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ABSTRACT

Proximal splitting algorithms are well suited to solving large-scale nonsmooth
optimization problems, in particular those arising in machine learning. We propose
a new primal—dual algorithm, in which the dual update is randomized; equivalently,
the proximity operator of one of the function in the problem is replaced by a
stochastic oracle. For instance, some randomly chosen dual variables, instead of
all, are updated at each iteration. Or, the proximity operator of a function is called
with some small probability only. A nonsmooth variance-reduction technique
is implemented so that the algorithm finds an exact minimizer of the general
problem involving smooth and nonsmooth functions, possibly composed with linear
operators. We derive linear convergence results in presence of strong convexity;
these results are new even in the deterministic case, when our algorithms reverts
to the recently proposed Primal-Dual Davis—Yin algorithm. Some randomized
algorithms of the literature are also recovered as particular cases (e.g., Point-SAGA).
But our randomization technique is general and encompasses many unbiased
mechanisms beyond sampling and probabilistic updates, including compression.
Since the convergence speed depends on the slowest among the primal and dual
contraction mechanisms, the iteration complexity might remain the same when
randomness is used. On the other hand, the computation complexity can be
significantly reduced. Overall, randomness helps getting faster algorithms. This
has long been known for stochastic-gradient-type algorithms, and our work shows
that this fully applies in the more general primal—dual setting as well.

1 INTRODUCTION

Optimization problems arise virtually in all quantitative fields, including machine learning, data
science, statistics, and many other areas (Palomar & Eldar, [2009; [Sra et al., [2011; Bach et al.,
2012; [Cevher et al.| [2014; [Polson et al.l [2015; [Bubeckl [2015; |Glowinski et al., [2016; |Chambolle &
Pock, [2016; [Stathopoulos et al.| 2016)). In the big data era, they tend to be very high-dimensional,
and first-order methods are particularly appropriate to solve them. When a function is smooth, an
optimization algorithm typically makes calls to its gradient, whereas for a nonsmooth function, its
proximity operator is called instead. Iterative optimization algorithms making use of proximity
operators are called proximal (splitting) algorithms (Parikh & Boyd, [2014). Over the past 10 years
or so, primal—dual proximal algorithms have been developed and are well suited for a broad class
of large-scale optimization problems involving several functions, possibly composed with linear
operators (Combettes & Pesquet, 2010; Bot et al.| 2014; [Parikh & Boyd, 2014} Komodakis & Pesquet,
2015 Beck, [2017} [Condat et al.,|2023aj |(Combettes & Pesquet, |[2021};|Condat et al., [2022c)).

However, in many situations, these deterministic algorithms are too slow, and this is where ran-
domized algorithms come to the rescue; they are variants of the deterministic algorithms with a
cheaper iteration complexity, obtained by calling a random subset, instead of all, of the operators
or updating a random subset, instead of all, of the variables, at every iteration. Stochastic Gradient
Descent (SGD)-type methods (Robbins & Monro, [1951; Nemirovski et al.| 2009} Bottoul 2012}
Gower et al., [2020; [Gorbunov et al., 2020; [Khaled et al., [2020b)) are a prominent example, with
the huge success we all know. They consist in replacing a call to the gradient of a function, which
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can be itself a sum or expectation of several functions, by a cheaper stochastic gradient estimate.
By contrast, replacing the proximity operator of a possibly nonsmooth function by a stochastic
proximity operator estimate is a nearly virgin territory. This is an important challenge, because
many functions of practical interest have a proximity operator, which is expensive to compute. We
can mention the nuclear norm of matrices, which requires singular value decompositions, indicator
functions of sets on which it is difficult to project, or optimal transport costs (Peyré & Cuturi, 2019).

In this paper, we propose RandProx (Algorithm 2), a randomized version of the Primal-Dual Davis—
Yin (PDDY) method (Algorithm 1), which is a proximal algorithm proposed recently (Salim et al.,
2022b) and further analyzed in |Condat et al.| (2022c). In RandProx, one proximity operator that
appears in the PDDY algorithm is replaced by a stochastic estimate. RandProx is variance-reduced
(Hanzely & Richtarik} 2019; |Gorbunov et al., 2020; |Gower et al., [2020); that is, through the use
of control variates, the random noise is mitigated and eventually vanishes, so that the algorithm
converges to an exact solution, just like its deterministic counterpart. Algorithms with stochastic
errors in the computation of proximity operators have been studied, for instance in |Combettes &
Pesquet| (2016)), but the errors are typically assumed to decay or some stepsizes are made decaying
along the iterations, with a certain rate. By contrast, in variance-reduced algorithms such as RandProx,
which has fixed stepsizes, error compensation is automatic.

We analyze RandProx and prove its linear convergence in the strongly convex setting, with additional
results in the convex setting; we leave the nonconvex case, which requires different proof techniques,
for future work. We mention relationships between our results and related works in the literature
throughout the paper. In special cases, RandProx reduces to Point-SAGA (Defazio, [2016)), the
Stochastic Decoupling Method (Mishchenko & Richtarikl,|[2019), ProxSkip, SplitSkip and Scaffnew
(Mishchenko et al., [2022)), and randomized versions of the PAPC (Dror et al., [2015), PDHG
(Chambolle & Pock, 2011) and ADMM (Boyd et al.| 2011) algorithms. They are all generalized
and unified within our new framework. Thus, RandProx paves the way to the design of proximal
counterparts of variance-reduced SGD-type algorithms, just like Point-SAGA (Defaziol 2016) is the
proximal counterpart of SAGA (Defazio et al.|[2014).

2 PROBLEM FORMULATION

Let X and U/ be finite-dimensional real Hilbert spaces. We consider the generic convex optimization
problem:

Find 2* € argmin (f(x) +g(z) + h(Kx)), (1)

reX

where K : X — U is a nonzero linear operator; [ is a convex L -smooth function, for some L > 0;
that is, its gradient V f is L;-Lipschitz continuous (Bauschke & Combettes|, 2017, Definition 1.47);
and g : X - RU {400} and h : Y — R U {+oo} are proper closed convex functions whose
proximity operator is easy to compute.

We will assume strong convexity of some functions: a convex function ¢ is said to be p4-strongly
convex, for some pg > 0, if ¢ — “2—4’ || - ||? is convex. This covers the case tt¢ = 0, in which ¢ is
merely convex.

2.1 PROXIMITY OPERATORS AND PROXIMAL ALGORITHMS

We recall that for any function ¢ and parameter v > 0, the proximity operator of y¢ is (Bauschke &
Combettes| 2017): prox. , : 2 € X — argmin,cy (y¢(z') + 3|2’ — x[|*). This operator has a
closed form for many functions of practical interest (Parikh & Boyd| [2014 [Pustelnik & Condat} [2017}
Gheche et al., [2018)), see also the website http://proximity—-operator.net. In addition,
the Moreau identity holds:

Prox, s« (x) =T —7 pI'OX¢/,Y (ZL'/’)/),

where ¢* : @ € X 5 sup,.cx ((z,2') — ¢(2’)) denotes the conjugate function of ¢ (Bauschke &
Combettes| 2017). Thus, one can compute the proximity operator of ¢ from the one of ¢*, and
conversely.


http://proximity-operator.net

Published as a conference paper at ICLR 2023

Proximal splitting algorithms, such as the forward—backward and the Douglas—Rachford algorithms
(Bauschke & Combettes||2017), are well suited to minimizing the sum, f + g or g + & in our notation,
of two functions. However, many problems take the form (I)) with K # Id, where Id denotes the
identity, and the proximity operator of h o K is intractable in most cases. A classical example is the
total variation, widely used in image processing (Rudin et al.| 1992} |Caselles et al., 201 1; Condat,
2014;[2017) or for regularization on graphs (Couprie et al.l 2013)), where h is some variant of the /4
norm and K takes differences between adjacent values. Another example is when £ is the indicator
function of some nonempty closed convex set {2 C U; that is, h(u) = (0if u € Q, 400 otherwise),
in which case the problem (I)) can be rewritten as

Find z* € argmin (f(x) + g(x)) s.t. KzeQ.

zeX

If g = 0 and Q = {b} for some b € ran(K), where ran denotes the range, the problem can be further
rewritten as the linearly constrained smooth minimization problem

Find z* € argmin f(z) st Kz =b.
TEX

This last problem has applications in decentralized optimization, for instance (Xin et al.| 2020
Kovalev et al.| [2020; Salim et al., [2022a). Thus, the template problem covers a wide range of
optimization problems met in machine learning (Bach et al., 2012} Polson et al., 2015]), signal and
image processing (Combettes & Pesquet, [2010; |(Chambolle & Pock,|[2016), control (Stathopoulos
et al., [2016), and many other fields. Examples include compressed sensing (Candes et al., [2006),
object discovery in computer vision (Vo et al.,2019), ¢; trend filtering (Kim et al., [2009), group lasso
(Yuan & Lin, [2006), square-root lasso (Belloni et al.,|2011)), Dantzig selector (Candes & Tao}, [2007),
and support-vector machines (Cortes & Vapnik, |1995).

2.2 THE DUAL PROBLEM, SADDLE-POINT REFORMULATION, AND OPTIMALITY CONDITIONS

In order to analyze algorithms solving such problems, we introduce the dual problem to (T)):

Find u* € arg min ((f + 9)* (—K*u) + h*(u))7 )
uel

where K* : U — X is the adjoint operator of K. We can also express the primal and dual problems
as a combined saddle-point problem:

Find (z*,u*) € arg gél/l{/l max (f(m) +g(z) + (Kz,u) — h*(u)). 3)

For these problems to be well-posed, we suppose that there exists z* € X" such that
0€ Vf(z*)+ dg(z*) + K*Oh(Kz*), 4)

where O(+) denotes the subdifferential (Bauschke & Combettes,2017). By Fermat’s rule, every «*
satisfying (@) is a solution to (T). Equivalently to (4), we suppose that there exists (z*,u*) € X x U
such that
{ 0e Vf(x*)+ dg(z*) + K*u* )
0 € —Ka* + 0h*(u¥) )

Every (z*,u*) satisfying (3 is a primal—dual solution pair; that is, 2* is a solution to (I}, u* is a
solution to (2), and («*, u*) is a solution to (3).

3  PROPOSED ALGORITHM: RandProx

There exist several deterministic algorithms for solving the problem (T)); see[Condat et al/ (20234)
for a recent overview. In this work, we focus on the PDDY algorithm (Algorithm 1) (Salim et al.
2022bj; |(Condat et al.2022c)). In particular, our new algorithm RandProx (Algorithm 2) generalizes
the PDDY algorithm with a stochastic estimate of the proximity operator of h*.
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Algorithm 1 PDDY algorithm Algorithm 2 RandProx
(Salim et al.| 2022b)) [new]
input: initial points 2° € X, u® € U; input: initial points 2° € X, u° € U;
stepsizes ¥ > 0, 7 > 0 stepsizesy > 0,7 > 0;w >0
00 = K*u0 00 = K*u0
fort=0,1,...do fort=0,1,...do
&' = prox,, (a" =V f(a") —y0') &t = prox,, (a" =V f(z!) — ')
utt! = prox,,. (u! + TK3?) uth = uf + ZS R (prox, . (uf +7KEY) — u)
il = Rttt I R e |
il =gt — y (vt — ot pttl =2t — (1 4+ w) (VP —of)
end for end for

3.1 THE PDDY ALGORITHM
We recall the general convergence result for the PDDY algorithm (Condat et al.l 2022c| Theorem 2):

Ify € (0,2/Ly), 7> 0, 7y||K||* < 1, then (z");en converges to a primal solution
x* of (I) and (u')ien converges to a dual solution u* of @)).

The PDDY algorithm is similar and closely related to the PD30 algorithm (Yan, 2018)), as discussed
in|Salim et al.| (2022b)); [Condat et al.| (2022c). It is also an instance (Algorithm 5) of the Asymmetric
Forward-Backward Adjoint (AFBA) framework of [Latafat & Patrinos| (2017). We note that the
popular Condat—Vi algorithm (Condatl 2013} |V, [2013) can solve the same problem but has more
restrictive conditions on «y and 7.

In the PDDY algorithm, the full gradient V f can be replaced by a stochastic estimator which is
typically cheaper to compute (Salim et al.,2022b)). Convergence rates and accelerations of the PDDY
algorithm, as well as distributed versions of the algorithm, have been derived in|Condat et al.| (2022c]).
In particular, if sy > 0 or p, > 0, the primal problem (TJ) is strongly convex. In this case, a varying
stepsize strategy accelerates the algorithm, with a O(1/t?) decay of ||z* — z*||?, where z* is the
unique solution to (I). But strong convexity of the primal problem is not sufficient for the PDDY
algorithm to converge linearly, and additional assumptions on & and K are needed. We will prove
linear convergence when both the primal and dual problems are strongly convex; this is a natural
condition for primal—dual algorithms.

We note that h is Lj,-smooth, for some L;, > 0, if and only if 2" is pj,«-strongly convex, for some
tp+ > 0, with gy = 1/Lj,. In that case, the dual problem (2)) is strongly convex.

3.2 RANDOMIZATION MECHANISM FOR THE PROXIMITY OPERATOR OF h*

We propose RandProx (Algorithm 2), a generalization of the PDDY algorithm (Algorithm 1) with
a randomized update of the dual variable u. Let us formalize the random operations using random
variables and stochastic processes. We introduce the underlying probability space (S, F, P). Given
a real Hilbert space H, an H-valued random variable is a measurable map from (S, F) to (H, B),
where B is the Borel o-algebra of 7. Formally, randomizing some steps in the PDDY algorithm

amounts to defining ((xt, ut)) ey asa stochastic process, with ¢ being a X'-valued random variable

and u' a U-valued random variable, for every ¢ > 0. We use light notations and write our randomized
algorithm RandProx using stochastic operators Rt on I{; that is, for every ¢ > 0 and any r! € U,
RY(r?) is a U-valued random variable, which can be interpreted as 7! plus ‘random noise’ (formally,
rt is itself a U-valued random variable, but algorithmically, R! is applied to a particular outcome in
U, hence the notation as an operator on /). To fix the ideas, let us give two examples.

Example 1. The first example is compression (Alistarh et al., |2017; 2018; Horvath et al., 2022}
Mishchenko et al., |2019; |Albasyoni et al., [2020; Beznosikov et al., 2020; [Condat et al., [2022b):
U = R? for some d > 1 and R' is the well known rand-k compressor or sparsifier, with 1 < k < d:
R! multiplies k coordinates, chosen uniformly at random, of the vector 7! by d/k and sets the other
ones to zero. An application to compressed communication is discussed in Section
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Example 2. The second example, discussed in Section is the Bernoulli, or coin flip, operator

Rt

{ % r'  with probability p, 6)

0 with probability 1 — p,

for some p > 0. In that case, with probability 1 — p, the outcome of R(r?) is 0 and 7t does not need
to be calculated; in particular, in the RandProx algorithm, prox_,, . is not called, and this is why one
can expect the iteration complexity of RandProx to decrease. Thus, in this example, R¢(r!) does
not really consist of applying the operator R' to 7%; in general, the notation R?(r?) simply denotes a
stochastic estimate of r¢.

Example 3. The third example, discussed in Section[A.2] is sampling, which makes it possible to
solve problems involving a sum Z?:l h; of functions, by calling the proximity operator of only one
randomly chosen function h;, instead of all functions, at every iteration. The Point-SAGA algorithm
(Defaziol 2016) is recovered as a particular case of RandProx in this setting.

Hereafter, we denote by F; the o-algebra generated by the collection of (X x Uf)-valued random
variables (z%,u"),..., (2!, u?), for every t > 0. In this work, we consider unbiased random

estimates: for every t > 0,
E[Rt(rt) | ]-"t] =7t

where E[-] denotes the expectation, here conditionally on F, and r* is the random variable

rt = prox,,. (u' + TKz') —u',

as defined by RandProx. Note that our framework is general in that for ¢ # ¢/, Rt and R need not
be independent nor have the same law. In simple words, at every iteration, the randomness is new but
can have a different form and depend on the past, so that the operators R can be defined dynamically

on the fly in RandProx.

We characterize the operators R! by their relative variance w > 0 such that, for every t > 0,
2 2
E[[R'G) — " | F] <o) 7

This assumption is satisfied by a large class of randomization strategies, which are widely used
to define unbiased stochastic gradient estimates. We refer to Beznosikov et al.| (2020), Table 1 in
Safaryan et al.[(2021)),Zhang et al.| (2023)), |Szlendak et al.[(2022) for examples. In the Example 1

above of rand-k, w = ¢ — 1. In Example 2, w = % — 1. In Example 3, w = n — 1. The value

of w is supposed known and is used in the RandProx algorithm. Note that w = 0 if and only if
Rt = Id, in which case there is no randomness and RandProx reverts to the original deterministic
PDDY algorithm.

Thus, R*(rt) = r* + ¢!, with the variance of the error ¢! proportional to ||*||*. In particular, if
rt = 0, there is no error and R*(0) = 0. The stochastic operators R* will be applied to a sequence
of random vectors that will converge to zero, and hence the error will converge to zero as well, due
to the relative variance property (7). RandProx is therefore a variance-reduced method (Hanzely
& Richtarik} 2019} |(Gorbunov et al.| 2020; (Gower et al.| 2020): the random errors vanish along the
iterations and the algorithm converges to an exact solution of the problem.

To characterize how the error on the dual variable propagates to the primal variable after applying
K™, we also introduce the relative variance w,,, > 0 in the range of K* and the offset ¢ € [0, 1]
such that, for every ¢t > 0,

B[ (R =) [* 1 F] < wnan []* = ¢ [ 7 ®
It is easy to see that (8) holds with wya, = || K||?w and ¢ = 0, so this is the default choice without

particular knowledge on K™*. But in some situations, e.g. sampling like in Section a much
smaller value of w;,y, and a positive value of { can be derived.
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3.3 DESCRIPTION OF THE ALGORITHM
Let us now describe how the PDDY and RandProx algorithms work. An iteration consists in 3 steps:

1. Given z* and u*, the updated value of the primal variable is predicted to be &*.
2. The points &¢ and u’ are used to update the dual variable to its new value u‘**.

3. The primal variable is corrected from z* to z'*!, by back-propagating the difference
utt! — ! using K*.

In RandProx, randomization takes place in Step 2. On average, this decreases the progress from u?
to u!*!, and in turn from #* to 2'*! in Step 3, but the progress from 2! to 2, due to the unaltered
proximal gradient descent step in Step 1, is kept. Therefore, randomization can be used to balance the
progress speed on the primal and dual variables, depending on the relative computational complexity
of the gradient and proximity operators. The random errors are kept under control and convergence is
ensured using underrelaxation: let us define, for every t > 0,

4t = prox_,,. (ut + TKit). )
The PDDY algorithm updates the dual variable by setting u‘™* := 4!*1. In RandProx, let us define
AL = ot 4 RE(AL — ut) = att 4 et

for some zero-mean random error e’, keeping in mind that %‘* is typically cheaper to compute than
4**1, Then underrelaxation is applied: we set

u' = pa' T+ (1 - p)ut (10)
for some relaxation parameter p € (0, 1]; we use p = H% in the algorithm. That is, the update

of the dual variable consists in a convex combination of the old estimate «! and the new, better in
expectation but noisy, estimate @‘*!. Noise is mitigated by underrelaxation, because the error e’ is
multiplied by p, so that its variance is multiplied by p?. So, even if w is arbitrarily large, wp? is kept
small. Underrelaxation slows down the progress on the dual variable of the algorithm towards the
solution, but if the iterations become faster, this is beneficial overall.

4 CONVERGENCE ANALYSIS OF RandProx
Our most general result, whose proof is in the Appendix, is the following:

Theorem 1. Suppose that jiy > 0 or pg > 0, and that py- > 0. In RandProx, suppose that
0<y< % 7> 0, and ’}/T((l —Q|K|*+ wran) < 1, where wyuy, and  are defined in . For
every t > 0, define the Lyapunov function

W L () - an

where x* and u* are the unique solutions to (1) and @), respectively. Then RandProx converges
linearly: for every t > 0,

E[U'] <00, (12)
where ) )
1-— L:,—1 2 .
e max (( Yiiy) 7 (vLy —1) 1o T ) ) (13)
14+ vu, 14+ vp, (1 +w)(1+27pp+)

Also, (xt)ien and (21)en both converge to x* and (ul)en converges to u*, almost surely.

2

In Theorem 1, if v < , we have max(1 — yus, vLy — 1) = (1 —ypuy)? < 1= ypuy, so that

Lytu
in that case the rate ¢ in satisfies
2 .
cgl—min(V(“-”“”), THh ) <1
1+vyp, ~ A +w)(1+27p,+)

'The condition v < LQ—f is given for simplicity. Larger values of y can be used when p, > 0, as long as

¢ < 1in (I3).
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Table 1: The different particular cases of the problem (I)) for which we derive an instance of RandProx,
with the number of the theorem where its linear convergence is stated, and the corresponding condition
on h and K. A is a shorthand notation for Amin (K K*) and 244y : 2 + (0 if 2 = b, +-00 otherwise).

Deterministic Randomized Condition ensuring
f g h K . . Theorem .
algorithm algorithm linear convergence
any any any any PDDY RandProx 1 pn= >0
any O any  any PAPC RandProx 2 s >00r A>0
any 0 any Id  forward-backward (FB) RandProx-FB 3 —
any 0 1{p)  any PAPC RandProx-LC 4 —
0 any any any Chambolle-Pock (CP) RandProx-CP 7 e >0
0 any any Id ADMM RandProx-ADMM 8 pn >0
any any any Id Davis—Yin (DY) RandProx-DY 9 pn= >0

Remark 1 (choice of 7) Given 7, the rate ¢ in (13)) is smallest if 7 is largest. So, there seems to be no
reason to take 7y ((1 — ) || K[|> 4+ wyan) < 1, and 7v((1 — {)||K[|* 4+ wran) = 1 should be the best

ch01c.e in most cases. Thus, one can set 7 = A=K o) and keep + as the only parameter to
tune in RandProx.

In the rest of this section, we discuss some particular cases of @, for which we derive stronger
convergence guarantees than in Theorem 1 for RandProx. Other particular cases are studied in the
Appendix; for instance, an instance of RandProx, called RandProx-ADMM, is a randomized version
of the popular ADMM (Boyd et al.| 201T). The different particular cases are summarized in Table|T]

4.1 PARTICULAR CASE g =0

In this section, we assume that ¢ = 0. Then the PDDY algorithm becomes an algorithm proposed for
least-squares problems (Loris & Verhoeven,|[2011) and rediscovered independently as the PDFP20
algorithm (Chen et al.| [2013)) and as the Proximal Alternating Predictor-Corrector (PAPC) algo-
rithm (Drori et al.,2015); let us call it the PAPC algorithm. It has been shown to have a primal—dual
forward-backward structure (Combettes et al., 2014). Thus, when ¢ = 0, RandProx is a randomized
version of the PAPC algorithm.

We note that f* is strongly convex, which is not the case of (f + ¢)* in general. Let us define
Amin (K K*) as the smallest eigenvalue of K K*. Apin (K K*) > 0 if and only if ker(K*) = {0},
where ker denotes the kernel. If Ay, (K K*) > 0, f*(—K*-) is strongly convex. Thus, when g = 0,
Amin (K K*) > 0 and pp- > 0 are two sufficient conditions for the dual problem (2)) to be strongly
convex. We indeed get linear convergence of RandProx in that case:

Theorem 2. Suppose that g = 0, iy > 0, and that Apin(KK*) > 0 or p,~ > 0. In RandProx,
suppose that 0 < v < L%, 7> 0and y7((1 — {)||K||* + wran) < 1. Then RandProx converges

linearly: for every t > 0, E[U!] < ¢! U0, where the Lyapunov function ' is defined in (TT), and

27 + ")/T)\min(KK*))
— < 1.
(1+w)(@ + 27pn-)

e = max (1= ), (07 - D71 (14)

Also, (x)ien and (21)en both converge to x* and (ul)en converges to u*, almost surely.

When R! = Id and w = w,., = 0, RandProx reverts to the PAPC algorithm. Even in this particular
case, Theorem 2 proves linear convergence of the PAPC algorithm and is new. In|Chen et al.| (2013
Theorem 3.7), the authors proved linear convergence of an underrelaxed version of the algorithm;
underrelaxation slows down convergence. In|Luke & Shefi| (2018)), Theorem 3.1 is wrong, since it is
based on the false assumption that if A, (K;K;) > 0 for linear operators K;, i = 1,. .., p, then
Amin(KK*) > 0, with K : z — (Kiz,..., Kpx). Their theorem remains valid when p = 1, but
their rate is complicated and worse than ours.

We now consider the even more particular case of g = 0 and & = Id. Then the problems (I) and ()
consist in minimizing f(z) + h(x) and f*(—u) + h*(u), respectively. The dual problem is strongly
convex and has a unique solution u* = —V f(z*), for any primal solution z*. By setting 7 := 1/
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Algorithm 3 RandProx-FB [new] Algorithm 4 RandProx-LC [new]
input: initial points 2° € X, u° € X; input: initial points 2° € X, u® € U;
stepsize v > 0; w > 0 stepsizes vy > 0,7 > 0; w >0
fort=0,1,...do 00 = K’

it =zt — AV f(2t) — yul fort =0,1,...do
~ X . St b ty _ t
d' =R &' — prox,,j 1y, (&' + (1 + w)u')) TR ’va;(xR)t Igz)t .,
wttl m gt 4 — 1 gt uti= b+ e RY KR )
L () it = Kyttt
tH1 . At t
= = pd =2t — (1 + w) (v —ot)
end for end for

in the PAPC algorithm, we obtain the classical proximal gradient, a.k.a. forward-backward (FB),

algorithm, which iterates z!*1 := PIrox.,;, (xt -9V f(:vt)). Thus, when randomness is introduced,

. . : . 1 :
we set wyan = w, ¢ = 0 and, according to Remark 1, 7 = ey 10 RandProx. By noting that,
for every a > 0, the abstract operators R? and aR* (% . ) have the same properties, we can put the

constant (1 + w) outside R? to simplify the algorithm, and rewrite RandProx as RandProx-FB,
shown above. As a corollary of Theorem 2, we have:

Theorem 3. Suppose that py > 0. In RandProx-FB, suppose that 0 < v < L% For every t > 0,
define the Lyapunov function

U= % th - $*H2 + (T4 w)(y(1 4+ w) + 2p4+) Hut - U*Hz, (15)

where x* is the unique minimizer of f +h and u* = =V f(x*) is the unique minimizer of {*(—-)+h"*.
Then RandProx-FB converges linearly: for every t > 0,
E[U'] < 0O,

where

2 2 1+%W”*
c=max | (1 —~yuy)*, (vL; —1)7,1— A+t Zm) < 1. (16)
y Fh

Also, (z%)ien and (2")ien both converge to x* and (u')ien converges to u*, almost surely.

It is important to note that it is not necessary to have p;- > 0 in Theorem 3. If we ignore the

properties of /%, the third factor in (T6)) can be replaced by its upper bound 1 — ﬁ

4.2 LINEARLY CONSTRAINED SMOOTH MINIMIZATION

Let b € ran(K). In this section, we consider the linearly constrained (LC) minimization problem

Find z* € arg n;in f(z) st. Kx=b, (17)
(S

which is a particular case of (TI) with g = 0and 7 : u € U — (0 if u = b, 400 otherwise). We have
h*:u €U (u,b) and prox, - : u € U — u — 7b. The dual problem to (I7) is

Find u* € arg min (f*(—K*u) + (u, b>). (18)
ueU

We denote by w5 the unique solution to (I8) in ran(K’). Then the set of solutions of (I8) is the affine

subspace uf + ker(K*). Thus, the dual problem is not strongly convex, unless ker(K*) = {0}. Yet,

we will see that strong convexity of f is sufficient to have linear convergence of RandProx, without

any condition on K.

We rewrite RandProx in this setting as RandProx-LC, shown above. We observe that u‘ does not
appear in the argument of R? any more, so that the iteration can be rewritten with the variable
vt = K*u!, and u! can be removed if we are not interested in estimating a dual solution. In any case,
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we denote by P,ay(f) the orthogonal projector onto ran(K) and by A\, (KK*) > 0 the smallest

nonzero eigenvalue of K K*. Then:

min

Theorem 4. In the setup (T7)—(I8), suppose that piy > 0. In RandProx-LC, suppose that 0 < y < %
7> 0and y7((1 = )| K||? + wran) < 1. Define the Lyapunov function, for every t > 0,

1 w2 14w 2
il L 9
v
where ufy '= Pran (i) (u') is also the unique element in ran(K) such that v* = K*uf, x* is the unique
solution of (I7) and uj is the unique solution in ran(K) of (I8). Then RandProx-LC converges

linearly: for every t > 0,
E[¥'] < 00,
where N
A (KK™
¢ = max ((1 —yup)?, (vLy —1)%,1 — Wﬁ”) <1 (20)
w

Also, (z%)ien and (2%)ien both converge to x* and (ul))ien converges to uf, almost surely.

Theorem 4 is new even for the PAPC algorithm when w = 0: its linear convergence under the stronger
condition y7||K|? < 1 has been shown in|Salim et al[(2022b, Theorem 6.2), but our rate in (20) is
better.

We further discuss RandProx-LC, which can be used for decentralized optimization, in the Appendix.
Another example of application is when X = R4, for some d > 1, and K is a matrix; one can solve
(T7) by activating one row of K chosen uniformly at random at every iteration.

5 CONVERGENCE IN THE MERELY CONVEX CASE

In all theorems, strong convexity of f or g is assumed; that is, 1y > 0 or u, > 0. In this section, we
remove this hypothesis, so that the primal problem is not necessarily strongly convex any more. But
V f(x*) is the same for every solution z* of (I)), and we denote by V f(«*) this element.

We define the Bregman divergence of f at points (x,z’) € X2 as

Df(ﬂ«“ o) = f(z) = f(a") = (V[(@'),z —a’) = 0.

For every t > 0, D¢( tf ) is the same for every solution z* of (1), and we denote by D (!, z*)
this element. D (x can be viewed as a generalization of the objective gap f(z!) — f(z*) to the
case when V f(z*) ;ﬁ 0. Dy(a', x*) is a loose kind of distance between z* and the solution set, but
under some additional assumptions on f, for instance strict convexity, D (z*, 2*) — 0 implies that

the distance from 2" to the solution set tends to zero. Also, Dy (x!, 2*) > ﬁ IV f(xt) = Vf(z¥)]?,

so that Dy (z, z*) — 0 implies that (V f(z")), . converges to V f(z*).

teN

Theorem 11. In RandProx, suppose that 0 < v < L% 7> 0, and y7((1 = Q| K||? + wran) < 1.

Then Dy (z',2*) — 0, almost surely and in quadratié mean. Moreover, for every t > 0, we define
gl = t-%l ZE:O xt. Then, for every t > 0,

\I’O

E[Ds (3", 2*)] < @—AL)E+1)

= O(1/t). 1)

If; in addition, py~ > 0, there is a unique dual solution u* to @) and (u'):en converges to u*, in
quadratic mean.

We can derive counterparts of the other theorems in the same way. These theorems apply to all
algorithms presented in the paper. For instance, Theorem 11 applies to Scaffnew (Mishchenko et al.,
2022), a particular case of RandProx-FL seen in Section[A3] and provides for it the first convergence
results in the non-strongly convex case.
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Algorithm 5 RandProx-Skip [new] Algorithm 6 RandProx-Minibatch [new]
input: initial points z° € X, u® € U; input: initial points 2° € X, ( Nr_ e xm
stepsizes 7 >0,7>0;p€(0,1] step31ze v>0ke{l,.

— K*u ’U — Z;L L ’lLO
fortf01 fort =0,1,...do
= proxw (x —V[f(z') — yo') it = PTOXW (' =V f(z") = y0')
Flip a coin #* = (1 with probability p, pick Q' C {1,...,n} of size k unif. at random
0 else) for i € Q' do
if ' = 1 then u ™= prox e (uf + o df)
u'T = prox_,. (u! + TK?) end for
L= jorttt foric {1,...,n}\Q" do
xt+1 — ‘%t _ %(,UtJrl _ ,Ut) u§+1 — Ui
else end for
uttl = b, vt = ot it = 3t ot =30ttt
end if gt = 3 — A (it yt)
end for end for

Appendix

A EXAMPLES

A.1 SKIPPING THE PROXIMITY OPERATOR

In this section, we consider the case of Bernoulli operators R* defined in (6)), which compute and
return their argument only with probability p > 0. RandProx becomes RandProx-Skip, shown above.
Thenw = & — 1, Wyan = || K||*w, and ¢ = 0.

If ¢ = 0, RandProx-Skip reverts to the SplitSkip algorithm proposed recently (Mishchenko et al.,
2022). Our Theorems 1 and 4 recover the same rate as given for SplitSkip in Mishchenko et al.
(2022, Theorem D.1), if smoothness of A is ignored. If in addition K = Id and 7 = m =
RandProx-Skip reverts to ProxSkip, a particular case of SplitSkip (Mishchenko et al.,[2022). Our
Theorem 3 applies to this case and allows us to exploit the possible smoothness of 4 in RandProx-
Skip =ProxSkip, which is not the case of the results of (Mishchenko et al.l [2022). As a practical
application of our new results, let us consider personalized federated learning (FL) (Hanzely et al.,
2020): given a client-server architecture with a master and n > 1 users, each with local cost function
fi»i=1,...,n,the goal is to

A" )
A _z|2, 2
xn}}Lnllen%de Zfl x;) 2 ; |z; — Z| (22)
where Z := 2 3" | ;. Each f; is supposed L ;-smooth and /¢ -strongly convex. We set X' := (R%)",
fra= (), = S0, fila), hrxw 330 ||l — 2| fis Ly-smooth and 11 -strongly
convex, h is A-smooth, so that p,- = % Thus, with v = %’ we have in (IE]):

2L
1+ =
cgl—mm<”f><1

Ly’ (14 2

. /g min(L s ,\) . . .
Hence, with p = Vi e L, min ( L%, 1), the communication complex1ty in terms of

the expected number of communication rounds to reach e-accuracy is O ((1 / %Lff)‘) + 1) log %) ,

which, up to the ‘+1° log factor, is optimal (Hanzely et al.,|2020). This shows that in personalized
FL with A < Ly, the complexity can be decreased in comparison with non-personalized FL, which
corresponds to A = 4-o00. This is achieved by properly setting p in ProxSkip, according to our new
theory, which exploits the smoothness of /.
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A.2 SAMPLING AMONG SEVERAL FUNCTIONS

We first remark that we can extend Problem (I) with the term h(Kx) replaced by the sum
Sy hi(Kz) of n > 2 proper closed convex functions /; composed with linear operators
K, : X — U, for some real Hilbert spaces U;, by using the classical product-space trick: by
defining U == Uy x - Up, h:u = (u))ly €U — >0 hi(w), Kz € X — (K;z)Py €U,
we have h(Kz) = Y| h;i(K;z). In particular, by setting K; := Id and i; := X, we consider in
this section the problem:

zeX

Find 2* € arg min <f(ac) +g@)+> hi (x)) . (23)
=1

We have 7" : (u;)!~; € X™ + Y | hi(u;) and we suppose that every function /1 is i+ -strongly
convex, for some i« > 0; then h* is py,«-strongly convex. Thus, the dual problem to @ is

Find (u})?; € argmin | (f+¢)" (— > ui) + Z Ri(ug) | . (24)
(ui)f_, €™ i=1 i=1

Since K*K = nld, ||K||> = n. Now, we choose R' as the rand-k sampling operator, for some

ke {1,...,n}: R* multiplies k elements out of the n of its argument sequence, chosen uniformly at

random, by n/k and sets the other ones to zero. It is known (Condat & Richtérik} 2022} Proposition

1) that we can set

ﬁ_la wran::n(n_k)v sz n_k .

k k(n—1) k(n—1)

Note that this value of wy,y, is 7 — 1 times smaller than the naive bound || K ||?w = w We have

(1 — Q)||K||* + wran = n. RandProx in this setting, with 7 := vin, becomes RandProx-Minibatch,

shown above, and Theorem 1 yields:

w =

Theorem 5. Suppose that 1y > 0 or 1y > 0, and that i~ > 0. In RandProx-Minibatch, suppose
that 0 < v < Llf Define the Lyapunov function, for everyt > 0,
1 2 N = 2
U= ;th—az*H +E(’yn+2mb*)2||u§—u;‘|| , (25)
i=1

where ©* and (u})™_, are the unique solutions to 23) and @24), respectively. Then RandProx-

Minibatch converges linearly: for every t > 0, E[W!] < ¢! W0, where
1-— )2 Ly—1) 2k i,
C:_max<( Vi) 7(v r=1 1o [ih > 26)
Ltypg — 14 ypg n(yn =+ 2fin-)

Also, (2%)ien and (2")ten both converge to x* and (ul)ien converges to u}, Vi, almost surely.

RandProx-Minibatch with £ = 1 becomes the Stochastic Decoupling Method (SDM) proposed in
Mishchenko & Richtarik| (2019), where strong convexity of g is not exploited, but similar guarantees
are derived as in Theorem 5 if 11, = 0. Linear convergence of SDM is also proved in Mishchenko
& Richtarik| (2019) in conditions related to ours in Theorems 2 and 4. Thus, RandProx-Minibatch
extends SDM to larger minibatch size k£ and exploits possible strong convexity of g.

When f = 0 and ¢ = 0, SDM further simplifies to Point-SAGA (Defazio, 2016). In that case,
our results do not apply directly, since there is no strong convexity in f and g any more, but when
minimizing the average of functions h;, with each function supposed to be L-smooth and p-strongly
convex, for some L > p > 0, we can transfer the strong convexity to g by subtracting &|| - ||?

to each /; and setting g = 4|| - ||%. This does not change the problem and the algorithm but our
Theorem 5 now applies, and with the right choice of +, we recover the result in [Defazio| (2016), that

the asymptotic complexity of Point-SAGA to reach e-accuracy is O ((n + 4/ %) log %), which is
conjectured to be optimal.

Thus, RandProx-Minibatch extends Point-SAGA to larger minibatch size and to the more general
problem (23) with nonzero f or g.

When n = 1, there is no randomness and SDM reverts to the DY algorithm discussed in Appendix
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Algorithm 8 Point-SAGA
(Detazio, [2016)

Algorithm 7 SDM
(Mishchenko & Richtarik, |[2019)
input: initial points 2° € X, (u)?, € X™;
stepsize v > 0
0= uf
fort—O,l,...d
2t == prox g(x — AV f(zh) — 'yvt)

pick i* € {1,...,n} uniformly at random
a1 = prox.,,;, (ynul, + ')
1.t 1 (st ot
Uy = vy ooy (2t — 2t
forevery i € {1,...,n}\{i'}, ul™" = u}
t+1 . n t+1 4 0t t+1 ¢t
v = oqu =0t 4+ U U
end for

input: initial points 2° € X, (u
stepsize y > 0
UO = Z’L 1 uO
fortfo,l,...

gt = 'yv

pick it € {1,...,n} uniformly at random

t+1 = prox’ynh,, (’Ynuff + :i't)

ulf =l + %n(if — zttl)

for every i € {1,. n}\{z boutth =t

oIt =31 w t‘H /= vt + uf‘|r1 ul,
end for

z)z leXn

Algorithm 9 RandProx-FL [new]
input: initial estimates (z{); € X", (u?)", €
X™ such that 3", u) = 0; stepsize v > O;w>0
fort:O,l,...do
for i = 1,...,n at nodes in parallel do
i =l V(e —
ol =R (af)
// send compressed vector a} to master
end for
a' = L3"  al // aggregation at master
// broadcast a' to all nodes

for : = 1,...,n atnodes in parallel do
dl==al—a'
= g d;
ot =gt — Hod!
end for
end for

A.3 DISTRIBUTED AND FEDERATED LEARNING WITH COMPRESSION

We consider in this section distributed optimization within the client-server model, with a master
node communicating back and forth with n > 1 parallel workers. This is particularly relevant for
federated learning (FL) (Konecny et al.||2016; McMahan et al.} 2017} |[Kairouz et al.,[2021}; [Li et al.|
2020), where a potentially huge number of devices, with their owners’ data stored on each of them,
are involved in the collaborative process of training a global machine learning model. The goal is to
exploit the wealth of useful information lying in the heterogeneous data stored across the devices.
Communication between the devices and the distant server, which can be costly and slow, is the
main bottleneck in this framework. So, it is of primary importance to devise novel algorithmic
strategies, which are efficient in terms of computation and communication complexities. A natural
and widely used idea is to make use of (lossy) compression, to reduce the size of the communicated
message (Alistarh et al.| 2017 |Wen et al., |2017; Wangni et al.| 2018} |Khaled & Richtarik, [2019;
Albasyoni et al.| [2020; Basu et al., [2020; [Dutta et al., 2020; [Sattler et al., [2020; [Xu et al.| [2021)).
Another popular idea is to make use of local steps (McMahan et al., 2017; Khaled et al., 2019; Stich|
2019; |[Khaled et al., [2020a Malinovsky et al., [2020; [Woodworth et al.l 2020} [Karimireddy et al.|
2020; |Gorbunov et al.| 202 1; Mishchenko et al.| 2022); that is, communication with the server does
not occur at every iteration but only every few iterations, for instance communication is triggered
randomly with a small probability at every iteration. Between communication rounds, the workers
perform multiple local steps independently, based on their local objectives. Our proposed algorithm
RandProx-FL unifies the two strategies, in the sense that depending on the choice of the randomization
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process R?, we obtain a method with local steps or with compression, or both. The combination of
local training and compression has been further investigated in our follow-up work (Condat et al.|
2022a)), and partial participation in|Condat et al.| (2023b)).

Thus, we consider the problem

Find z* € arg min Z fi(z) ], 27)
z€R4 i—1
where d > 1 is the model dimension and n > 1 is the number of parallel workers, each having its
own objective function f;. Every function f; : R? — R is p-strongly convex and L-smooth, for some

L > > 0. We define k :== L/pu.

Now, we can observe that (2Z7)) can be recast as (I) with K = Id, Y = X, g = 0; that is, as the
minimization of f + h, as studied in Section[d.1] with

X=®RY", [rz=(m)i =) filw), (28)
i=1
h:z=(x;)— (0ifzy =--- = x,, +oo otherwise). (29)

We note that f is u-strongly convex and L-smooth, and p,~ = 0. Making these substitutions in
RandProx-FB yields RandProx-FL, a distributed algorithm well suited for FL, shown above. In
RandProx-FL, randomization takes the form of linear random unbiased operators R? applied to the
vectors sent to the server. Note that at every iteration, the same operator R? is applied at every
node; that is, its randomness is shared. We can easily check that RandProx-FL is an instance of
RandProx-FB, because of the linearity of the R* and because the property Y ., u! = 0 is maintained
at every iteration. Formally, R¢ applied as a whole in RandProx-FB consists of n copies of R? applied
individually at every node in RandProx-FL, that is why we keep the same notation; in particular, the
value of w is the same in both interpretations.

Interestingly, in RandProx-FL, information about the functions f; or their gradients is never commu-
nicated and is exploited completely locally. This is ideal in terms of privacy.

As an application of Theorem 3, we obtain:

Theorem 10. /n RandProx-FL, suppose that 0 < v < L% Define the Lyapunov function, for every
t>0, ‘

"1 12 12
w3 (3ot o vt ). (30)
i=1
where x* is the unique solution of and u} = —V f;(x*). Then RandProx-FL converges linearly:
foreveryt > 0, E[U!] < c'WO, where

1
— 2 2
Also, the (z})ien and (21)1en all converge to x* and every (ul)en converges to u¥, almost surely.

If R? is the Bernoulli compressor we have seen before in (6)) and in Section RandProx-FL reverts
to the Scaffnew algorithm proposed in Mishchenko et al| (2022), which communicates at every
iteration with probability p € (0, 1] and performs in average 1/p local steps between successive
communication rounds. We have w = % — 1. The analysis of Scaffnew in Theorem 10 is the same as
in Mishchenko et al.{(2022). With v = =, the iteration complexity of Scaffnew is O ((x + p%) log1),

and since the algorithm communicates with probability p, its average communication complexity is

O((pr + 5)log ¢). In particular, with p = —, the average communication complexity of Scaffnew

\/E 2
is O(y/klog ).
We now propose a new algorithm with compressed communication: in RandProx-FL we choose, for

every t > 0, R as the well-known rand-k compressor, for some k € {1,...,d}: R multiplies
k coordinates, chosen uniformly at random, of its vector argument by d/k and sets the other ones

to zero. We have w = ¢ — 1. The iteration complexity with v = + is O((x + g—z) log 1) and the
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communication complexity, in terms of average number of floats sent by every worker to the master,
2
is O((kn + %) log %) , since k floats are sent by every worker at every iteration. Thus, by choosing
o . . . . . 1 .
k = [d/+/k], as long as d > +/k, the communication complexity in terms of floats is O (d\/E log E) ;
this is the same as the one of Scaffnew with v = % and p = ﬁ, but RandProx-FL with rand-k
compressors removes the necessity to communicate full d-dimensional vectors periodically.

B CONTRACTION OF GRADIENT DESCENT

Lemma 1. For every v > 0, the gradient descent operator 1d — vV f is c-Lipschitz continuous,
with ¢, == max(1 — yuys,vLy — 1). That is, for every (z,z') € X2,

10d =4V f)z = (1d = yV)a']| < eyl = 27]].

Proof Let (z,2') € X?. By cocoercivity of V f — psId, we have (Bubeck, 2015, Lemma 3.11)

(Vi(2) = Vi), x —a') > 2Ll — o' + - |V f (@) = V(2')|| Hence,

1
Ly+py
. . L
I(1d = 4V )z = (d =4V )22 < (1 = PELL) |l — o)

+ (v = 22 IV () = V)P

Lyt+py

Thus,if y < -2, sinee |9 (2) = V@) 2 puglle = @'

11 =49 1)z — (1d =4V )'|? < (1= 2EEL 4 (42 = 222 o — o/

= (1= sz =o'

On the other hand, if v > ﬁw, since |V f(z) = Vf(2')|| < Ly|lz — 2’|,

L
10 =7V )z = (1d =~V )a'|* < (1= ZEE 4+ (2 = 35003 ) o — P

= (vLy = 1)*[la = 2'||*.

Since max(1 — yps,yLy — 1) = (1 —ypyify < ﬁ, ~vL; — 1 otherwise) > 0, we arrive at
the given expression of ¢ . O

We note that if y < LQ—f and py > 0,cy < 1.

C PROOF OF THEOREM 1

Lett € N. Letp* € 9g(2?) be such that 2t = 2t —V f(zt) —yp' —yK*ul; p exists and is unique, by
properties of the proximity operator. We also define p* := —V f(z*) — K*u*; we have p* € dg(z*).
Let ¢ == p' — p,@" and ¢* := p* — pya*. We have (1 + yu )zt = 2t — 4V f(2') — v¢' — yK*ul.
Letw' == 2' — 4V f(z!) and w* == 2* — 4V f(z*).

Using 4! defined in (9)), we have

E[me—l _x*H2 |]__t} = |[E[«+ | 7] _x*H2+EU|xt+1 ~ B[zt |]_-t”|2 |~7:t}
< [lé* — o = K@ = )| 4 e [0

. 72C HK*(,&t-i-l . ut)H2
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Moreover,
. N .l 2 . 2 . 2
87 = 2% = K (@ = u)|[7 = |2t = 2|7 4 [ @ = )|
_ 2,Y<i,t _ x*,K*(ﬁH‘l _ ut)>
. ) . 2
< () 8t = 2+ 02 @ — )|
—2y(at — ot K@ — ut)) + 298 — 2, K7 (ut — )
= (w' —w* —7(¢" = ¢*) —7K"(u' —u*), 3" —z*)
Jr,yz HK*(ﬂtH . ut)H2
— 2yt — ot K@ — ut)) + 298 — 2, K7 (ut — )
= —2y(¢" — ¢*, 2" —z*)
+ (W' —w* +9(¢" = ¢*) + 7K (u* —u*), 2" —a*)
* /A~ 2 A * k[~ *
+42 ||K (att — ut)H —2y(&" — ¥, K* (' — u))
= —2y(¢" — ¢*, 2" —z*)
1
+
T+ yuy
w' —w* —y(¢" — ¢) —yK*(u* —u*))
K (A 2 - * * [~ *
+ 2 [K (@ —u) || = 293 — 2 K (@ - wY)

(w' —w* +7(¢" = ¢*) +yK*(u" —u*),

_ t ok oAtk 1 t 2
=—-2v(¢" — ¢", 2" —a¥) + e Hw w*H
2
el L O
9

A2 || — ) ||P = 2y (3t — 2, K (@0 — u).
We have (¢' — ¢*, 2" — 2*) > 0. Hence,
1

Hjjt o ,YK*(at+1 _ ut)H2 <

R RN
+’y2 ||K*(,&t+1 . ut)HQ _ 27@1: . x*yK*(ﬁt-i-l — ),

2
(e

so that
t+17*2 :| 1 t *27 72 t * (0t % 2
BJle ot 1] € et =t - e - K - )
(1= Q@ — )| - 2y(a -2t K@ - )
+ 7Pwran @1 —utHQ.
On the other hand,
2
Bl - 7] < [ -+ o )| i e -
w? 2 1 . 2
= (1+w)? Hut _U*H + (1+w)? |ut+1 _U*H
2w N w . 2
(1+w)2 (ut u 7Ut+1 —U*> + m |Ut+1 — U H
w N2 2w . - N
+ <1+w)2 Hutiu H 7m<ut7u 7ut+17u >
_ 1 atbl K ]]2 w t ]2
=1, I u* || +1+wHu ut||”. (32)
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Let s'*1 € Oh*(4!T1) be such that 41! = u? + 7K3! — 7s'+1; st exists and is unique. We also
define s* := Kz*; we have s* € 8h/*(u*) Therefore,

e [ i+t = [

|At+1

_ Hut o u*H2 + ||ut+1 . tH + 2<ut . u*’,&t-',-l i ut>
_ Hut _ U*HQ Fogattt -t Attt — oty — H,&t+1 _ utHQ

P = 2 - K (o)
—2r(attt — st — 5.

Hence,
1]E{Hg;t+1_x*H2 |]_.t} +H7W]E{|‘ut+l_u*”2 |]__t}
v , .
1+w H - *H WHCf—q*JrK(ut—u*)H2
+y(1= Q) [K* (@ —u)|* = 26" — 2%, K* @+ —u*))
T P VP
T T

+ 20 —ut, K (2t — o)) — 2(at T —ur, st — s)
L ¥ 2
— " =]

t w* # t__x x(,0t o 2
¢l i )

l+w o . 2 . 1 t+1 ]2
1 P (2 QEIP + ) — 1) ]

_ 2<At+1 u* St+1 S*>

Y 2
i e e
+ 1 to ut — u*”2 —2(a T — o, st — %),
By f1,+ -strong monotonicity of Oh*, (a'*! — u*, s — *) > p,- ||at T — u*||2, and using (32)),

(@t —ur, s — %) > e ((1 +w)]E[||ut+1 —u H | .7-}} —w Hut — u*H2) .
Hence,

e MEA R (1 2 ) B[ Ju - || 7]

et P - e e - )
+ (H + 2w ) [t —w*|)?. (33)
After Lemma 1,
w' —w*|* = [1d -~V f)at - 1d -V )|

12
< max(1 —ypp,yLy —1)2 |a* — 2"
Plugging this inequality in (33) yields

[\Pt-s-l | ]_-] YA max(1l —yus,vLy — 1)2 th _ ;p*Hz (34)
14w ¢k 2 B L t % *(,0t % 2
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Ignoring the last term in (34)), we obtain:

1-— 2 (yLs —1)2 2T 14, -
E[\Ijt-‘rl ‘ ]:t] < max (( ’Yﬂf) , (’Y f ) J1— THh ) Pt (35)
Lty 14+yp (1+w)(X + 27pn-)

Using the tower rule, we can unroll the recursion in (33) to obtain the unconditional expectation of
Ui+l Since E[¥!] — 0, we have E{th — x*||2} — 0 and E“\ut — u*||2} — 0. Moreover, using

classical results on supermartingale convergence (Bertsekas| 2015, Proposition A.4.5), it follows
from (33) that U — 0 almost surely. Almost sure convergence of z* and u' follows. Finally, by

Lipschitz continuity of V f, K*, prox,,, we can upper bound |2 — z*|| by a linear combination of

|zt — 2*||? and |Ju® — u*||?. It follows that E {Hit — l‘*”Q} — 0 linearly with the same rate ¢ and

that ¢ — 2* almost surely, as well. O

D PROOF OF THEOREM 2
Let us go back to (34). Since g = 0, we have ¢* = ¢* = 0 and p, = 0, so that
B[O+ | F] < %maxu — syl = 1) |2t — 2| + (“;w + 2wuh*> [t —w*|?
— ||t =)

We have || K*(ut — u*)||> > Amin (K K*) |[ut — w*||°. This yields

—_

]E[\Ilt+1 | ]-"t] < —max(1l —ypus,vLy — 1)? th — 3:*”2

=2

+ (1_:‘” + 2wpps — fy)\min(KK*)) Hut - u*H2

27—Mh* =+ 'YT)\min(KK*)
(1 + W)(l + 27'/,L},,*)

< max ((1 —yup)? (vLy —1)%,1 — ) vl (36)

The end of the proof is the same as the one of Theorem 1. (|

Let us add here a remark on the PAPC algorithm, which is the particular case of RandProx when
w = 0, in the conditions of Theorem 2:

Remark 2 (PAPC vs. proximal gradient descent on the dual problem) If uy > 0, f* is p'-
smooth and L;l-strongly convex. Then f* o —K* is ,u;1||K||2-smooth and L;l)\min(KK*)-
strongly convex. So, if V f* is computable, one can apply the proximal gradient algorithm on the
dual problem (2), which iterates u'** = prox,,. (u' + TKV f*(—K*u')), with 7 € (0, ”i(%)
If Apin(KK*) > 0, this algorithm converges linearly: [|u'™ — u*||? < 2|lul — w*||* with
¢ = max (1 — 7L7 Apin(KK*), 77 | K|? = 1). ¢ is smallest with 7 = 2/(u || K[> +
L;l)\min(KK*)), in which case

By Amin (KK™)

O T
14 Bs A (KK
L, KT

This is much worse than the rate of the PAPC algorithm, since it involves the product of the condition
numbers L /¢ and || K||? /Amin (K K*), instead of their maximum. This is due to calling gradients
of f* o —K™, whereas f and K are split, or decoupled, in the PAPC algorithm.

E PROOF OF THEOREM 4 AND FURTHER DISCUSSION
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Algorithm 10 RandPriLiCo [new]
input: initial points 2° € X, v° € ran(W);
stepsizesy > 0,7 > 0;w >0
fort=0,1,...do
&t =o' =V f(at) — v’

xt+1 — i.t _ ,ydtJrl
end for

We observe that in RandProx-LC and Theorem 4, it is as if the sequence (uf):cn had been computed
by the following iteration, initialized with z° € X and ug ‘= Pyan () (u"):

B =t =V [(z') =y’

ubtt = b + 1ir%JPW(K)W (T(Ki' —b))
vt = Krubht

ol =2t — (1 + w) (vt — o)

Then we remark that this is simply the iteration of RandProx, with R? replaced by Rl = Pran( K)Rt.

Since its argument r* = 7(K2' — b) is always in ran(K), R is unbiased, and we have, for every
t>0,

EM@(Tt) gt 2 Ift] SE[HRt(Tt) 7TtHQ ‘ft] SWHTtHQ’

where J, the o-algebra generated by the collection of random variables (z°, ud), ..., (xt ub). Also,

Wran 18 unchanged. Therefore, the analysis of RandProx in Theorem 2 applies, with u! replaced by
uly and u* by u}. Now, for every u € ran(K),

* 2 * 2
1K ul|” = AL (BE) [l

min
and using this lower bound in the proof of Theorem 2, with 1~ = 0, we obtain Theorem 4. ]
Furthermore, the constraint K« = b is equivalent to the constraint K* Kx = K *b; so, let us consider
problems where we are given K* K and not K in the first place:

Let W be a linear operator on X', which is self-adjoint, i.e. W* = W, and positive, i.e. (Wz,z) > 0
for every x € X. Let a € ran(WW'). We consider the linearly constrained minimization problem

Find 2* € argmin f(z) st Wz =a. 37
reX

Now, we let i/ := X and K = K* := vW, where VWV is the unique positive self-adjoint linear
operator on X such that vW+vW = W. Also, b is defined as the unique element in ran(WW) =

ran(K) such that vIWb = a. Then (@7) is equivalent to (T7) and the dual problem is (I8). We
consider the Randomized Primal Linearly Constrained minimization algorithm (RandPriLiCo), shown
above. We suppose that the stochastic operators S* in RandPriLiCo satisfy, for every ¢ > 0,

E[s'(r) | B| =" and E[||S'0") — o' | F] <w ||, (38)
for some w > 0, where rt .= 7W 3zt — 7a.
In addition, we suppose that the S* commute with v/W: for every ¢t > 0 and = € X,
VWS (z) = S"(VWx).

This is satisfied with the Bernoulli operators or some linear sketching operators, for instance. Then
RandPriLiCo is equivalent to RandProx-LC, with S* playing the role of R? and wyan = |[|W|jw, ¢ = 0.
Applying Theorem 4 with these equivalences, we obtain:
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Algorithm 11 CP algorithm Algorithm 12 RandProx-CP [new]
(Chambolle & Pocki 2011) input: initial points 2° € X, u° € U;
input: initial points z° € X, u° € U; stepsizes ¥ > 0,7 > 0; w > 0
stepsizes y > 0, 7 > 0 20 = prox,, (2° — yK*u°)
20 = prox, , (a° —yK*u®) fort=0,1,...do
fort =0,1,...do d' .= R (prox,,- (u' + TKi") — u)
uftt = prox,,. (u' + TK#') uttt =t + Hdt
Natthi= gt — yK* (u'th —ut) /Tt =3t — yK*d!
= prox, (2" — yK*(2u' — uh)) = prox., (&' = yK*(u'tt + d))
end for end for

Theorem 6. In the setting of (37), suppose that iy > 0. In RandPriLiCo, suppose that 0 < v < L—Qj
7> 0 and y7||W||(1 + w) < 1. Define the Lyapunov function, for every t > 0,

1

P [ , (39)
Y T

where ufy is the unique element in ran(W) such that v* = VWul, x* is the unique solution of (37)

and ufj is the unique element in ran(W) such that —V f (x*) = vVWuj. Then RandPriLiCo converges
linearly: for everyt > 0,

E[U'] <00, (40)

where

+
o fYTAmin(W)> < 1. (41)

e = maax (1= e (01 — 2,1 - Tl

Also, (x!)4en and (21)en both converge to x* almost surely.

RandPriLiCo can be applied to decentralized optimization, like in|Kovalev et al.|(2020); |Salim et al.
(2022a) but with randomized communication; we leave the detailed study of this setting for future
work.

F PARTICULAR CASE f = 0: RANDOMIZED CHAMBOLLE—POCK ALGORITHM

In this section, we suppose that f = 0. The primal problem (I]) becomes:

Find z* € argmin (q(x) + h(Ka:)), 42)
TeEX
and the dual problem (2) becomes:
Find v* € argmin (g*(—K*u) + h*(u)). 43)
uelU

The PDDY algorithm becomes the Chambolle-Pock (CP), a.k.a. PDHG, algorithm (Chambolle &
Pockl, [2011)), shown above. RandProx can be rewritten as RandProx-CP, shown above, too. In both
algorithms, the variable z is not needed any more and can be removed.

Since f = 0, Ly > 0 can be set arbitrarily close to zero, so that Theorem 1 can be rewritten as:

Theorem 7. Suppose that u, > 0 and pp- > 0. In RandProx-CP, suppose that v > 0, 7 > 0,
Y7 ((1 = O K||* + wran) < 1. Define the Lyapunov function, for every t > 0,

v Lot v (L) - m

where x* and u* are the unique solutions to (42)) and [@3), respectively. Then RandProx-CP converges
linearly: for everyt > 0,

E[U'] <00, (45)
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Algorithm 14 RandProx-ADMM [new]

Algorithm 13 ADMM
’f’, — 8 5 5 input: initial points 2° € X, u° € U;
lnqu: initial points z° € X, u” € U; stepsize 7 > 03w > 0
stepsize y > 0 fort =0,1,...do
forji =0,1,... (d(; y at prox., (xt _ ,yut)
T° = prox, (" — Yu dt = Rt ot At t
. = ProxX. o yn (@ + (1 4+ w)u?)
o+l proxwh(xt + yut) 1 ét B Ldt’Y(H )h )
uthi=ut %(xf -2 tH1 .t ! _dt
end for wT =W Sy
end for
where
¢ = max < 1 ,1— 27 > (46)
T+ ypy, (14 w)(1 4 27pp-)
2 *
1min( THe THh )<1. (47)
L+ypy (14 w)(1+27pp,+)

Also, (xt)ien and (21)en both converge to x* and (ul)en converges to u*, almost surely.

It would be interesting to study whether the mechanism in the stochastic PDHG algorithm proposed
in|Chambolle et al.|(2018) can be viewed as a particular case of RandProx-CP; we leave the analysis
of this connection for future work. In any case, the strong convexity constants z, and yi7,~ need to be
known in the linearly converging version of the stochastic PDHG algorithm, which is not the case
here; this is an important advantage of RandProx-CP.

Now, let us look at the particular case K = Id in (#2)) and (@3). The primal problem becomes:
Find z* € argmin (g(w) + h,(x)), (48)
zeX
and the dual problem becomes:

Find v* € argmin (g*(—u) + h*(u)) (49)
ueU

When K = Id, the CP algorithm with 7 = % reverts to the Douglas—Rachford algorithm, which is

equivalent to the Alternating Direction Method of Multipliers (ADMM) (Boyd et al.l 2011} |Condat
et al., [2023a)), shown above. Therefore, in that case, with wyyy, = w, ( = 0 and 7 =

RandProx-CP can be rewritten as RandProx-ADMM, shown above. Theorem 7 becomes:

I
y(14w)>

Theorem 8. Suppose that 11, > 0 and pu,~ > 0. In RandProx-ADMM, suppose that vy > 0. For every
t > 0, define the Lyapunov function

2
)

vhi= % [t — 2|7 + (1 + w) (YL + w) + 2p5-) [Jut — u?| (50)

where ©* and u* are the unique solutions to @8) and [@9), respectively. Then RandProx-ADMM
converges linearly: for everyt > 0,

E[U'] < 00, 51)
where
1 27—/’%*
€ = max ,1— 52
<1+wg <1+w><1+2mh*>) G2
. Vhtg 27 pun-
=1—min , < 1. 53
(1+wg <1+w><1+2w>) &)

Also, (x1)sen and (21)en both converge to x* and (ut)scn converges to u*, almost surely.
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Algorithm 15 DY algorithm Algorithm 16 RandProx-DY [new]
(Davis & Yin, R017) input: initial points 2° € X, u° € X

. ; 0 0 X stepsize v > 0; w > 0
lSItlg)lg%émtl;ilé)omts e X, u e X; fort—0,1,... do
forpt = 07 1,...do &' = prox,, (' — 4V f(a') — yu')

it = prox,, (at — AV f(at) — yut) d' =R &' — prox, ;o (&' +7(1+w)u’))

't = prox,, (&' + yu')

t+1 . st 1 gt
T =" — d
t+1 .t 1At t+1 T4w
U =l 4 (2 -2t t+1 . ot Lt
v U =u +7(1+ )2
end for yliltw

end for

G PARTICULAR CASE K = Id: RANDOMIZED DAVIS—YIN ALGORITHM

After the particular case g = 0 discussed in Section@ and the particular case f = 0 discussed in
Section [F} we discuss in this section the third particular case X = Id in (I and (Z). The primal
problem becomes:

Find z* € arg min (f(a:) +g(z) + h/(x)), 54
reX
and the dual problem becomes:
Find v* € arg min ((f +9)"(—u)+ 1" (u)) (55)
ucl

When K = Id, the PDDY algorithm with 7 = % reverts to the Davis—Yin (DY) algorithm (Davis &
Yin, 2017), shown above. Therefore, in that case, with w,ay, = w, ( = 0and 7 = m, RandProx

can be rewritten as RandProx-DY, shown above, too. When g = 0, RandProx-DY reverts to RandProx-
FB and when f = 0, RandProx-DY reverts to RandProx-ADMM; in other words, RandProx-DY
generalizes RandProx-FB and RandProx-ADMM into a single algorithm. Theorem 1 yields:

Theorem 9. Suppose that ji.y > 0 or p, > 0, and that j,~ > 0. In RandProx-DY, suppose that
0<y< Llf For every t > 0, define the Lyapunov function,
1 2 2
Ut = v 2" —2*||” + (1 4+ w) (y(1 + w) + 2up-) |u’ — u*]|”,

where x* and u* are the unique solutions to (54) and (33)), respectively. Then RandProx-DY converges
linearly: for everyt > 0,

(56)

E[U'] <00, (57)
where )
1- 2 (yLy —1)? = i
= max (L2 0Ly =17 il 5 <1. (58)
T+ ypy, T+ ypy, (1 +w)(1 +W+;Mh*)

Also, (xt)ien and (21)1en both converge to x* and (ul)en converges to u*, almost surely.

We note that in Theorem 9, p;« > 0 is required. It is only in the case g = 0, when RandProx-DY
reverts to RandProx-FB, that one can apply Theorem 3, which does not require strong convexity of
h*.

H PROOF OF THEOREM 11

Proof of Theorem 11 We have, for every (z,2') € X2,
I(Id =4V )z — (1d =V f)a'|* = |la — 2'||* = 29(V f(z) = Vf(2'),2 — ')
+2V f (@) = V()]
< lo = a'|? = (27 = y*Le){V f(z) = Vf(2), 2 = &),
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where the second inequality follows from cocoercivity of the gradient. Moreover, for every (z,z’) €
X2, Dy(z,2') < (Vf(z) — Vf(z'),xz — a’). Therefore, in the proof of Theorem 1, for every

primal—dual solution (2*,u*) and ¢ > 0, since ||w! — w*||* = |(Id — 7V f)z! — (Id — vV f)z*||,

(33) yields

E[\Ijt+1 |ft] < % th _x*H? — (2 _fij»)Df(xt,x*)

i (HTW " 2”“”'*) lut =" =5 g = " + K"t =)

Ignoring the last term, this yields

1 1
Blw | ) < e - 2”4 el + w) <T + 2Mh,*> [t — | (59)
—(2=9Lys) Dy (2", z*)
<U'— (2 —yL{)Dy(at, 2%), (60)
withec = 1 — M‘% in (39). Using classical results on supermartingale convergence

(Bertsekas|, 2015, Proposition A.4.5), it follows from (]B_U[) that ¥? converges almost surely to a
random variable W*° and that

ZD/(xt,x*) < 400 almost surely.
t=0

Hence, D f(xt, x*) — 0 almost surely. Moreover, for every T' > 0,

T
(2=9Ls) Y E[Dys(a',2")] < ¥ —E[@"] < 0O (61)
t=0
and -
(2=9Ls) > E[Dy(a',2*)] < ¥°.
t=0

Therefore, E[Df(a!, z*)] — 0; that is, Ds(z*, 2*) — 0 in quadratic mean.

The Bregman divergence is convex in its first argument, so that for every 7' > 0,
1 X
Di(z", 2*) < —— Y Dy(at,2*).
T+1~=

Combining this last inequality with (61) yields
(T +1)(2 —vLy)E[Ds (2", 2*)] < ¥°.

Now, if p,« > 0, then ¢ < 1 in (39), and since ¥* converges almost surely to ¥°°, it must be that
E[Hut—mﬂ 0. O

The counterpart of Theorem 2 in the convex case is:

Theorem 12. Suppose that g = 0, and that Ayin (K K*) > 0 or py,+ > 0. In RandProx, suppose that
0<vy< %, 7> 0, and y7((1 = Q)| K||* + wran) < 1. Then there is a unique dual solution u* to

@) and (u')ien converges to u*, in quadratic mean.

Proof of Theorem 12 Considering the proof of Theorem 2, the same arguments as in the proof of
Theorem 11 apply, with ¢ in (39) now equal to
c=1-— 27ptn- + 7T Amin (K K7) <1
(1+w)(1+ 27p4-)

Hence, ]E{Hut - u*||2} = 0. O
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