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Semi-Linearized Proximal Alternating Minimization
for a Discrete Mumford–Shah Model

Marion Foare , Member, IEEE, Nelly Pustelnik , Member, IEEE, and Laurent Condat , Senior Member, IEEE

Abstract— The Mumford–Shah model is a standard model in
image segmentation, and due to its difficulty, many approxima-
tions have been proposed. The major interest of this functional
is to enable joint image restoration and contour detection.
In this work, we propose a general formulation of the dis-
crete counterpart of the Mumford–Shah functional, adapted
to nonsmooth penalizations, fitting the assumptions required
by the Proximal Alternating Linearized Minimization (PALM),
with convergence guarantees. A second contribution aims to
relax some assumptions on the involved functionals and derive
a novel Semi-Linearized Proximal Alternated Minimization
(SL-PAM) algorithm, with proved convergence. We compare the
performances of the algorithm with several nonsmooth penaliza-
tions, for Gaussian and Poisson denoising, image restoration and
RGB-color denoising. We compare the results with state-of-the-
art convex relaxations of the Mumford–Shah functional, and a
discrete version of the Ambrosio–Tortorelli functional. We show
that the SL-PAM algorithm is faster than the original PALM
algorithm, and leads to competitive denoising, restoration and
segmentation results.

Index Terms— Segmentation, restoration, inverse problems,
nonsmooth optimization, nonconvex optimization, proximal
algorithms, PALM, Mumford–Shah.

I. INTRODUCTION

THE topic of inverse problems is of major interest for a
large panel of applications, going from microscopy (see

e.g. [2], [3]) or tomography (see [4]–[7] and the reference
therein) to atmospheric science and oceanography [8]. The
pioneering regularization approaches to solve inverse problems
can be traced back to the works by Tikhonov [9] and by Geman
and Geman [10]. The major challenge of this topic consists in
designing jointly a cost function and an algorithm (to estimate
its minimum) in order to obtain a solution that is the closest to
the original unknown one. The recent development of proximal
algorithms [11], [12] led to significant advances, thanks to
the possibility to efficiently deal with large-size data and
nonsmooth objective functions (e.g., nonlocal total-variation
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constraints, analysis-synthesis formulation, Kullback–Leibler
divergence) [13].

In this work, we focus on image restoration and we denote
the multicomponent image to recover by u = (um)1≤m≤M ∈
R

NM , where each column of u is the vectorized representation
of the m-th component. The degradation model we consider
takes the form:

(∀m ∈ {1, . . . , M}) zm = Dα(Amum), (1)

where Am ∈ R
L×N models a linear degradation (e.g.

a blur, a compressed sensing matrix, a wrapping matrix) and
Dα : R

L → R
L denotes a random degradation that can be

white Gaussian noise, leading to an additive model, or Poisson
noise. The objective of this work is to estimate jointly the
restored image �u and its contours, denoted by �e in the
following, from the degraded data z.

One of the standard (variational) approach to solving such
an ill-posed inverse problem consists in dealing with a regular-
ization, by minimizing a sum of functionals. The variational
formulation of this problem, when white Gaussian noise is
involved, reads:

�u = argmin
u

1

2σ 2 �Au − z�2
2 + ρ(u), (2)

where ρ is a “well-chosen” regularizing functional, which
allows us to denoise, while preserving the discontinuities.
Hence, it generally involves the gradient of the estimate.
A classical choice is ρ(u) = �Du�0, where D models the
finite difference operator and � · �0 is the �0 pseudo-norm,
which is known as the L2-Potts model [14], or ρ(u) = TV(u),
the Total Variation model [15], which is convex. However,
these models are restricted to piecewise constant estimates,
and do not integrate contour detection in the variational formu-
lation, which is performed as post-processing step. The main
limitation of such a two-step procedure for contour detection
is the difficulty of appropriately selecting the thresholding rule
used for edge detection.

Mumford and Shah proposed to consider a more general
regularizing term, depending on both the gradient of the
estimate and the set of discontinuities [16]. The latter becomes
an unknown variable in the problem. Since the Mumford–Shah
(MS) formalism is generally formulated in a continuous set-
ting, we denote by � ⊂ R

2 the image domain. The MS
model aims at estimating both �u ∈ W1,2(�),1 a piecewise

1W1,2(�) =
�

u ∈ L2(�) ∂u ∈ L2(�)
�

where ∂ denotes the weak deriva-
tive operator.
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smooth approximation of an image z ∈ L∞(�), and the set of
discontinuities K ⊂ �, such that the pair (�u, K ) is an optimal
solution of:
minimize

u,K

1

2

�
�
(u − z)2dxdy + β

�
�\K

|∇u|2dxdy + γ|K |,
(3)

where the first term acts as a data fidelity term and forces the
approximation u to be close to z, the second term penalizes
strong variations except at the locations K of the strong edges,
and |K | denotes the total length of the arcs forming K , thus
the minimization of this functional implies that |K | is small
at a solution. Finally, β > 0 and γ > 0 denote regularization
parameters controlling the smoothness and the length of K
respectively.

Following discretization ideas proposed in the original paper
of Mumford and Shah [16], we assume that u and z are
functions on a lattice instead of functions on a 2D region, and
we denote them by u and z, respectively (referring to (1)). K
models the path made up of lines between all pairs of adjacent
lattice points where u has sharp transitions, as illustrated
in Figure 1. In a discrete setting, K is thus replaced by the
variable e ∈ R

|E|, which denotes the edges between nodes (e.g.
if the set of edges are limited to the horizontal and vertical
edges between two pixels, then |E| = 2N − N1 − N2, where
N = N1 × N2 is the size of the grid), and whose value is 1
when a contour change is detected, and 0 otherwise. A discrete
counterpart of (3) can be written:

minimize
u∈RNM ,e∈R|E|

1

2
�u − z�2

2 + β�(1 − e) 
 Du�2 + γR(e), (4)

where D ∈ R
|E|×N models a finite difference operator and

R denotes a penalization term, that favors sparse solutions,
which is a discrete translation of “short |K |”. Note that there
is no need to add additional constraints on e, since both (1−e)
and R(e) should force it to stay between 0 and 1.

1) Related Works: One of the most popular convex relax-
ation of the MS functional is the total variation functional
(ROF for Rudin–Osher–Fatemi) [15], [17], which favors piece-
wise constant results, while preserving the discontinuities. Its
�0 counterpart has been studied in [18], [19], leading to the
L2-Potts formulation (�0-penalization on Du). The authors
in [20] proposed two convex relaxations of the MS func-
tional designed for discrete domain with continuous labels.
As emphasized by the authors, proper convergence may be
difficult to achieve for some parameterization, and these two
methods are not able to detect the contours. For these reasons,
we do not consider it in further comparisons. The Chan–Vese
model can also be considered as a relaxation of the MS
model, whose main limitation is due to a prior label number,
and a piecewise constant estimate [21], [22]. In addition, Cai
and Steidl [23] and Cai et al. [24] have discussed the links
between ROF minimizers [15] with a post-processing step of
thresholding and the piecewise constant MS solutions. The
proposed algorithm relies on updating iteratively the threshold
from the ROF solution. Some approaches have been derived
from the Blake-Zisserman model [25], [26]. The convergence
to local minimizers is proved only in 1D [25]. In addition to

Fig. 1. Continuous versus discrete formulations of the MS model (4). In the
discrete setting, when D = [D�

h , D�
v ]� models the concatenation of the

horizontal and vertical difference operators, the values of Dh u (resp. Dv u)
live on the horizontal (resp. vertical) midgrid, and so does e. K and {�e = 1}
are delineated in red.

the weak convergence guarantees of the 2D formulation [26],
there is no flexibility in the choice of the data-term, whose
proximity operator should have a closed form expression. In
the same spirit, the approach of Strekalovskiy and Cremers
[27] relies on a truncated quadratic penalization of the gradient
of the estimate. They derive a heuristic algorithm, based on a
convex relaxation of the functional they propose, and extract
the contours by thresholding. Recently, Li et al. [28] proposed
a nonlocal ROF (NL-ROF) model, similar to the AT functional,
where the gradient is computed in a weighted neighborhood.
Convergence is proved, but the contours are obtained by
post-processing the estimated image. The first author and her
collaborators [29], [30] proposed a new formulation of the
AT functional in the framework of Discrete Calculus. They
obtain true 1D contours. But since they still have to deal with
the ε parameter, their algorithm is particularly slow.

2) Contributions and Outline: In order to jointly identify
the edges and to restore the image, our contributions are 1) to
define a theoretical framework making the bridge between a
discrete version of the Mumford–Shah model, called D-MS,
and the objective function handled by the Proximal Alternating
Linearized Minimization (PALM) algorithm [31], 2) to provide
a new algorithmic scheme, called Semi-Linearized Proximal
Alternating Minimization (SL-PAM), aiming to combine one
step of PAM [32] with one step of PALM [31], allowing
to relax condition of a stepsize parameter, and having con-
vergence guarantees. The convergence proof is derived. The
efficiency of the proposed algorithmic scheme is illustrated on
several restoration examples: Gaussian and Poisson denoising,
color denoising and image restoration. Comparisons to state-
of-the-art approaches are performed on the color denoising
example.

Our general D-MS model is defined in Section II. PALM
formulated to solve D-MS is defined in Section III-A as well
as additional assumptions under the D-MS objective function
allowing to ensure convergence. The proposed SL-PAM is
derived in Section III-B. Experiments and comparisons are
provided in Section IV.

Part of this work has been presented at the conference
IEEE ICASSP 2018 [1]. In this extended article, the additional
contributions are 1) a general discrete Mumford-Shah model,
2) the convergence proof of the algorithm proposed in [1] and
more experimental results.

II. GENERALIZED DISCRETE MUMFORD–SHAH MODEL

The Discrete-MS (D-MS) model proposed in this work is
expressed as follows.
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Problem 1: Let z ∈ R
L M and A ∈ R

L M×NM . Let
L(A·, z) : R

NM → (−∞,+∞], be a fidelity term to the data
z, and R : R

|E| → (−∞,+∞], be a regularizer term which
enforces sparsity and acts as a length term, both being proper
and lower semicontinuous functions. Let S : R

|E|×R
NM → R,

be the coupling term, which penalizes strong variations, except
at edges, be a C1 function and such that ∇S is Lipschitz
continuous on bounded subsets of R

|E| × R
NM . The general

D-MS-like problem we aim to solve reads:

minimize
u∈RNM ,e∈R|E|

�(u, e) := L(Au, z)+βS�
e, u

� + γR(e). (5)

The possibilities of this problem compared to the state-of-
the-art formulation are: noitemsep,leftmargin=10pt

• the generalization of the data-term, allowing to deal
with linear degradation, and not restricted to the Euclid-
ean norm like in the original MS model. For instance,
L(Au, z) = �

m �Amum − zm�2 suited to data cor-
rupted by both a linear degradation and white Gaussian
noise [33]–[35]. A choice L(u, z) = �

m �um − zm�1
fits data degraded with impulse noise [35], while the
choice of the Kullback–Leibler divergence L(u, z) =�

m DKL(um , zm) is employed for data corrupted by
Poisson noise [36], [37].

• the possibility to deal with a large panel of regularization
terms R. One of the most popular choice of R encoun-
tered in the literature is RAT (e) = ε�De�2

2 + 1
4ε�e�2

2,
with ε > 0 and D being a difference operator, proposed
by Ambrosio and Tortorelli [38], [39]. Such a contour
penalization makes (4) �-converge to the MS functional
as ε tends to 0. As a matter of fact, large values of
ε lead to thick contours but help to detect the set of
discontinuities. Then, as ε tends to 0, the penalization
of �e�2

2 increases and enforces e to become sparser and
sparser, and thus contours becoming thinner and thinner.
Numerically, however, it is not possible for ε to be
arbitrarily small since it controls the thickness of the
contours.

• the flexibility in the coupling term S. Since the MS
functional is originally designed with a L2-penalization
of the gradient of u, a common choice for the coupling
term is S�

e, u
� = �

m �(1 − e) 
 Dum�2
2 [39], [40],

where D is defined as in (4). However, in [41], Shah
proposed to replace the L2-norm with a coupling term
involving the L1-norm such as S�

e, u
� = �

m �(1 − e)

(1 − e) 
 Dum�1, combined with the AT regularizer.
Alicandro et al. [42] proved the �-convergence of this
particular functional to a variant of the MS functional,
involving the Cantor part of Du. Experiments show that
this ROF-like coupling term is more robust to image
gradients, but eliminates high-frequency content. More
recently, Li et al. [28] suggested to set ep = {e(q)

p }q∈B,
where B is a box centered at the pixel p, as weights of the
dissimilarity D(q)

p um = um,p−um,p+q . The regularization
functional is thus a nonlocal ROF (NL-ROF) of the

form S(e, u) = �
m

�
p∈E

	
q∈Bep

q (D(q)
p um)2. In this

approach, the contours are not obtained from e but by
thresholding u, leading to less accurate estimation.

Algorithm 1 (PALM) for Solving D-MS (5)

We can remark that, when dealing with multivariate images,
contours can be defined either as similar edges through all the
components, or as distinct edges, leading to a path K that
may be different for all the components. In order to facilitate
the understanding and the reading, we formulate Problem 1
in the context of similar edges. But Problem 1, as well as the
following results, can be similarly derived for distinct edges
considering e ∈ R

|E |×M . When M = 1, both formalisms are
equivalent.

III. ALGORITHMS

In order to solve Problem 1, we propose two algorithmic
strategies. The first one relies on the PALM algorithm [31],
and requires additional assumptions on the function involved
in order to ensure convergence guarantees. The second is an
alternative to PALM, that we called SL-PAM, allowing to relax
some of the assumptions made on the coupling term.

A. PALM for D-MS

The following Algorithm 1, which is an instance of the
generic algorithm PALM [31], is tailored to solving Problem 1:

It consists in updating alternately the image u[k] and the
edges e[k] by means of proximity operator steps, defined as,

(∀x ∈ R
N ) prox f (x) = argmin

y∈RN

1

2
�y − x�2

2 + f (y), (6)

where f : R
N → (−∞,+∞] denotes a proper and lower

semi-continuous function. Algorithm 1 converges under some
assumptions listed in the following proposition:

Proposition 1: The sequence (u[k], e[k])k∈N generated by
Algorithm 1 converges to a critical point of Problem 1 if

1) the updating steps of u[k+1] and e[k+1] have closed form
expressions;

2) the sequence (u[k], e[k])k∈N generated by Algorithm 1 is
bounded;

3) L(A·, z), R and �(·, ·) are bounded below;
4) � is a Kurdyka-Łojasiewicz function [31, Defini-

tion 2.3];
5) ∇uS and ∇eS are globally Lipschitz continuous with

moduli ν
�
e
�

and ε
�
u
�

respectively, and for all k ∈ N,
ν
�
e[k]� and ε

�
u[k]� are bounded by positive constants.

Proof: The form of Problem 1 and the
assumptions in Proposition 1 fit the requirements
for convergence of the PALM algorithm described in
[31, Assumptions A-B, Theorem 3.1].

From the practical point of view, the major challenge
regarding the assumptions in Proposition 1 is to ensure that
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Algorithm 2 (SL-PAM) Algorithm for Solving D-MS (5)

L (resp. R) has a closed form expression for the associated
proximity operator. A large number of functions having a
closed form expression of their proximal maps is listed in
[12], [43], [44] going from �p-norm to gamma divergences.
The main difficulty is due to the linear operator A. Indeed,
the proximity operator of a function composed with a linear
operator has a closed form expression if leftmargin=18pt

• L(·, z) = � · −z�2
2 and A∗ A is invertible [43], leading to

(∀γ > 0)(∀u ∈ R
NM ),

γL(A·, z)u = (I + γ A∗ A)−1(u + γ A∗z); (7)

• A models a frame (or a semi-orthogonal) linear operator
[13], i.e. A∗ A = μI with μ > 0, taking the form (∀γ >
0)(∀u ∈ R

NM ),

proxγL(A·,z)(u) = u + μ−1 A∗(proxγμL (Au) − Au). (8)

Moreover, assumption ii) in Proposition 1 holds in several
scenarios, such as when the functions L(A., z) and R have
bounded level sets. The reader could refer to [32, Remark 5]
and [31, Remark 3.4] for more details about this boundedness
assumption.

B. Proposed SL-PAM

We propose an alternative to PALM, where the update u[k+1]
exploits the linearization and where the update e[k+1] relies
on the proximity operator of the function βS(·, u[k+1]) + γR.
The resulting Semi-Linearized PAM (SL-PAM) is described
in Algorithm 2, that does not require ε(u[k]) to be bounded
and allows us to choose larger dk .

The convergence of Algorithm 2 is ensured under Assump-
tion 1.

Assumption 1: 1) The updating steps of u[k+1] and
e[k+1] have closed form expressions;

2) � is a Kurdyka-Łojasiewicz function;
3) L(A·, z), R and � are bounded below;
4) ∇uS is globally Lipschitz continuous with moduli ν(e[k])

k ∈ N and there exists ν−, ν+ > 0 such that ν− ≤
ν(e[k]) ≤ ν+;

5) (dk)k∈N is a positive sequence such that the stepsizes dk

belong to (d−, d+), for some positive d− ≤ d+.
Proposition 2: Under Assumption 1, and let assume that

the sequence {x[k]}k∈N = {(u[k], e[k])}k∈N generated by Algo-
rithm 2 is bounded. Then

1) ∞
k=1�x[k+1] − x[k]� < ∞;

2) {x[k]}k∈N converges to a critical point (u∗, e∗) of � .

The proof relies on the general proof recipe given in
[31], divided into three main steps: (i) sufficient decrease
property, (ii) subgradient lower bound for the iterate gap,
and (iii) Kurdyka-Łojasiewicz property. These three steps are
detailed thereafter, where we set x[k] = (u[k], e[k]). Moreover,
the Assumptions 1.i), 1.ii), and 1.iii) are discussed at the
beginning of each experimental section (IV.B, IV.D). In addi-
tion, we provide comments in Section III.B.3) for the KL
assumption, and in Section III.C for the closed form expression
of the proximity operators. While the validity of Assumption
1.iv) is ensured by the definition of S provided in Section IV.A.

1) Sufficient Decrease Property: The objective is to find
ρ1 > 0 such that

(∀k ∈ N)
ρ1

2
�x[k+1] − x[k]�2 ≤ �(x[k]) − �(x[k+1]). (9)

This results relies on the following Lemma.
Lemma 1: Let {x[k]}k∈N be a sequence generated by Algo-

rithm 2. Then

1) the sequence {�(x[k])}k∈N is nonincreasing, in particu-
lar:

(∀k ∈ N)
ρ1

2
�x[k+1] − x[k]�2 ≤ �(x[k]) − �(x[k+1]),

where ρ1 = min{(γ − 1)ν−, d−};
2) ∞

k=0�x[k+1]−x[k]�2 < ∞ and lim
k→∞�x[k+1]−x[k]� = 0.

The proof is given in Appendix V-A.
2) A Subgradient Lower Bound for the Iterates Gap: This

step relies on Lemma 2.
Lemma 2: Assume that the sequence {x[k]}k∈N generated by

Algorithm 2 is bounded. Define

Ak
u := ck−1(u[k−1] − u[k]) + ∇uS

�
e[k], u[k]�

− ∇uS
�
e[k−1], u[k−1]�, (10)

Ak
e := dk−1(e[k−1] − e[k]). (11)

Then (Ak
u, Ak

e) ∈ ∂�(u[k], e[k]) and there exists M > 0 such
that

�(Ak
u, Ak

e)� ≤ �Ak
u� + �Ak

e� ≤ 2(M + ρ2)�x[k−1] − x[k]�
(12)

where ρ2 = γkν
+ + d+.

The proof is given in Appendix V-B.
3) Kurdyka-Łojasiewicz Property: This step relies on the

assumption that � is a Kurdyka-Łojasiewicz (KL) function,
and proves that the minimizing sequence {x[k]}k∈N is a Cauchy
sequence. According to [31, Theorem 5.1], if � : R

NM → R

is a proper, lower semi-continuous (l.s.c.), and semi-algebraic
function, then it satisfies the KL property at any point of
dom� . The proof of this step is the same as for [31,
Lemma 3.6].

C. Additional Comments on Assumption 1-i)

The conditions to obtain a closed form expression for
the update of u[k+1] are similar to the ones detailed in
Section III-A. The tedious part concerns the update of e[k+1]
for which a closed form expression is provided in Proposi-
tion 3 for specific choices of S and R.
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Fig. 2. Ground truth image of size 256 × 256 with real contours.

Fig. 3. Example of score map with corresponding results on the right.
Contours are delineated in red. The red circle on the map represents the best
score. We can observe that larger β leads to a smoother estimate and that a
larger value of γ implies less contours.

TABLE I

SL-PAM PERFORMANCES ACCORDING TO THE SNR, THE SSIM,
AND THE JACCARD INDEX

TABLE II

SL-PAM COMPUTATIONAL TIMES

Proposition 3: Let D : R
|E|×N . For every (u, e) ∈ R

NM ×
R

|E|, we assume that

S(e, u) = �(1 − e) 
 Du�2
2, (13)

and that R is a separable function such that

(∀e=(ei )1≤i≤|E|) R(e) =
|E|

i=1

σi (ei ), (14)

where σi :R|E| → (−∞; +∞], and whose proximity operator
has a closed form expression. At the iteration k ∈ N, with
dk > 0, β > 0 and γ > 0, the updating step on e[k+1] in
Algorithm 2 is equivalent to,

Fig. 4. Performances of SL-PAM with different initial values of u[0] and e[0],
when the input is the image in Fig. 2, degraded by additive white Gaussian
noise with standard deviation α = 0.04. SL-PAM is not sensitive to the
initialization.

Fig. 5. Comparison of PALM and SL-PAM on the input data is the image
in Fig. 2, degraded by additive white Gaussian noise. (a) Convergence rates,
with fixed ck identically chooses for both of them, and decreasing dk for
SL-PAM, with white Gaussian noise standard deviation α = 0.04 (left), and
α = 0.16 (right). (b) Evolution of the contours with respect to the number of
iterations for the experiment α = 0.04 ((a), left).

for all i ∈ {1, . . . , |E|},

e[k+1]
i ∈ prox γσi

2β(Du[k+1])2i +dk

⎛
⎝β

�
Du[k+1]�2

i + dke[k]
i

2

β
�
Du[k+1]�2

i + dk
2

⎞
⎠ . (15)

The proof is given in Appendix V-D.
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Fig. 6. Denoising with SL-PAM and the quadratic-�1 penalization on the image in Fig. 2, degraded by additive white Gaussian noise with standard deviation
α = 0.04. The best results for each score are presented.

IV. EXPERIMENTS

Based on the results derived in the previous section, it is
now possible to provide efficient algorithmic schemes in order
to deal with D-MS, with the possibility of having R modeling
a nonsmooth penalization. To the best of our knowledge, this
has never been proposed before.

A. Specific Choice of D-MS

In our experiments we suggest to choose

S(e, u) = �(1 − e) 
 Du�2
2, (16)

which is C1 and has Lipschitz continuous gradients. The
regularization term is chosen as

R(e) =
|E|

i=1

max
�
|ei |p,

|ei |q
4�

�
, (17)

where � > 0, p > 0 and q > 0, whose particular cases are:
leftmargin=18pt

• the �0-pseudo norm when p = 0 and � → ∞;
• the �1-norm when p = 1 and � → ∞;
• the quadratic �1 penalization, p = 1, q = 2 and 0 <

� < 1, derived in [1], which aims to model the quadratic
behavior of 1

4�
�.�2

2 for small � and enforce sparsity.

This function is bounded below, proper, l.s.c., separable,
and semi-algebraic (see [31, Example 5.3]). The associated
proximity operator of the quadratic �1-penalization is:

Proposition 4: For every η ∈ R,

prox
τ max

�
|.|, |.|2

4�

� (η)

= sign(η) max
�

0, min
�
|η| − τ, max

�
4�,

|η|
τ
2� + 1

���
.

The choice of L(·, z) will be dependent on the restora-
tion problem considered and it will be given in each
subsection.

B. Gray-Scale White Gaussian Noise Denoising

1) Experimental Setting: For this first set of experiments,
we assume that Dα models white Gaussian noise with stan-
dard deviation denoted α > 0. In the context of gray-scale
denoising, M = 1, L = N and A1 ≡ IN . As commonly
used in image restoration when Gaussian noise is involved,
the data-term is a squared Euclidean norm, i.e. L(u, z) =
1
2�u − z�2

2, which is bounded below, proper, l.s.c and semi-
algebraic [31]. By definition of � and since the finite sum of
semi-algebraic functions is semi-algebraic, we deduce that �
satisfies Assumptions 1-i), ii), iii). In addition, this particular
choice of A implies that L(A., z) satisfies the boundedness
assumption in Proposition 2.

Let us consider the ground truth image in Figure 2 (left),
where the contours are obtained by binarization and com-
putation of the gradients. In this section, we evaluate the
denoising and contour detection performances obtained with
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Fig. 7. Denoising with SL-PAM and the quadratic-�1 penalization on the image in Fig. 2, degraded by additive white Gaussian noise with standard deviation
α = 0.16. The best results for each score are presented.

TABLE III

COMPUTATIONAL TIMES (IN SECONDS) OF THE EXPERIMENTS ILLUSTRATED IN FIGURE 8

the proposed D-MS performed with Algorithm 2, when the
input corresponds to Figure 2 with an additive white Gaussian
noise of standard deviation α ∈ {0.04, 0.16}.

Regarding the algorithms step-size, we set ck and dk con-
stant. We first compute ν

�
e[k]�, assuming that e is not equal

to 1 everywhere. This assumption is not restrictive in general,
since its means that we do not have contours everywhere.
We have ν

�
e[k]� = β(1 − e[k])2�D�2 ≤ β�D�2, where the

upper bound is attained when e[k] ≡ 0. Hence, we choose,
for both PALM and SL-PAM, ck ≡ 1.01 ∗ β�D�2. In the
other hand, ε(u[k+1]) = β(1 − e)�Du[k+1]�2 ≤ β(1 −
e)�D�2�u[k+1]�2. If we normalize z, then ∀k ∈ N, �u[k]�2 ≤
1. Thus we set, for PALM, dk ≡ 1.01 ∗ β�D�2. Finally, for
SL-PAM, we set dk ≡ 1.01 ∗ β�D�2 ∗ 10−3. This choice will
be discussed below (see Figure 5).

We compare the results obtained with various regularization
terms: the �0 pseudo-norm, the �1 norm, and the quadratic-�1
penalization.

2) Performances Evaluation: The restoration performances
are evaluated in terms of signal-to-noise-ratio (SNR) and

Structural Similarity Index (SSIM) [45], while the contour
detection performances are evaluated using the Jaccard index
[46] (also known as intersection over union). A grid search
is performed for each score, for β varying in [1, 50] and γ
varying in [0.0001, 0.9]. The resulting scores are summarized
in a map as the one displayed in Figure 3. We perform the
experiments on a 3.2GHz Intel Core i5 CPU, and stop when
|(�(u[k+1], e[k+1]) − �(u[k], e[k])|<10−4.

The best performance with the quadratic-�1 penalization,
according to each measure (SNR, SSIM and Jaccard index),
is summarized in Table I. It is displayed in Figure 6 for
α = 0.04 and in Figure 7 for α = 0.16. From Figures 6
and 7, we first observe that the SNR and the SSIM lead
to similar denoising and segmentation results. For small α,
they do not allow us to extract a sparse 1D contour, while
the result obtained from Jaccard index provides the best
denoising and segmentation result. However, for strong noise,
the SNR and the SSIM both outperform the Jaccard index
for denoising purpose, with satisfying denoising and contour
detection results.

Authorized licensed use limited to: KAUST. Downloaded on May 19,2022 at 05:42:50 UTC from IEEE Xplore.  Restrictions apply. 



FOARE et al.: SEMI-LINEARIZED PROXIMAL ALTERNATING MINIMIZATION FOR A DISCRETE MUMFORD–SHAH MODEL 2183

Fig. 8. Comparison according to the SNR and the Jaccard of denoising and contour detection performances, involving white Gaussian noise with standard
deviation α = 0.05, with state-of-the-art methods, from top to bottom: T-ROF [23], [24], T-NL-ROF [28], the Discrete AT [29], the MS relaxation [27], and
the proposed method (D-MS).
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Fig. 9. Comparison of the SNR, SSIM and Jaccard index on 70 images from the BSSDS500 database [47] for Gaussian denoising and contour detection
tasks, with state-of-the-art methods: T-ROF [23], [24], T-NL-ROF [28], the Discrete AT [29], the MS relaxation [27], and the proposed method (D-MS). The
x-axis for each score is sorted in ascending order according to the proposed D-MS method (solid green line).

Fig. 10. Denoising with quadratic-�1 penalization with SL-PAM on the image in Fig. 2 degraded by Poisson noise with parameter α = 100. The best results
for each score are presented.

3) Choice of R: From Tables I and II, we notice that the
best performances are obtained using either the �1 norm or
the quadratic-�1 penalization. Since the latest provides the
best segmentation results, we propose in the sequel to use the
quadratic-�1 penalization together with the SSIM or Jaccard
index, depending on the noise level.

4) Sensitivity to the Initialization: We propose to evalu-
ate the robustness of the proposed algorithmic scheme with
respect to the initialization. We compare different choices
for u[0]: u[0] = z, u[0] ∼ N (0, IN ) and u[0] ≡ ζu ∈
[min(z), max(z)]. Similarly, we propose to deal with either
e[0] ≡ {0, 1}|E|, e[0] ∼ B(0.5) or e[0] ≡ ζe ∈ (0, 1). We show
the mean convergence results for 10 realizations in Figure 4,
and we observe that the best initializing pair for Gaussian
denoising is (u[0], e[0]) = (z, 1|E|). Notice that, whatever
the initialization, all the run converge to the same value,
which leads to a robust estimation, despite the resolution of a
nonconvex problem.

5) SL-PAM Versus PALM: We now compare in Figure 5(a)
the performances of the PALM algorithm 1, to those of

our SL-PAM algorithm 2, with decreasing dk ∈ 1.01 ∗
β�D�2∗{1, 10−1, 10−2, 10−3}, and a quadratic-�1 regulariza-
tion. We first notice that PALM and SL-PAM converge to
the same minimum. In particular, they converge the same
way when the descent parameters ck and dk are identically
chosen for both of them. Nonetheless, SL-PAM outperforms
the PALM algorithm for dk set such that δ < 1. Figure 5(b)
shows a visual comparison of the evolution of the contours of
PALM versus SL-PAM with the lowest dk with respect to the
number n of iterations. We observe that SL-PAM converged
for n = 100, while PALM requires a hundred times more
iterations to reach the same result.

C. Color Denoising and Comparisons With
State-of-the-Art Methods

In this section, we propose to perform RGB color image
denoising involving white Gaussian noise. In this case, we con-
sider u = (uR, uG , uB), M = 3 and e ∈ R

|E| common
to the three components of u. We compare the proposed
method with state-of-the-art approaches, including “ROF”
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Fig. 11. Denoising with quadratic-�1 penalization with SL-PAM on a muscle image degraded by Poisson noise with parameter α = 100. The best results
for each score are presented.

Fig. 12. Image restoration with SL-PAM and the quadratic-�1 penalization on the image in Fig. 2 degraded by additive white Gaussian noise with standard
deviation α = 0.2, and a Gaussian blurring filter of size 7 × 7 and standard deviation σ = 2. The best results for each score are presented.

minimization [23], [24], the “MS relaxation” proposed in [27],
the “Discrete AT” formulation [29] and the “NL-ROF” [28],
although it is not designed for RGB-color images. Since the
ROF minimization and the “NL-ROF” do not allow us to
directly extract the contours, we compute them by thresholding
the gradient of the estimate following [23], [24]. We performed
the comparisons using 70 images randomly chosen from the
BSDS500 database, which provides both ground truth images
and contours, for up to five hundred natural images [47]. We
present in Figure 8 the results for a selection of 8 images

from this database. As discussed in section IV-B, we display
the best denoising results according to the SNR, and the
best contour reconstruction according to the Jaccard index.
In addition, we summarize in Figure 9 the resulting scores for
the whole experiment, for the T-ROF, the MS relaxation and
the proposed D-MS. Since the T-NL-ROF and the Discrete AT
algorithms are very slow, we only show their results for the
images proposed in Figure 8. For the sake of clarity, the x-axis
for each score is sorted in ascending order according to the
proposed D-MS method (solid green line).
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Fig. 13. Image restoration with with SL-PAM and the quadratic-�1 penalization on the image in Fig. 2 degraded by additive white Gaussian noise with
standard deviation α = 0.2 and a Gaussian blurring filter of size 7 × 7 and standard deviation σ = 2. The best results for each score are presented.

From Figures 8 and 9, the conclusions are: noitem-
sep,leftmargin=10pt

• Figure 9(a) shows that the proposed method leads to very
good performance in terms of SNR. It outperforms the
state-of-the-art in about 91% for T-ROF, 98% for MS
relaxation, 71% for R-NL-ROF, and 72% for Discrete-AT;

• in terms of SSIM, we can observe in Figure 9(b) that
the proposed approach mainly improves the results for
difficult configurations (SSIM values lower than 0.86);

• regarding the visual denoising performances, we can
observe different types of reconstructions and artifacts
from a method to another one. T-ROF leads to the
well-known stair-casing effects, T-NL-ROF enables to
slightly (over-)smooth these effects, while the three other
methods (MS relaxation, Discrete AT and the proposed
method) provide very close visual results, with smooth
areas and sharp transitions;

• Figure 9(c) shows that the D-MS leads to a slightly better
contour extraction than T-ROF (resp. MS relaxation) in
about two thirds (resp. 75%) of all cases, while it clearly
improves the results of Discrete AT and T-NL-ROF. Note
that D-MS is designed to perform both contour extraction
and restoration, while T-ROF requires a post-processing
thresholding step [23], [24], and the proposed approach
has convergence guarantees, while the MS relaxation does
not;

• although T-ROF leads to a better Jaccard index in one
third of cases, a visual comparison of the contour detec-
tion results in Figure 8 reveals the superiority of the
proposed method, in particular for RGB color images.
The D-MS allows us to extract true 1D contours, similar
to those obtained with the Discrete AT, but at the price of

a huge computational cost, and with the MS relaxation,
which relies on a very efficient algorithm, but without
convergence guarantees. Sometimes, one method outper-
forms the other ones. In particular, the MS relaxation
produces a better result for the “sea” image. For the
“china” image, the Jaccard scores are very similar: the
MS relaxation is visually closer to the ground truth (but
simplified) contour, while the D-MS and the Discrete AT
recover a lot of additional thin details, consistent with the
actual gradients in this image.

We summarize in Table III the computational times corre-
sponding to the results displayed in Figure 8. We observe that
the proposed SL-PAM algorithm is almost ten times faster
than T-ROF, and that it far outperforms the T-NL-ROF and
the Discrete AT approaches. The MS relaxation is the fastest
method but this is because of the GPU-based implementation.

D. Poisson Denoising and Image Restoration

Since Problem 1 allows us to deal with more complex
data fidelity terms, we propose here to illustrate the results
obtained when (i) data are corrupted by Poisson noise and
(ii) data are degraded by both a blur and Gaussian noise.
Since the experiments in Section IV showed that the proposed
approach outperforms the T-ROF minimization, we do not
present T-ROF results in the following.

1) Poisson Denoising: The choice of the Kullback–Leibler
divergence L(u, z) = �

m DKL(um, zm) fits data corrupted
by Poisson noise [36], [37], [48]. This data-term is bounded
below and l.s.c. Thus � satisfies Assumption 1-i), ii), iii).

We first consider the image in Figure 2 corrupted by a
Poisson noise with parameter σ = 100. The best results
according to (SNR,SSIM,Jaccard index) using the quadratic-�1
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regularization are shown in Figure 10. In Figure 11, we present
the Poisson denoising results of a real image with the
quadratic-�1 regularization. The performances are comparable
with Gaussian denoising, with higher computational time, due
to the use of the divergence.

2) Image Restoration: We propose to discuss the poten-
tial of the SL-PAM algorithm for image restoration tasks.
In presence of blur, the data fidelity term depends on the
blur matrix A, and reads: L(Au, z) = 1

2�Au − z�2
2. In our

experiments, we consider a Gaussian blur of size Q × Q and
standard deviation σ , and additive white Gaussian noise, with
standard deviation α. This type of degradation allows us to
ensure the boundedness assumption in Proposition 2. Figure 12
displays the restoration results on the image in Figure 2, when
α = 0.2 and Q = 7. Restoration results on a real image are
presented in Figure 13, with α = 0.2 and Q = 7. Except for
the best results according to the SNR, we observe that the
method is able to detect sharp contours and to recover thin
structures.

V. CONCLUSION

In this work, we propose 1) a new discrete formulation of
the MS functional, and 2) a new proximal algorithm, with
proved convergence, to solve it. The major interest of the
MS formalism is to be able to (i) restore a degraded image
and (ii) extract its contours. In terms of restoration, on a large
database, we showed that the proposed method is better than
the state-of-the-art ones, including T-ROF [23], [24], the MS
relaxation [27], the Discrete AT [29] and the T-NL-ROF [28].
Regarding contour detection, the results are very close to those
obtained with the MS relaxation (which is a fast and accurate
method, but does not have convergence guarantees), and with
the Discrete AT, which has a huge computational cost. The
influence of the choice of the regularization parameters with
respect to different performance measures is also provided.

APPENDIX

A. Proof of Lemma 1

(i) Let k ≥ 0. Applying [31, Lemma 3.2] with h =
S�

e[k], ·�, σ = L and t = ck we obtain:
S�

e[k], u[k+1]� + L(u[k+1])

≤ S�
e[k], u[k]� + L(u[k]) − 1

2
(ck − ν(e[k]))�u[k+1] − u[k]�2

(18)

≤ S�
e[k], u[k]� + L(u[k]) − 1

2
(γk − 1)ν(e[k])�u[k+1] − u[k]�2

(19)

with ck = γkν(e[k]). On the other hand, the update of e[k+1]
can be written

e[k+1] ∈ argmin
e

dk

2
�e − e[k]�2

2 + γR(e) + βS(e, u[k+1]),

(20)

leading to

γR(e[k+1]) + βS�
e[k+1], u[k+1]� + dk

2
�e[k+1] − e[k]�2

≤ γR(e[k]) + βS�
e[k], u[k]� (21)

Hence, combining (19) and (21), we get

�(x[k]) − �(x[k+1]) (22)

= L(u[k]) + βS�
e[k], u[k]� + γR(e[k])

−L(u[k+1]) − βS�
e[k+1], u[k+1]� − γR(e[k+1]) (23)

≥ 1

2
(γk − 1)ν(e[k])�u[k+1] − u[k]�2 + dk

2
�e[k+1] − e[k]�2

+L(u[k+1]) + βS�
e[k], u[k+1]� + γR(e[k])

−L(u[k+1]) − βS�
e[k], u[k+1]� − γR(e[k]) (24)

≥ ρ1

2
�x[k+1] − x[k]�2. (25)

Combined with Assumptions 1-iv), v), it proves the result.
(ii) Since � is bounded from below, � converges to some

� ∈ R. Let now N ∈ N
∗. It follows from (i) that

N−1

k=0

�x[k+1] − x[k]�2 ≤ 2

ρ1
(�(x[0]) − �(x[N])) (26)

≤ 2

ρ1
(�(x[0]) − �) < ∞. (27)

We conclude taking the limit as N → ∞.

B. Proof of Lemma 2

Writing down the optimality conditions for the iterative
steps of Algorithm 2, we get:

β∇uS
�
e[k−1], u[k−1]� + ck−1(u[k] − u[k−1]) + υ[k] = 0,

(28)

where υ[k] ∈ ∂L(u[k]), and

β∇eS
�
e[k], u[k]� + dk−1(e[k] − e[k−1]) + ξ [k] = 0, (29)

where ξ [k] ∈ ∂(γR(e[k])).
Subdifferential property [31, Proposition 2.1] allows us

to state that β∇uS
�
e[k], u[k]� + υ[k] ∈ ∂u�(u[k], e[k]) and

β∇eS
�
e[k], u[k]�+ξ [k] ∈ ∂e�(u[k], e[k]), and hence (Ak

u, Ak
e) ∈

∂�(u[k], e[k]).
Combining Assumption 1-iii) with the assumption of Lip-

schitz continuity of ∇S, and following arguments in [31,
Lemma 3.4], we can prove that there exists M > 0 such that

�Ak
u� ≤ (2M + γkν

+)�x[k] − x[k−1]�. (30)

On the other hand,

�Ak
e� = dk−1�e[k−1] − e[k]� ≤ d+�x[k] − x[k−1]�. (31)

Summing up (30) and (31) we obtain the desired result with
ρ2 = γkν

+ + d+.

C. Proof of Proposition 4

Let η ∈ R. One has:

prox
τ max

�
|.|, .2

4�

�(η) = argmin
x

1

2
�x − η�2

2 + τ max

�
|x |, x2

4�

�
(32)

One must split cases: leftmargin=18pt
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• If |x | ≤ 4�, then max
�
|x |, x2

4�

�
= |x | and we have:

prox
τ max

�
|.|, .2

4�

� (η) = argmin
x

1

2
�x − η�2

2 + τ |x | (33)

= proxτ |.| (η) (34)

= sign(η) max(0, |η| − τ ) (35)

when |η| ≤ 4� + τ .

• If |x | > 4�, then max
�
|x |, x2

4�

�
= x2

4ε
:

prox
τ max

�
|.|, .2

4�

� (η) = argmin
x

1

2
�x − η�2

2 + τ
x2

4�
(36)

= prox τ
2� x2 (η) (37)

= sign(η)
|η|

τ
2� + 1

(38)

when |η| > 4� + 2τ .

Finally, we obtain

prox
τ max

�
|.|, .2

4�

� (η)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sign(η) max(0, |η| − τ ) if |η| < 4� + τ,

[−4 pt]4� if 4� + τ ≤ |η| ≤ 4� + 2τ,

[−4 pt]sign(η)
|η|

τ
2� + 1

if |η| > 4� + 2τ.

(39)

D. Proof of Proposition 3

For every i ∈ {1, . . . , |E|},
argmin

e

γ

dk
σi (e) + β

dk
(1 − e)2�Du[k+1]�2

i + 1

2

�
e − e[k]

i

�2

(40)

= argmin
e

γ

dk
σi (e) + β

dk
(1 − 2e + e2)

�
Du[k+1]�2

i (41)

+ 1

2

�
e2 − 2ee[k]

i + �
e[k]

i

�2
�

(42)

= argmin
e

γ

2β
�
Du[k+1]�2

i + dk

σi (e) (43)

+ 1

2

⎛
⎝e − β

�
Du[k+1]�2

i + dke[k]
i

2

βgi + dk
2

⎞
⎠

2

, (44)

which concludes the proof.
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