < 2

Lf
, τ > 0 and γτ

(
(1 − ζ)∥K∥2 + ωran

)
≤ 1. Then RandProx converges

linearly: for every t ≥ 0, E[Ψt] ≤ ctΨ0, where the Lyapunov function Ψt is defined in (11), and

c := max

(
(1− γµf )

2, (γLf − 1)2, 1− 2τµh∗ + γτλmin(KK∗)

(1 + ω)(1 + 2τµh∗)

)
< 1. (14)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

When Rt = Id and ω = ωran = 0, RandProx reverts to the PAPC algorithm. Even in this particular
case, Theorem 2 proves linear convergence of the PAPC algorithm and is new. In Chen et al. (2013,
Theorem 3.7), the authors proved linear convergence of an underrelaxed version of the algorithm;
underrelaxation slows down convergence. In Luke & Shefi (2018), Theorem 3.1 is wrong, since it is
based on the false assumption that if λmin(KiK

∗
i ) > 0 for linear operators Ki, i = 1, . . . , p, then

λmin(KK∗) > 0, with K : x 7→ (K1x, . . . ,Kpx). Their theorem remains valid when p = 1, but
their rate is complicated and worse than ours.

We now consider the even more particular case of g = 0 and K = Id. Then the problems (1) and (2)
consist in minimizing f(x) + h(x) and f∗(−u) + h∗(u), respectively. The dual problem is strongly
convex and has a unique solution u⋆ = −∇f(x⋆), for any primal solution x⋆. By setting τ := 1/γ
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Algorithm 3 RandProx-FB [new]
input: initial points x0 ∈ X , u0 ∈ X ;
stepsize γ > 0; ω ≥ 0
for t = 0, 1, . . . do
x̂t := xt − γ∇f(xt)− γut

dt := Rt
(
x̂t − proxγ(1+ω)h(x̂

t + γ(1 + ω)ut)
)

ut+1 := ut + 1
γ(1+ω)2 d

t

xt+1 := x̂t − 1
1+ωd

t

end for

Algorithm 4 RandProx-LC [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; ω ≥ 0
v0 := K∗u0

for t = 0, 1, . . . do
x̂t := xt − γ∇f(xt)− γvt

ut+1 := ut + τ
1+ωR

t(Kx̂t − b)

vt+1 := K∗ut+1

xt+1 := x̂t − γ(1 + ω)(vt+1 − vt)
end for

in the PAPC algorithm, we obtain the classical proximal gradient, a.k.a. forward-backward (FB),
algorithm, which iterates xt+1 := proxγh

(
xt − γ∇f(xt)

)
. Thus, when randomness is introduced,

we set ωran := ω, ζ := 0 and, according to Remark 1, τ := 1
γ(1+ω) in RandProx. By noting that,

for every a > 0, the abstract operators Rt and aRt
(
1
a ·
)

have the same properties, we can put the
constant γ(1 + ω) outside Rt to simplify the algorithm, and rewrite RandProx as RandProx-FB,
shown above. As a corollary of Theorem 2, we have:

Theorem 3. Suppose that µf > 0. In RandProx-FB, suppose that 0 < γ < 2
Lf

. For every t ≥ 0,
define the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
γ(1 + ω) + 2µh∗

) ∥∥ut − u⋆
∥∥2 , (15)

where x⋆ is the unique minimizer of f+h and u⋆ = −∇f(x⋆) is the unique minimizer of f∗(−·)+h∗.
Then RandProx-FB converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0,

where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1−
1 + 2

γµh∗

(1 + ω)
(
1 + ω + 2

γµh∗
)) < 1. (16)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

It is important to note that it is not necessary to have µh∗ > 0 in Theorem 3. If we ignore the
properties of h∗, the third factor in (16) can be replaced by its upper bound 1− 1

(1+ω)2 .

4.2 LINEARLY CONSTRAINED SMOOTH MINIMIZATION

Let b ∈ ran(K). In this section, we consider the linearly constrained (LC) minimization problem

Find x⋆ ∈ argmin
x∈X

f(x) s.t. Kx = b, (17)

which is a particular case of (1) with g = 0 and h : u ∈ U 7→ (0 if u = b, +∞ otherwise). We have
h∗ : u ∈ U 7→ ⟨u, b⟩ and proxτh∗ : u ∈ U 7→ u− τb. The dual problem to (17) is

Find u⋆ ∈ argmin
u∈U

(
f∗(−K∗u) + ⟨u, b⟩

)
. (18)

We denote by u⋆
0 the unique solution to (18) in ran(K). Then the set of solutions of (18) is the affine

subspace u⋆
0 + ker(K∗). Thus, the dual problem is not strongly convex, unless ker(K∗) = {0}. Yet,

we will see that strong convexity of f is sufficient to have linear convergence of RandProx, without
any condition on K.

We rewrite RandProx in this setting as RandProx-LC, shown above. We observe that ut does not
appear in the argument of Rt any more, so that the iteration can be rewritten with the variable
vt = K∗ut, and ut can be removed if we are not interested in estimating a dual solution. In any case,
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we denote by Pran(K) the orthogonal projector onto ran(K) and by λ+
min(KK∗) > 0 the smallest

nonzero eigenvalue of KK∗. Then:

Theorem 4. In the setup (17)–(18), suppose that µf > 0. In RandProx-LC, suppose that 0 < γ < 2
Lf

,

τ > 0 and γτ
(
(1− ζ)∥K∥2 + ωran

)
≤ 1. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + 1 + ω

τ

∥∥ut
0 − u⋆

0

∥∥2 , (19)

where ut
0 := Pran(K)(u

t) is also the unique element in ran(K) such that vt = K∗ut
0, x⋆ is the unique

solution of (17) and u⋆
0 is the unique solution in ran(K) of (18). Then RandProx-LC converges

linearly: for every t ≥ 0,
E
[
Ψt
]
≤ ctΨ0,

where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1− γτλ+
min(KK∗)

1 + ω

)
< 1. (20)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut
0)t∈N converges to u⋆

0, almost surely.

Theorem 4 is new even for the PAPC algorithm when ω = 0: its linear convergence under the stronger
condition γτ∥K∥2 < 1 has been shown in Salim et al. (2022b, Theorem 6.2), but our rate in (20) is
better.

We further discuss RandProx-LC, which can be used for decentralized optimization, in the Appendix.
Another example of application is when X = Rd, for some d ≥ 1, and K is a matrix; one can solve
(17) by activating one row of K chosen uniformly at random at every iteration.

5 CONVERGENCE IN THE MERELY CONVEX CASE

In all theorems, strong convexity of f or g is assumed; that is, µf > 0 or µg > 0. In this section, we
remove this hypothesis, so that the primal problem is not necessarily strongly convex any more. But
∇f(x⋆) is the same for every solution x⋆ of (1), and we denote by ∇f(x⋆) this element.

We define the Bregman divergence of f at points (x, x′) ∈ X 2 as

Df (x, x
′) := f(x)− f(x′)− ⟨∇f(x′), x− x′⟩ ≥ 0.

For every t ≥ 0, Df (x
t, x⋆) is the same for every solution x⋆ of (1), and we denote by Df (x

t, x⋆)
this element. Df (x

t, x⋆) can be viewed as a generalization of the objective gap f(xt)− f(x⋆) to the
case when ∇f(x⋆) ̸= 0. Df (x

t, x⋆) is a loose kind of distance between xt and the solution set, but
under some additional assumptions on f , for instance strict convexity, Df (x

t, x⋆) → 0 implies that
the distance from xt to the solution set tends to zero. Also, Df (x

t, x⋆) ≥ 1
2Lf

∥∇f(xt)−∇f(x⋆)∥2,
so that Df (x

t, x⋆) → 0 implies that
(
∇f(xt)

)
t∈N converges to ∇f(x⋆).

Theorem 11. In RandProx, suppose that 0 < γ < 2
Lf

, τ > 0, and γτ
(
(1− ζ)∥K∥2 + ωran

)
≤ 1.

Then Df (x
t, x⋆) → 0, almost surely and in quadratic mean. Moreover, for every t ≥ 0, we define

x̄t := 1
t+1

∑t
i=0 x

i. Then, for every t ≥ 0,

E
[
Df (x̄

t, x⋆)
]
≤ Ψ0

(2− γLf )(t+ 1)
= O(1/t). (21)

If, in addition, µh∗ > 0, there is a unique dual solution u⋆ to (2) and (ut)t∈N converges to u⋆, in
quadratic mean.

We can derive counterparts of the other theorems in the same way. These theorems apply to all
algorithms presented in the paper. For instance, Theorem 11 applies to Scaffnew (Mishchenko et al.,
2022), a particular case of RandProx-FL seen in Section A.3, and provides for it the first convergence
results in the non-strongly convex case.
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Algorithm 5 RandProx-Skip [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; p ∈ (0, 1]
v0 := K∗u0

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
Flip a coin θt = (1 with probability p,
0 else)
if θt = 1 then
ut+1 := proxτh∗(ut + τKx̂t)
vt+1 := K∗ut+1

xt+1 := x̂t − γ
p (v

t+1 − vt)

else
ut+1 := ut, vt+1 := vt, xt+1 := x̂t

end if
end for

Algorithm 6 RandProx-Minibatch [new]
input: initial points x0 ∈ X , (u0

i )
n
i=1 ∈ Xn;

stepsize γ > 0; k ∈ {1, . . . , n}
v0 :=

∑n
i=1 u

0
i

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
pick Ωt ⊂ {1, . . . , n} of size k unif. at random
for i ∈ Ωt do
ut+1
i := prox 1

γnh∗
i
(ut

i +
1
γn x̂

t)

end for
for i ∈ {1, . . . , n}\Ωt do

ut+1
i := ut

i
end for
vt+1 :=

∑n
i=1 u

t+1
i

xt+1 := x̂t − γn
k (vt+1 − vt)

end for

Appendix
A EXAMPLES

A.1 SKIPPING THE PROXIMITY OPERATOR

In this section, we consider the case of Bernoulli operators Rt defined in (6), which compute and
return their argument only with probability p > 0. RandProx becomes RandProx-Skip, shown above.
Then ω = 1

p − 1, ωran = ∥K∥2ω, and ζ = 0.

If g = 0, RandProx-Skip reverts to the SplitSkip algorithm proposed recently (Mishchenko et al.,
2022). Our Theorems 1 and 4 recover the same rate as given for SplitSkip in Mishchenko et al.
(2022, Theorem D.1), if smoothness of h is ignored. If in addition K = Id and τ = 1

γ(1+ω) = p
γ ,

RandProx-Skip reverts to ProxSkip, a particular case of SplitSkip (Mishchenko et al., 2022). Our
Theorem 3 applies to this case and allows us to exploit the possible smoothness of h in RandProx-
Skip = ProxSkip, which is not the case of the results of (Mishchenko et al., 2022). As a practical
application of our new results, let us consider personalized federated learning (FL) (Hanzely et al.,
2020): given a client-server architecture with a master and n ≥ 1 users, each with local cost function
fi, i = 1, . . . , n, the goal is to

minimize
(xi)ni=1∈(Rd)n

n∑
i=1

fi(xi) +
λ

2

n∑
i=1

∥xi − x̄∥2, (22)

where x̄ := 1
n

∑n
i=1 xi. Each fi is supposed Lf -smooth and µf -strongly convex. We set X := (Rd)n,

f : x = (xi)
n
i=1 7→

∑n
i=1 fi(xi), h : x 7→ λ

2

∑n
i=1 ∥xi − x̄∥2. f is Lf -smooth and µf -strongly

convex, h is λ-smooth, so that µh∗ = 1
λ . Thus, with γ = 1

Lf
, we have in (16):

c ≤ 1−min

(
µf

Lf
,

1 +
2Lf

λ

1
p

(
1
p +

2Lf

λ

)) < 1.

Hence, with p =

√
µf min(Lf ,λ)

Lf
=
√

µf

Lf
min

(√
λ
Lf

, 1
)

, the communication complexity in terms of

the expected number of communication rounds to reach ϵ-accuracy is O
((√

min(Lf ,λ)
µf

+ 1
)
log 1

ϵ

)
,

which, up to the ‘+1’ log factor, is optimal (Hanzely et al., 2020). This shows that in personalized
FL with λ < Lf , the complexity can be decreased in comparison with non-personalized FL, which
corresponds to λ = +∞. This is achieved by properly setting p in ProxSkip, according to our new
theory, which exploits the smoothness of h.

15



Published as a conference paper at ICLR 2023

A.2 SAMPLING AMONG SEVERAL FUNCTIONS

We first remark that we can extend Problem (1) with the term h(Kx) replaced by the sum∑n
i=1 hi(Kix) of n ≥ 2 proper closed convex functions hi composed with linear operators

Ki : X → Ui, for some real Hilbert spaces Ui, by using the classical product-space trick: by
defining U := U1 × · · · Un, h : u = (ui)

n
i=1 ∈ U 7→

∑n
i=1 hi(ui), K : x ∈ X 7→ (Kix)

n
i=1 ∈ U ,

we have h(Kx) =
∑n

i=1 hi(Kix). In particular, by setting Ki := Id and Ui := X , we consider in
this section the problem:

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x) +

n∑
i=1

hi(x)

)
. (23)

We have h∗ : (ui)
n
i=1 ∈ Xn 7→

∑n
i=1 h

∗
i (ui) and we suppose that every function h∗

i is µh∗ -strongly
convex, for some µh∗ ≥ 0; then h∗ is µh∗ -strongly convex. Thus, the dual problem to (23) is

Find (u⋆
i )

n
i=1 ∈ argmin

(ui)ni=1∈Xn

(
(f + g)∗

(
−

n∑
i=1

ui

)
+

n∑
i=1

h∗
i (ui)

)
. (24)

Since K∗K = nId, ∥K∥2 = n. Now, we choose Rt as the rand-k sampling operator, for some
k ∈ {1, . . . , n}: Rt multiplies k elements out of the n of its argument sequence, chosen uniformly at
random, by n/k and sets the other ones to zero. It is known (Condat & Richtárik, 2022, Proposition
1) that we can set

ω :=
n

k
− 1, ωran :=

n(n− k)

k(n− 1)
, ζ :=

n− k

k(n− 1)
.

Note that this value of ωran is n− 1 times smaller than the naive bound ∥K∥2ω = n(n−k)
k . We have

(1 − ζ)∥K∥2 + ωran = n. RandProx in this setting, with τ := 1
γn , becomes RandProx-Minibatch,

shown above, and Theorem 1 yields:

Theorem 5. Suppose that µf > 0 or µg > 0, and that µh∗ > 0. In RandProx-Minibatch, suppose
that 0 < γ < 2

Lf
. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + n

k
(γn+ 2µh∗)

n∑
i=1

∥∥ut
i − u⋆

i

∥∥2 , (25)

where x⋆ and (u⋆
i )

n
i=1 are the unique solutions to (23) and (24), respectively. Then RandProx-

Minibatch converges linearly: for every t ≥ 0, E[Ψt] ≤ ctΨ0, where

c := max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1− 2kµh∗

n(γn+ 2µh∗)

)
. (26)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut
i)t∈N converges to u⋆

i , ∀i, almost surely.

RandProx-Minibatch with k = 1 becomes the Stochastic Decoupling Method (SDM) proposed in
Mishchenko & Richtárik (2019), where strong convexity of g is not exploited, but similar guarantees
are derived as in Theorem 5 if µg = 0. Linear convergence of SDM is also proved in Mishchenko
& Richtárik (2019) in conditions related to ours in Theorems 2 and 4. Thus, RandProx-Minibatch
extends SDM to larger minibatch size k and exploits possible strong convexity of g.

When f = 0 and g = 0, SDM further simplifies to Point-SAGA (Defazio, 2016). In that case,
our results do not apply directly, since there is no strong convexity in f and g any more, but when
minimizing the average of functions hi, with each function supposed to be L-smooth and µ-strongly
convex, for some L ≥ µ > 0, we can transfer the strong convexity to g by subtracting µ

2 ∥ · ∥2
to each hi and setting g = µ

2 ∥ · ∥2. This does not change the problem and the algorithm but our
Theorem 5 now applies, and with the right choice of γ, we recover the result in Defazio (2016), that
the asymptotic complexity of Point-SAGA to reach ϵ-accuracy is O

((
n+

√
nL
µ

)
log 1

ϵ

)
, which is

conjectured to be optimal.

Thus, RandProx-Minibatch extends Point-SAGA to larger minibatch size and to the more general
problem (23) with nonzero f or g.

When n = 1, there is no randomness and SDM reverts to the DY algorithm discussed in Appendix G.
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Algorithm 7 SDM
(Mishchenko & Richtárik, 2019)

input: initial points x0 ∈ X , (u0
i )

n
i=1 ∈ Xn;

stepsize γ > 0
v0 :=

∑n
i=1 u

0
i

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
pick it ∈ {1, . . . , n} uniformly at random
xt+1 := proxγnhi

(γnut
it + x̂t)

ut+1
it

:= ut
it +

1
γn (x̂

t − xt+1)

for every i ∈ {1, . . . , n}\{it}, ut+1
i := ut

i

vt+1 :=
∑n

i=1 u
t+1
i // = vt + ut+1

it − ut
it

end for

Algorithm 8 Point-SAGA
(Defazio, 2016)

input: initial points x0 ∈ X , (u0
i )

n
i=1 ∈ Xn;

stepsize γ > 0
v0 :=

∑n
i=1 u

0
i

for t = 0, 1, . . . do
x̂t := xt − γvt

pick it ∈ {1, . . . , n} uniformly at random
xt+1 := proxγnhi

(γnut
it + x̂t)

ut+1
it

:= ut
it +

1
γn (x̂

t − xt+1)

for every i ∈ {1, . . . , n}\{it}, ut+1
i := ut

i

vt+1 :=
∑n

i=1 u
t+1
i // = vt + ut+1

it − ut
it

end for

Algorithm 9 RandProx-FL [new]
input: initial estimates (x0

i )
n
i=1 ∈ Xn, (u0

i )
n
i=1 ∈

Xn such that
∑n

i=1 u
0
i = 0; stepsize γ > 0; ω ≥ 0

for t = 0, 1, . . . do
for i = 1, . . . , n at nodes in parallel do
x̂t
i := xt

i − γ∇fi(x
t
i)− γut

i
ati := Rt(x̂t

i)
// send compressed vector ati to master

end for
at := 1

n

∑n
i=1 a

t
i // aggregation at master

// broadcast at to all nodes
for i = 1, . . . , n at nodes in parallel do
dti := ati − at

ut+1
i := ut

i +
1

γ(1+ω)2 d
t
i

xt+1
i := x̂t

i − 1
1+ωd

t
i

end for
end for

A.3 DISTRIBUTED AND FEDERATED LEARNING WITH COMPRESSION

We consider in this section distributed optimization within the client-server model, with a master
node communicating back and forth with n ≥ 1 parallel workers. This is particularly relevant for
federated learning (FL) (Konečný et al., 2016; McMahan et al., 2017; Kairouz et al., 2021; Li et al.,
2020), where a potentially huge number of devices, with their owners’ data stored on each of them,
are involved in the collaborative process of training a global machine learning model. The goal is to
exploit the wealth of useful information lying in the heterogeneous data stored across the devices.
Communication between the devices and the distant server, which can be costly and slow, is the
main bottleneck in this framework. So, it is of primary importance to devise novel algorithmic
strategies, which are efficient in terms of computation and communication complexities. A natural
and widely used idea is to make use of (lossy) compression, to reduce the size of the communicated
message (Alistarh et al., 2017; Wen et al., 2017; Wangni et al., 2018; Khaled & Richtárik, 2019;
Albasyoni et al., 2020; Basu et al., 2020; Dutta et al., 2020; Sattler et al., 2020; Xu et al., 2021).
Another popular idea is to make use of local steps (McMahan et al., 2017; Khaled et al., 2019; Stich,
2019; Khaled et al., 2020a; Malinovsky et al., 2020; Woodworth et al., 2020; Karimireddy et al.,
2020; Gorbunov et al., 2021; Mishchenko et al., 2022); that is, communication with the server does
not occur at every iteration but only every few iterations, for instance communication is triggered
randomly with a small probability at every iteration. Between communication rounds, the workers
perform multiple local steps independently, based on their local objectives. Our proposed algorithm
RandProx-FL unifies the two strategies, in the sense that depending on the choice of the randomization
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process Rt, we obtain a method with local steps or with compression, or both. The combination of
local training and compression has been further investigated in our follow-up work (Condat et al.,
2022a), and partial participation in Condat et al. (2023b).

Thus, we consider the problem

Find x⋆ ∈ argmin
x∈Rd

(
n∑

i=1

fi(x)

)
, (27)

where d ≥ 1 is the model dimension and n ≥ 1 is the number of parallel workers, each having its
own objective function fi. Every function fi : Rd → R is µ-strongly convex and L-smooth, for some
L ≥ µ > 0. We define κ := L/µ.

Now, we can observe that (27) can be recast as (1) with K = Id, U = X , g = 0; that is, as the
minimization of f + h, as studied in Section 4.1, with

X = (Rd)n, f : x = (xi)
n
i=1 7→

n∑
i=1

fi(xi), (28)

h : x = (xi)
n
i=1 7→ (0 if x1 = · · · = xn, +∞ otherwise). (29)

We note that f is µ-strongly convex and L-smooth, and µh∗ = 0. Making these substitutions in
RandProx-FB yields RandProx-FL, a distributed algorithm well suited for FL, shown above. In
RandProx-FL, randomization takes the form of linear random unbiased operators Rt applied to the
vectors sent to the server. Note that at every iteration, the same operator Rt is applied at every
node; that is, its randomness is shared. We can easily check that RandProx-FL is an instance of
RandProx-FB, because of the linearity of the Rt and because the property

∑n
i=1 u

t
i = 0 is maintained

at every iteration. Formally, Rt applied as a whole in RandProx-FB consists of n copies of Rt applied
individually at every node in RandProx-FL, that is why we keep the same notation; in particular, the
value of ω is the same in both interpretations.

Interestingly, in RandProx-FL, information about the functions fi or their gradients is never commu-
nicated and is exploited completely locally. This is ideal in terms of privacy.

As an application of Theorem 3, we obtain:

Theorem 10. In RandProx-FL, suppose that 0 < γ < 2
Lf

. Define the Lyapunov function, for every
t ≥ 0,

Ψt :=

n∑
i=1

(
1

γ

∥∥xt
i − x⋆

∥∥2 + γ(1 + ω)2
∥∥ut

i − u⋆
i

∥∥2) , (30)

where x⋆ is the unique solution of (27) and u⋆
i := −∇fi(x

⋆). Then RandProx-FL converges linearly:
for every t ≥ 0, E[Ψt] ≤ ctΨ0, where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1− 1

(1 + ω)2

)
< 1. (31)

Also, the (xt
i)t∈N and (x̂t

i)t∈N all converge to x⋆ and every (ut
i)t∈N converges to u⋆

i , almost surely.

If Rt is the Bernoulli compressor we have seen before in (6) and in Section A.1, RandProx-FL reverts
to the Scaffnew algorithm proposed in Mishchenko et al. (2022), which communicates at every
iteration with probability p ∈ (0, 1] and performs in average 1/p local steps between successive
communication rounds. We have ω = 1

p − 1. The analysis of Scaffnew in Theorem 10 is the same as
in Mishchenko et al. (2022). With γ = 1

L , the iteration complexity of Scaffnew is O
(
(κ+ 1

p2 ) log
1
ϵ

)
,

and since the algorithm communicates with probability p, its average communication complexity is
O
(
(pκ+ 1

p ) log
1
ϵ

)
. In particular, with p = 1√

κ
, the average communication complexity of Scaffnew

is O
(√

κ log 1
ϵ

)
.

We now propose a new algorithm with compressed communication: in RandProx-FL we choose, for
every t ≥ 0, Rt as the well-known rand-k compressor, for some k ∈ {1, . . . , d}: Rt multiplies
k coordinates, chosen uniformly at random, of its vector argument by d/k and sets the other ones
to zero. We have ω = d

k − 1. The iteration complexity with γ = 1
L is O

(
(κ + d2

k2 ) log
1
ϵ

)
and the

18



Published as a conference paper at ICLR 2023

communication complexity, in terms of average number of floats sent by every worker to the master,
is O

(
(kκ+ d2

k ) log 1
ϵ

)
, since k floats are sent by every worker at every iteration. Thus, by choosing

k = ⌈d/
√
κ⌉, as long as d ≥

√
κ, the communication complexity in terms of floats is O

(
d
√
κ log 1

ϵ

)
;

this is the same as the one of Scaffnew with γ = 1
L and p = 1√

κ
, but RandProx-FL with rand-k

compressors removes the necessity to communicate full d-dimensional vectors periodically.

B CONTRACTION OF GRADIENT DESCENT

Lemma 1. For every γ > 0, the gradient descent operator Id − γ∇f is cγ-Lipschitz continuous,
with cγ := max(1− γµf , γLf − 1). That is, for every (x, x′) ∈ X 2,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥ ≤ cγ∥x− x′∥.

Proof Let (x, x′) ∈ X 2. By cocoercivity of ∇f − µf Id, we have (Bubeck, 2015, Lemma 3.11)
⟨∇f(x)−∇f(x′), x− x′⟩ ≥ Lfµf

Lf+µf
∥x− x′∥2 + 1

Lf+µf
∥∇f(x)−∇f(x′)∥2. Hence,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 ≤
(
1− 2γLfµf

Lf+µf

)
∥x− x′∥2

+
(
γ2 − 2γ

Lf+µf

)
∥∇f(x)−∇f(x′)∥2.

Thus, if γ ≤ 2
Lf+µf

, since ∥∇f(x)−∇f(x′)∥ ≥ µf∥x− x′∥,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 ≤
(
1− 2γLfµf

Lf+µf
+ (γ2 − 2γ

Lf+µf
)µ2

f

)
∥x− x′∥2

= (1− γµf )
2∥x− x′∥2.

On the other hand, if γ ≥ 2
Lf+µf

, since ∥∇f(x)−∇f(x′)∥ ≤ Lf∥x− x′∥,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 ≤
(
1− 2γLfµf

Lf+µf
+ (γ2 − 2γ

Lf+µf
)L2

f

)
∥x− x′∥2

= (γLf − 1)2∥x− x′∥2.

Since max(1 − γµf , γLf − 1) = (1 − γµf if γ ≤ 2
Lf+µf

, γLf − 1 otherwise) ≥ 0, we arrive at
the given expression of cγ . □

We note that if γ < 2
Lf

and µf > 0, cγ < 1.

C PROOF OF THEOREM 1

Let t ∈ N. Let pt ∈ ∂g(x̂t) be such that x̂t = xt−γ∇f(xt)−γpt−γK∗ut; pt exists and is unique, by
properties of the proximity operator. We also define p⋆ := −∇f(x⋆)−K∗u⋆; we have p⋆ ∈ ∂g(x⋆).
Let qt := pt − µgx̂

t and q⋆ := p⋆ − µgx
⋆. We have (1 + γµg)x̂

t = xt − γ∇f(xt)− γqt − γK∗ut.
Let wt := xt − γ∇f(xt) and w⋆ := x⋆ − γ∇f(x⋆).

Using ût+1 defined in (9), we have

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
=
∥∥E[xt+1 | Ft

]
− x⋆

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft

]
≤
∥∥x̂t − x⋆ − γK∗(ût+1 − ut)

∥∥2 + γ2ωran

∥∥ût+1 − ut
∥∥2

− γ2ζ
∥∥K∗(ût+1 − ut)

∥∥2 .

19



Published as a conference paper at ICLR 2023

Moreover,∥∥x̂t − x⋆ − γK∗(ût+1 − ut)
∥∥2 =

∥∥x̂t − x⋆
∥∥2 + γ2

∥∥K∗(ût+1 − ut)
∥∥2

− 2γ⟨x̂t − x⋆,K∗(ût+1 − ut)⟩

≤ (1 + γµg)
∥∥x̂t − x⋆

∥∥2 + γ2
∥∥K∗(ût+1 − ut)

∥∥2
− 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩+ 2γ⟨x̂t − x⋆,K∗(ut − u⋆)⟩

= ⟨wt − w⋆ − γ(qt − q⋆)− γK∗(ut − u⋆), x̂t − x⋆⟩

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2
− 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩+ 2γ⟨x̂t − x⋆,K∗(ut − u⋆)⟩

= −2γ⟨qt − q⋆, x̂t − x⋆⟩
+ ⟨wt − w⋆ + γ(qt − q⋆) + γK∗(ut − u⋆), x̂t − x⋆⟩

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩
= −2γ⟨qt − q⋆, x̂t − x⋆⟩

+
1

1 + γµg
⟨wt − w⋆ + γ(qt − q⋆) + γK∗(ut − u⋆),

wt − w⋆ − γ(qt − q⋆)− γK∗(ut − u⋆)⟩

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩

= −2γ⟨qt − q⋆, x̂t − x⋆⟩+ 1

1 + γµg

∥∥wt − w⋆
∥∥2

− γ2

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩.

We have ⟨qt − q⋆, x̂t − x⋆⟩ ≥ 0. Hence,∥∥x̂t − x⋆ − γK∗(ût+1 − ut)
∥∥2 ≤ 1

1 + γµg

∥∥wt − w⋆
∥∥2 − γ2

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩,

so that

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
≤ 1

1 + γµg

∥∥wt − w⋆
∥∥2 − γ2

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ2(1− ζ)
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩

+ γ2ωran

∥∥ût+1 − ut
∥∥2 .

On the other hand,

E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤
∥∥∥∥ut − u⋆ +

1

1 + ω

(
ût+1 − ut

)∥∥∥∥2 + ω

(1 + ω)2
∥∥ût+1 − ut

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u⋆

∥∥2 + 1

(1 + ω)2
∥∥ût+1 − u⋆

∥∥2
+

2ω

(1 + ω)2
⟨ut − u⋆, ût+1 − u⋆⟩+ ω

(1 + ω)2
∥∥ût+1 − u⋆

∥∥2
+

ω

(1 + ω)2
∥∥ut − u⋆

∥∥2 − 2ω

(1 + ω)2
⟨ut − u⋆, ût+1 − u⋆⟩

=
1

1 + ω

∥∥ût+1 − u⋆
∥∥2 + ω

1 + ω

∥∥ut − u⋆
∥∥2 . (32)
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Let st+1 ∈ ∂h∗(ût+1) be such that ût+1 = ut + τKx̂t − τst+1; st+1 exists and is unique. We also
define s⋆ := Kx⋆; we have s⋆ ∈ ∂h∗(u⋆). Therefore,∥∥ût+1 − u⋆

∥∥2 =
∥∥(ut − u⋆) + (ût+1 − ut)

∥∥2
=
∥∥ut − u⋆

∥∥2 + ∥∥ût+1 − ut
∥∥2 + 2⟨ut − u⋆, ût+1 − ut⟩

=
∥∥ut − u⋆

∥∥2 + 2⟨ût+1 − u⋆, ût+1 − ut⟩ −
∥∥ût+1 − ut

∥∥2
=
∥∥ut − u⋆

∥∥2 − ∥∥ût+1 − ut
∥∥2 + 2τ⟨ût+1 − u⋆,K(x̂t − x⋆)⟩

− 2τ⟨ût+1 − u⋆, st+1 − s⋆⟩.
Hence,
1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

1 + ω

τ
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ(1− ζ)
∥∥K∗(ût+1 − ut)

∥∥2 − 2⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩

+ γωran

∥∥ût+1 − ut
∥∥2 + 1

τ

∥∥ut − u⋆
∥∥2 − 1

τ

∥∥ût+1 − ut
∥∥2

+ 2⟨ût+1 − u⋆,K(x̂t − x⋆)⟩ − 2⟨ût+1 − u⋆, st+1 − s⋆⟩

+
ω

τ

∥∥ut − u⋆
∥∥2

≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+
1 + ω

τ

∥∥ut − u⋆
∥∥2 + (γ((1− ζ)∥K∥2 + ωran

)
− 1

τ

)∥∥ût+1 − ut
∥∥2

− 2⟨ût+1 − u⋆, st+1 − s⋆⟩

≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+
1 + ω

τ

∥∥ut − u⋆
∥∥2 − 2⟨ût+1 − u⋆, st+1 − s⋆⟩.

By µh∗ -strong monotonicity of ∂h∗, ⟨ût+1 − u⋆, st+1 − s⋆⟩ ≥ µh∗
∥∥ût+1 − u⋆

∥∥2, and using (32),

⟨ût+1 − u⋆, st+1 − s⋆⟩ ≥ µh∗

(
(1 + ω)E

[∥∥ut+1 − u⋆
∥∥2 | Ft

]
− ω

∥∥ut − u⋆
∥∥2) .

Hence,
1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+ (1 + ω)

(
1

τ
+ 2µh∗

)
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+

(
1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2 . (33)

After Lemma 1, ∥∥wt − w⋆
∥∥2 =

∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆
∥∥2

≤ max(1− γµf , γLf − 1)2
∥∥xt − x⋆

∥∥2 .
Plugging this inequality in (33) yields

E
[
Ψt+1 | Ft

]
≤ 1

γ(1 + γµg)
max(1− γµf , γLf − 1)2

∥∥xt − x⋆
∥∥2 (34)

+

(
1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2 .
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Ignoring the last term in (34), we obtain:

E
[
Ψt+1 | Ft

]
≤ max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
Ψt. (35)

Using the tower rule, we can unroll the recursion in (35) to obtain the unconditional expectation of
Ψt+1. Since E[Ψt] → 0, we have E

[
∥xt − x⋆∥2

]
→ 0 and E

[
∥ut − u⋆∥2

]
→ 0. Moreover, using

classical results on supermartingale convergence (Bertsekas, 2015, Proposition A.4.5), it follows
from (35) that Ψt → 0 almost surely. Almost sure convergence of xt and ut follows. Finally, by
Lipschitz continuity of ∇f , K∗, proxg , we can upper bound ∥x̂t − x⋆∥2 by a linear combination of

∥xt − x⋆∥2 and ∥ut − u⋆∥2. It follows that E
[
∥x̂t − x⋆∥2

]
→ 0 linearly with the same rate c and

that x̂t → x⋆ almost surely, as well. □

D PROOF OF THEOREM 2

Let us go back to (34). Since g = 0, we have qt = q⋆ = 0 and µg = 0, so that

E
[
Ψt+1 | Ft

]
≤ 1

γ
max(1− γµf , γLf − 1)2

∥∥xt − x⋆
∥∥2 + (1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2

− γ
∥∥K∗(ut − u⋆)

∥∥2 .
We have ∥K∗(ut − u⋆)∥2 ≥ λmin(KK∗) ∥ut − u⋆∥2. This yields

E
[
Ψt+1 | Ft

]
≤ 1

γ
max(1− γµf , γLf − 1)2

∥∥xt − x⋆
∥∥2

+

(
1 + ω

τ
+ 2ωµh∗ − γλmin(KK∗)

)∥∥ut − u⋆
∥∥2

≤ max

(
(1− γµf )

2, (γLf − 1)2, 1− 2τµh∗ + γτλmin(KK∗)

(1 + ω)(1 + 2τµh∗)

)
Ψt. (36)

The end of the proof is the same as the one of Theorem 1. □

Let us add here a remark on the PAPC algorithm, which is the particular case of RandProx when
ω = 0, in the conditions of Theorem 2:

Remark 2 (PAPC vs. proximal gradient descent on the dual problem) If µf > 0, f∗ is µ−1-
smooth and L−1

f -strongly convex. Then f∗ ◦ −K∗ is µ−1
f ∥K∥2-smooth and L−1

f λmin(KK∗)-
strongly convex. So, if ∇f∗ is computable, one can apply the proximal gradient algorithm on the
dual problem (2), which iterates ut+1 = proxτh∗

(
ut + τK∇f∗(−K∗ut)

)
, with τ ∈

(
0,

2µf

∥K∥2

)
.

If λmin(KK∗) > 0, this algorithm converges linearly: ∥ut+1 − u⋆∥2 ≤ c2∥ut − u⋆∥2 with
c = max

(
1 − τL−1

f λmin(KK∗), τµ−1
f ∥K∥2 − 1

)
. c is smallest with τ = 2/

(
µ−1
f ∥K∥2 +

L−1
f λmin(KK∗)

)
, in which case

c =
1− µf

Lf

λmin(KK∗)
∥K∥2

1 +
µf

Lf

λmin(KK∗)
∥K∥2

.

This is much worse than the rate of the PAPC algorithm, since it involves the product of the condition
numbers Lf/µf and ∥K∥2/λmin(KK∗), instead of their maximum. This is due to calling gradients
of f∗ ◦ −K∗, whereas f and K are split, or decoupled, in the PAPC algorithm.

E PROOF OF THEOREM 4 AND FURTHER DISCUSSION
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Algorithm 10 RandPriLiCo [new]
input: initial points x0 ∈ X , v0 ∈ ran(W );
stepsizes γ > 0, τ > 0; ω ≥ 0
for t = 0, 1, . . . do
x̂t := xt − γ∇f(xt)− γvt

dt+1 := τSt(Wx̂t − a)
vt+1 := vt + 1

1+ωd
t+1

xt+1 := x̂t − γdt+1

end for

We observe that in RandProx-LC and Theorem 4, it is as if the sequence (ut
0)t∈N had been computed

by the following iteration, initialized with x0 ∈ X and u0
0 := Pran(K)(u

0):
x̂t := xt − γ∇f(xt)− γvt

ut+1
0 := ut

0 +
1

1+ωPran(K)Rt
(
τ(Kx̂t − b)

)
vt+1 := K∗ut+1

0

xt+1 := x̂t − γ(1 + ω)(vt+1 − vt)

.

Then we remark that this is simply the iteration of RandProx, with Rt replaced by R̃t := Pran(K)Rt.
Since its argument rt = τ(Kx̂t − b) is always in ran(K), R̃t is unbiased, and we have, for every
t ≥ 0,

E
[∥∥∥R̃t(rt)− rt

∥∥∥2 | F̃t

]
≤ E

[∥∥Rt(rt)− rt
∥∥2 | F̃t

]
≤ ω

∥∥rt∥∥2 ,
where F̃t the σ-algebra generated by the collection of random variables (x0, u0

0), . . . , (x
t, ut

0). Also,
ωran is unchanged. Therefore, the analysis of RandProx in Theorem 2 applies, with ut replaced by
ut
0 and u⋆ by u⋆

0. Now, for every u ∈ ran(K),

∥K∗u∥2 ≥ λ+
min(KK∗) ∥u∥2 ,

and using this lower bound in the proof of Theorem 2, with µh∗ = 0, we obtain Theorem 4. □

Furthermore, the constraint Kx = b is equivalent to the constraint K∗Kx = K∗b; so, let us consider
problems where we are given K∗K and not K in the first place:

Let W be a linear operator on X , which is self-adjoint, i.e. W ∗ = W , and positive, i.e. ⟨Wx, x⟩ ≥ 0
for every x ∈ X . Let a ∈ ran(W ). We consider the linearly constrained minimization problem

Find x⋆ ∈ argmin
x∈X

f(x) s.t. Wx = a. (37)

Now, we let U := X and K = K∗ :=
√
W , where

√
W is the unique positive self-adjoint linear

operator on X such that
√
W

√
W = W . Also, b is defined as the unique element in ran(W ) =

ran(K) such that
√
Wb = a. Then (37) is equivalent to (17) and the dual problem is (18). We

consider the Randomized Primal Linearly Constrained minimization algorithm (RandPriLiCo), shown
above. We suppose that the stochastic operators St in RandPriLiCo satisfy, for every t ≥ 0,

E
[
St(rt) | F̃t

]
= rt and E

[∥∥St(rt)− rt
∥∥2 | F̃t

]
≤ ω

∥∥rt∥∥2 , (38)

for some ω ≥ 0, where rt := τWx̂t − τa.

In addition, we suppose that the St commute with
√
W : for every t ≥ 0 and x ∈ X ,

√
WSt(x) = St(

√
Wx).

This is satisfied with the Bernoulli operators or some linear sketching operators, for instance. Then
RandPriLiCo is equivalent to RandProx-LC, with St playing the role of Rt and ωran = ∥W∥ω, ζ = 0.
Applying Theorem 4 with these equivalences, we obtain:
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Algorithm 11 CP algorithm
(Chambolle & Pock, 2011)

input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0
x̂0 := proxγg

(
x0 − γK∗u0

)
for t = 0, 1, . . . do
ut+1 := proxτh∗

(
ut + τKx̂t

)
// xt+1 := x̂t − γK∗(ut+1 − ut)
x̂t+1 := proxγg

(
x̂t − γK∗(2ut+1 − ut)

)
end for

Algorithm 12 RandProx-CP [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; ω ≥ 0
x̂0 := proxγg

(
x0 − γK∗u0

)
for t = 0, 1, . . . do
dt := Rt

(
proxτh∗(ut + τKx̂t)− ut

)
ut+1 := ut + 1

1+ωd
t

// xt+1 := x̂t − γK∗dt

x̂t+1 := proxγg
(
x̂t − γK∗(ut+1 + dt)

)
end for

Theorem 6. In the setting of (37), suppose that µf > 0. In RandPriLiCo, suppose that 0 < γ < 2
Lf

,
τ > 0 and γτ∥W∥(1 + ω) ≤ 1. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + 1 + ω

τ

∥∥ut
0 − u⋆

0

∥∥2 , (39)

where ut
0 is the unique element in ran(W ) such that vt =

√
Wut

0, x⋆ is the unique solution of (37)
and u⋆

0 is the unique element in ran(W ) such that −∇f(x⋆) =
√
Wu⋆

0. Then RandPriLiCo converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (40)

where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1− γτλ+
min(W )

1 + ω

)
< 1. (41)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ almost surely.

RandPriLiCo can be applied to decentralized optimization, like in Kovalev et al. (2020); Salim et al.
(2022a) but with randomized communication; we leave the detailed study of this setting for future
work.

F PARTICULAR CASE f = 0: RANDOMIZED CHAMBOLLE–POCK ALGORITHM

In this section, we suppose that f = 0. The primal problem (1) becomes:

Find x⋆ ∈ argmin
x∈X

(
g(x) + h(Kx)

)
, (42)

and the dual problem (2) becomes:

Find u⋆ ∈ argmin
u∈U

(
g∗(−K∗u) + h∗(u)

)
. (43)

The PDDY algorithm becomes the Chambolle-Pock (CP), a.k.a. PDHG, algorithm (Chambolle &
Pock, 2011), shown above. RandProx can be rewritten as RandProx-CP, shown above, too. In both
algorithms, the variable xt is not needed any more and can be removed.

Since f = 0, Lf > 0 can be set arbitrarily close to zero, so that Theorem 1 can be rewritten as:

Theorem 7. Suppose that µg > 0 and µh∗ > 0. In RandProx-CP, suppose that γ > 0, τ > 0,
γτ
(
(1− ζ)∥K∥2 + ωran

)
≤ 1. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
1

τ
+ 2µh∗

)∥∥ut − u⋆
∥∥2 , (44)

where x⋆ and u⋆ are the unique solutions to (42) and (43), respectively. Then RandProx-CP converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (45)

24



Published as a conference paper at ICLR 2023

Algorithm 13 ADMM
input: initial points x0 ∈ X , u0 ∈ U ;
stepsize γ > 0
for t = 0, 1, . . . do
x̂t := proxγg(x

t − γut)

xt+1 := proxγh(x̂
t + γut)

ut+1 := ut + 1
γ (x̂

t − xt+1)

end for

Algorithm 14 RandProx-ADMM [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsize γ > 0; ω ≥ 0
for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γut

)
dt := Rt

(
x̂t − proxγ(1+ω)h(x̂

t + γ(1 + ω)ut)
)

xt+1 := x̂t − 1
1+ωd

t

ut+1 := ut + 1
γ(1+ω)2 d

t

end for

where

c := max

(
1

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
(46)

= 1−min

(
γµg

1 + γµg
,

2τµh∗

(1 + ω)(1 + 2τµh∗)

)
< 1. (47)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

It would be interesting to study whether the mechanism in the stochastic PDHG algorithm proposed
in Chambolle et al. (2018) can be viewed as a particular case of RandProx-CP; we leave the analysis
of this connection for future work. In any case, the strong convexity constants µg and µh∗ need to be
known in the linearly converging version of the stochastic PDHG algorithm, which is not the case
here; this is an important advantage of RandProx-CP.

Now, let us look at the particular case K = Id in (42) and (43). The primal problem becomes:

Find x⋆ ∈ argmin
x∈X

(
g(x) + h(x)

)
, (48)

and the dual problem becomes:

Find u⋆ ∈ argmin
u∈U

(
g∗(−u) + h∗(u)

)
. (49)

When K = Id, the CP algorithm with τ = 1
γ reverts to the Douglas–Rachford algorithm, which is

equivalent to the Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011; Condat
et al., 2023a), shown above. Therefore, in that case, with ωran = ω, ζ = 0 and τ = 1

γ(1+ω) ,
RandProx-CP can be rewritten as RandProx-ADMM, shown above. Theorem 7 becomes:

Theorem 8. Suppose that µg > 0 and µh∗ > 0. In RandProx-ADMM, suppose that γ > 0. For every
t ≥ 0, define the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
γ(1 + ω) + 2µh∗

) ∥∥ut − u⋆
∥∥2 , (50)

where x⋆ and u⋆ are the unique solutions to (48) and (49), respectively. Then RandProx-ADMM
converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (51)

where

c := max

(
1

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
(52)

= 1−min

(
γµg

1 + γµg
,

2τµh∗

(1 + ω)(1 + 2τµh∗)

)
< 1. (53)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.
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Algorithm 15 DY algorithm
(Davis & Yin, 2017)

input: initial points x0 ∈ X , u0 ∈ X ;
stepsize γ > 0
for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γut

)
xt+1 := proxγh(x̂

t + γut)

ut+1 := ut + 1
γ (x̂

t − xt+1)

end for

Algorithm 16 RandProx-DY [new]
input: initial points x0 ∈ X , u0 ∈ X ;
stepsize γ > 0; ω ≥ 0
for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γut

)
dt := Rt

(
x̂t−proxγ(1+ω)h(x̂

t+γ(1+ω)ut)
)

xt+1 := x̂t − 1
1+ωd

t

ut+1 := ut + 1
γ(1+ω)2 d

t

end for

G PARTICULAR CASE K = Id: RANDOMIZED DAVIS–YIN ALGORITHM

After the particular case g = 0 discussed in Section 4.1 and the particular case f = 0 discussed in
Section F, we discuss in this section the third particular case K = Id in (1) and (2). The primal
problem becomes:

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x) + h(x)

)
, (54)

and the dual problem becomes:

Find u⋆ ∈ argmin
u∈U

(
(f + g)∗(−u) + h∗(u)

)
. (55)

When K = Id, the PDDY algorithm with τ = 1
γ reverts to the Davis–Yin (DY) algorithm (Davis &

Yin, 2017), shown above. Therefore, in that case, with ωran = ω, ζ = 0 and τ = 1
γ(1+ω) , RandProx

can be rewritten as RandProx-DY, shown above, too. When g = 0, RandProx-DY reverts to RandProx-
FB and when f = 0, RandProx-DY reverts to RandProx-ADMM; in other words, RandProx-DY
generalizes RandProx-FB and RandProx-ADMM into a single algorithm. Theorem 1 yields:

Theorem 9. Suppose that µf > 0 or µg > 0, and that µh∗ > 0. In RandProx-DY, suppose that
0 < γ < 2

Lf
. For every t ≥ 0, define the Lyapunov function,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
γ(1 + ω) + 2µh∗

) ∥∥ut − u⋆
∥∥2 , (56)

where x⋆ and u⋆ are the unique solutions to (54) and (55), respectively. Then RandProx-DY converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (57)

where

c := max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1−

2
γµh∗

(1 + ω)
(
1 + ω + 2

γµh∗
)) < 1. (58)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

We note that in Theorem 9, µh∗ > 0 is required. It is only in the case g = 0, when RandProx-DY
reverts to RandProx-FB, that one can apply Theorem 3, which does not require strong convexity of
h∗.

H PROOF OF THEOREM 11

Proof of Theorem 11 We have, for every (x, x′) ∈ X 2,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 = ∥x− x′∥2 − 2γ⟨∇f(x)−∇f(x′), x− x′⟩
+ γ2∥∇f(x)−∇f(x′)∥2

≤ ∥x− x′∥2 − (2γ − γ2Lf )⟨∇f(x)−∇f(x′), x− x′⟩,
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where the second inequality follows from cocoercivity of the gradient. Moreover, for every (x, x′) ∈
X 2, Df (x, x

′) ≤ ⟨∇f(x) − ∇f(x′), x − x′⟩. Therefore, in the proof of Theorem 1, for every
primal–dual solution (x⋆, u⋆) and t ≥ 0, since ∥wt − w⋆∥2 = ∥(Id− γ∇f)xt − (Id− γ∇f)x⋆∥2,
(33) yields

E
[
Ψt+1 | Ft

]
≤ 1

γ

∥∥xt − x⋆
∥∥2 − (2− γLf )Df (x

t, x⋆)

+

(
1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2 − γ

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2 .

Ignoring the last term, this yields

E
[
Ψt+1 | Ft

]
≤ 1

γ

∥∥xt − x⋆
∥∥2 + c(1 + ω)

(
1

τ
+ 2µh∗

)∥∥ut − u⋆
∥∥2 (59)

− (2− γLf )Df (x
t, x⋆)

≤ Ψt − (2− γLf )Df (x
t, x⋆), (60)

with c = 1 − 2τµh∗
(1+ω)(1+2τµh∗ ) in (59). Using classical results on supermartingale convergence

(Bertsekas, 2015, Proposition A.4.5), it follows from (60) that Ψt converges almost surely to a
random variable Ψ∞ and that

∞∑
t=0

Df (x
t, x⋆) < +∞ almost surely.

Hence, Df (x
t, x⋆) → 0 almost surely. Moreover, for every T ≥ 0,

(2− γLf )

T∑
t=0

E
[
Df (x

t, x⋆)
]
≤ Ψ0 − E

[
ΨT+1

]
≤ Ψ0 (61)

and

(2− γLf )

∞∑
t=0

E
[
Df (x

t, x⋆)
]
≤ Ψ0.

Therefore, E[Df (x
t, x⋆)] → 0; that is, Df (x

t, x⋆) → 0 in quadratic mean.

The Bregman divergence is convex in its first argument, so that for every T ≥ 0,

Df (x̄
T , x⋆) ≤ 1

T + 1

T∑
t=0

Df (x
t, x⋆).

Combining this last inequality with (61) yields

(T + 1)(2− γLf )E
[
Df (x̄

T , x⋆)
]
≤ Ψ0.

Now, if µh∗ > 0, then c < 1 in (59), and since Ψt converges almost surely to Ψ∞, it must be that
E
[
∥ut − u⋆∥2

]
→ 0. □

The counterpart of Theorem 2 in the convex case is:

Theorem 12. Suppose that g = 0, and that λmin(KK∗) > 0 or µh∗ > 0. In RandProx, suppose that
0 < γ < 2

Lf
, τ > 0, and γτ

(
(1− ζ)∥K∥2 + ωran

)
≤ 1. Then there is a unique dual solution u⋆ to

(2) and (ut)t∈N converges to u⋆, in quadratic mean.

Proof of Theorem 12 Considering the proof of Theorem 2, the same arguments as in the proof of
Theorem 11 apply, with c in (59) now equal to

c = 1− 2τµh∗ + γτλmin(KK∗)

(1 + ω)(1 + 2τµh∗)
< 1.

Hence, E
[
∥ut − u⋆∥2

]
→ 0. □
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