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On-The-Fly Approximation of Multivariate Total
Variation Minimization
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Abstract—In the context of change-point detection, addressed by
Total Variation minimization strategies, an efficient on-the-fly al-
gorithm has been designed leading to exact solutions for univariate
data. In this contribution, an extension of such an on-the-fly
strategy to multivariate data is investigated. The proposed algo-
rithm relies on the local validation of the Karush-Kuhn-Tucker
conditions on the dual problem. Showing that the non-local
nature of the multivariate setting precludes to obtain an exact
on-the-fly solution, we devise an on-the-fly algorithm delivering
an approximate solution, whose quality is controlled by a practi-
tioner-tunable parameter, acting as a trade-off between quality
and computational cost. Performance assessment shows that
high quality solutions are obtained on-the-fly while benefiting of
computational costs several orders of magnitude lower than stan-
dard iterative procedures. The proposed algorithm thus provides
practitioners with an efficient multivariate change-point detection
on-the-fly procedure.

Index Terms—Constrained optimization, multivariate, total
variation, on-the-fly algorithm.

I. INTRODUCTION

T OTAL VARIATION (TV) has been involved in a variety
of signal processing problems, such as nonparametric

function estimation [1], [2] or signal denoising [3]–[5]. The
first contributions on this subject were formulated within the
framework of taut string theory [1], [2] while the term TV
had first been introduced in image restoration [6], [7]. The
equivalence between both formalisms has been clarified in [8].
Formally, the univariate TV framework aims at finding a

piece-wise constant estimate of a noisy univariate
signal by solving the following non-smooth convex
optimization problem,

(1)
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where denotes a regularization parameter balancing data
fidelity versus the piece-wise nature of the solution.
Related Works: Recent Developments and Issues: It is well

known and documented that the unique solution of the opti-
mization problem (1) can be reached by iterative fixed-point
algorithms. On the one hand, solving this problem in the
primal space requires to deal with the non-differentiability
of the -norm that is either handled by adding a small ad-
ditional smoothing parameter [9] or by considering proximal
algorithms [5], [10]–[19]. On the other hand, one can make
use of the Fenchel-Rockafellar dual formulation [10], [20] or
Lagrangian duality [21], [22] that can be solved with quadratic
programming techniques [10], [23]. Both primal and dual
solutions suffer from high computational loads, stemming from
their iterative nature. To address the computational load issue,
alternative procedures were investigated, such as the taut string
algorithm of common use in the statistics literature [1]. Very
recently, elaborating on the dual formulation and thoroughly
analysing the related Karush-Kuhn-Tucker (KKT) conditions, a
fast algorithm has been proposed by one of the authors in [5] to
solve the univariate optimization problem (1). Compared to the
taut string strategy, it permits to avoid running sum potentially
leading to overflow values and thus numerical errors. Another
specificity concerns its on-the-fly behavior that does not require
the observation of the whole time sequence before a solution
can be obtained. On-the-fly algorithms might be of critical
interest for real-time monitoring such as in medical applications
[24], [25].
Along another line, extension of the univariate optimiza-

tion problem (1) to multivariate purposes has been recently
investigated in [4], [26], [27]. The multivariate extension
arises very naturally in numerous contexts, such as biomedical
applications, for which the purpose is to extract simultaneous
change points from multivariate data, e.g., EEG data [28]. It
also encompasses denoising of complex-valued data, which
can naturally be interpreted as bivariate data. Multivariate
optimization is known as the group fused Lasso in the statistics
literature [29], [30]. From a Bayesian point of view, elegant
solutions have been proposed in [31], [32] and efficient iterative
strategies have recently been proposed in [26], [33].
Mutivariate On-The-Fly TV: In this context, the present con-

tribution elaborates on [5] to propose an on-the-fly algorithm
solving the multivariate extension of (1). In Section II, the group
fused Lasso problem is first detailed. It is then illustrated that
the multivariate procedure has a non-local behavior as opposed
to the local nature of the univariate problem (1). Consequently,
any on-the-fly algorithm solving the multivariate minimization
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problem will only lead to an approximate solution. The KKT
conditions resulting from the dual formulation of the multi-
variate problem are specified in Section III. From such condi-
tions, a fast and on-the-fly, yet approximate, algorithm is de-
rived in Section IV. The performance in terms of achieved solu-
tion and computational gain are presented in Section V. A video
demonstrating the on-the-fly behavior of the algorithm is avail-
able at http://perso.ens-lyon.fr/jordan.frecon1.
Notations: Let denote

a multivariate signal, where for every
stands for the -th component while

the -th values will be shortened as
. For every , use will also be made of the

following functions: and
.

II. LOCAL VS NON-LOCAL NATURE

We denote themultivariate signal of interest. Amultivariate
extension of (1) reads:

(2)

where denotes the regularization parameter and
denotes the first order difference operator, that is,

for and

(3)

Despite formal similarity, there is however a fundamental dif-
ference in nature between the univariate and multi-
variate cases: The former is intrinsically local [5],
[34] while the latter is non-local2. To make explicit such a no-
tion, we have designed the following experiment, whose results
are illustrated in Fig. 1. The results associated to the univariate
(resp. bivariate) case are presented on the right plots (resp. left
plots). A univariate signal with , consisting
of the additive sum of a piece-wise constant signal and white
Gaussian noise (in gray, in Fig. 1, right top plot), is considered
first. The solution of the minimization problem (1) is displayed
in solid red lines in Fig. 1. Also, we search for the solution of
the minimization problem (1) applied to two partitions of ,
obtained by splitting it in half, i.e., and

. The solutions and of (1) respec-
tively associated to and are concatenated and displayed
with dashed blue lines in Fig. 1. There is strictly no difference
between and the concatenation of and , as reported in
Fig. 1 (bottom right plot), except for the segment that contains
the concatenation point. The difference around the concatena-
tion point is expected as makes use of an information (the
continuity between and that is not available to compute

1A toolbox will be provided at the time of publication.
2In this article, we denote a problem as local if the solution at a given location

does not depend on the signal located earlier (later) than the previous (next)
change-point.

Fig. 1. Non-local vs. local nature. Left: bivariate TV (upper plots: first com-
ponent, lower plots: second component). Right: univariate TV. Observations
(gray), solution (red), concatenation of solutions and (dashed blue).

and . The fact that there is no difference elsewhere shows
the local nature of the univariate solution to Problem (1).
This experiment is now repeated for (as the simplest

representative of ). A bivariate signal
with , consisting of the additive sum of piece-

wise constant signals and white Gaussian noises (in gray, in
Fig. 1, left plots, 1st and 3rd lines), is considered. Two parti-
tions, obtained by splitting in half,
and are also considered. The cor-
responding solutions of (2), applied to , labeled
and are obtained by means of the primal-dual algorithm pro-
posed in [14] with . Solutions and of (2) respec-
tively associated to and are concatenated and displayed
with dashed blue lines in Fig. 1, while is shown in red. Con-
trary to the case , differences between and concate-
nated and , shown in black in bottom plots, differ unam-
biguously from 0 over the entire support of , clearly showing
the non-local nature of when .
In the univariate case (1), the local nature of the solution per-

mits to design an efficient taut string algorithm, that consists in
finding the string ofminimal length (i.e., taut string) that holds in
the tube of radius around the antiderivative of . The solution
of (1) is then obtained by computing the derivative of the taut

string. An efficient strategy has been proposed in [2] in order to
straightforwardly compute by determining the points of con-
tact between the taut string and the tube. Even though this ap-
proach can be generalized to multivariate signals, the detection
of points of contact additionally requires the angle of contact be-
tween the taut string and the tube. However, this information is
non-local and thus the on-the-fly minimization problem results
in a challenging contact problem which can not be solved lo-
cally. This interpretation will be further discussed in Section III.
The non-local nature of the multivariate Problem

(2) implies that one cannot expect to find an exact multivariate
on-the-fly algorithm. Therefore, in the present work, we will
derive an approximate on-the-fly algorithm that provides us a
good-quality approximation of the exact solution to Problem
(2). A control parameter , defined in Section 3, will control
the trade-off between the quality of the approximation and the
computational cost.
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III. MULTIVARIATE TOTAL VARIATION MINIMIZATION

A. Dual Formulation
Fenchel-Rockafellar dual formulation3 of (2) reads:

(4)

where, for every and

(5)

(6)

The optimal solutions and of the
dual problem and of the primal problem respectively are related
by

(7)

From (7), we directly obtain the following necessary and suffi-
cient conditions.
Proposition III.1: The solutions of the primal problem (2)

and the dual problem (4) satisfy, for every ,

(8)

and, for every ,

(9)

The first condition corresponds to the configuration where every
component keeps the same value from location to . This
configuration is illustrated in the bivariate case in
Fig. 2 (left plot). The second condition models situations where
some components of admit change points between locations
and . An interesting configuration is that of non-simul-

taneous change points as illustrated in Fig. 2 (right plot). In the
presence of noise, this second situation is rarely encountered.
Thus, in the sequel, we will only consider simultaneous change
points.
Remark III.2: Proposition III.1 for leads to the usual

KKT conditions associated to the minimization problem (1):

(10)

The on-the-fly univariate TV algorithm proposed in [5] is de-
rived from Conditions (10).

B. Rewriting the KKT Conditions
Contrary to Conditions (10), the multivariate conditions de-

rived in Proposition III.1 are not directly usable in practice to

3Note that, the usual dual formulation and the resulting stationarity conditions
would involve rather than . The choice made in this article enables us to
be consistent with the results obtained in [5] for the univariate case.

Fig. 2. Comparing joint vs disjoint changes in the dual space. Left: location
is suitable for a joint negative amplitude change on both components. Right:

configuration suitable for introducing a negative amplitude change at on the
second component only.

devise an on-the-fly algorithm because is a priori un-
known at instant . Therefore, we propose to rewrite the second
condition in (9) by means of auxiliary variables
such that

(11)

with and where denotes the Hadamard
product. Then, Proposition III.1, can be reformulated compo-
nent-wise as follows.
Proposition III.3: The solutions of the primal problem (2)

and of the dual problem (4) satisfy the following necessary and
sufficient conditions. There exist nonnegative auxiliary vari-
ables such that, for every and

,

(12)

with and .
Comparing (10) and (12) highlights the similarity between

the necessary conditions of the univariate and multivariate min-
imization problems: Conditions involving in the univariate
case involve the auxiliary vector in the multivariate one. The
fact that differs for each pair can be interpreted in taut
string procedures as the fact that the point of contact with the
taut string may vary on the tube of radius . This significantly
increases the difficulty of deriving an on-the-fly algorithm.

C. Approximate Solution
If we first assume that is known and such that, for every

, the primal problem associated
to Conditions (12) reads

(13)

and can be interpreted as univariate minimization problems
having time-varying regularization parameters .
The proposed approximation consists in restricting the esti-

mation of to a predefined set chosen
such as for every
satisfies .
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The most naive strategy would consist in solving uni-
variate minimization problems for every candidate values
of , i.e., find for every and ,

(14)

and to devise a method to pick the solution amongst the
candidates. For instance, the one that maximizes some quality
criterion , i.e.,

(15)

Although it benefits from parallel on-the-fly implementa-
tions, this situation would correspond to a constant estimate

. Therefore, changes in the mean would be pro-
cessed independently on all components and group-sparsity
would not be enforced.
In order to benefit from an on-the-fly implementation and

to enforce group-sparsity, we propose an algorithmic solution
based on a piece-wise constant estimator of detailed in the
next section.

IV. ALGORITHMIC SOLUTION
In the following, we first extend the on-the-fly algorithm pro-

posed in [5] to the multivariate case, with assumed to be
known a priori. This strong assumption, unrealistic in pratice,
permits to describe clearly the behaviour of the multivariate
on-the-fly algorithm. Then, we will focus on the question of the
automated and on-the-fly estimation of taking its values in ,
which consequently introduce a parameter controlling the
quality of the approximation. The main steps of the on-the-fly
algorithm are summarized in Algorithm 1. It is based on the
range control of both unknown primal and dual solutions and
by lower and upper bounds updated with the incoming data

stream.
The design of Algorithm 1 results in specifying Rule 1 and

Rule 2 allowing respectively to detect a change point and to find
suitable change-point locations according to Proposition III.3.

A. Ideal Case With Known
1) Lower and Upper Bounds: According to Proposition III.3,

the solution of the primal problem, the solution of the dual

problem and the auxiliary variable have to satisfy, for every
,

(16)

with . Considering the two first conditions, the
prolongation condition leads to

(17)

Following the solution proposed for the univariate case derived
in [5], one can check that (17) is satisfied by reasoning on lower
and upper bounds of and . For every ,
we define the lower and upper bounds of , labeled and
respectively, as:

(18)

and we set and as follows

(19)

where and appear to be the upper and lower bounds of
respectively, i.e.,

(20)

as detailed in Appendix VII.A.
2) Updating Rules & Rule 1: The prolongation condition

, which has led to (17), becomes

(21)

If the latter condition, labeled as Rule 1, holds, then according
to the primal-dual relation, we perform the update of the lower
and upper bounds at location as follows:

(22)

(23)

Remark IV.1: Equivalently, one can systematically update
primal (resp. dual) bounds according to (22) (resp. (23)) and
verify that the following rewriting of the prolongation condition
(21) holds:

(24)

3) Signal Prolongation & Rule 2: If Rule 1 (i.e., Con-
dition (21) or equivalently (24)) holds, then the assumption

is valid. However, the upper and lower bounds
may have to be updated in order to be consistent with

. According to (20), this condition
requires to verify that the following Rule 2 holds:

(25)
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For every , three configurations can be en-
countered:
• When both Conditions (25) are satisfied, the bounds are
left unchanged.

• When , then
the updating rules specified in (23) have under-evaluated
the bound where
denotes the last starting location of a new segment. Since

is upper-bounded by and, that for such a
value it can be shown (see Appendix VII.B) that

(26)

we propose the following updates

(27)

• When , then it results that the upper
bound has been over-
evaluated. Similarly, since is lower bounded by

, we can show that the upper bound

(28)

permits to ensure the consistency of the following updates

(29)

4) Estimate of the Change Point : When Rule 1 does
not hold, a change point has to be created. For every

, we can distinguish three cases:
• When ,
then, since is bounded, it means that is over-
evaluated and therefore a negative amplitude change has
to be introduced on the -th component in the time index
set in order to decrease its value. Following
Proposition III.3 and (20), the set of locations suitable
for a change-point on the -th component reads:

(30)

Such locations correspond to the indexes where the value
of the bound has been updated in order to be con-
sistent with the condition (see the
previous paragraph)

• When , then a positive amplitude
change has to be introduced in the -th component within
the time index . The set of locations suitable
for a change-point on the -th component reads:

(31)

This set of locations corresponds to indexes where the
value of the bound was updated in order to be consis-
tent with .

• Else, when component does satisfy (17), then we set
.

The change-point location corresponds to the last loca-
tion suitable for introducing the adequate amplitude change on
each component, i.e.,

(32)

Once the change point location has been specified, we are able
to assign a value to . When a negative amplitude
change is detected on the -th component, we set

(33)

in consistence with (19). Similarly, when a positive amplitude
change is detected, we set

(34)

5) Starting a New Segment: When a segment has been cre-
ated, we start the detection of a new segment considering

as long as .
According to (7) and by definition of the bounds, for every

(35)

In particular, for , combining (12), (18), (19) and (22)
allows us to find the following initialization procedure

(36)

where the value of is given according to Proposition III.3.
In addition, according to the writing of (16), .

B. Estimation of the Auxiliary Multivariate Vector
In order to describe the generic behavior of the multivariate

on-the-fly algorithm, we have so far assumed to be known
a priori. We now focus on the simultaneous estimation of the
multivariate vector and of the multivariate signal .
To provide an on-the-fly approximate solution, we propose:
• to build a piece-wise constant estimator of ,
• to only consider amplitude changes jointly on all compo-
nents .

1) Piece-Wise Constant Estimator of : The proposed
estimate is assumed to be constant between each change-point
with values belonging to the predefined set defined
in Section III.C. For each candidate value with

, we create upper and lower bounds labeled
, and . They are initialized at each new

segment location and are updated independently according
to (22) and (23) until the prolongation condition

(37)

based on (24), does not hold anymore. In the following,
we investigate how to modify the algorithm described in
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Section IV.A, to account for the automated selection of in .
The resulting algorithm is reported in Algorithm 2.
2) Estimate of the Change Point : For every

, we create change points as described in
Section IV.A4. The main difference consists in the restriction
to simultaneous change points. As detailed after Proposition
III.1, non-simultaneous changes have a zero probability to
occur. The restriction to simultaneous change-points will thus
not impact the solution. It results that if there exists at least one
component such that (resp.

, then

(38)

(39)

and, such that , then

(40)

or, such that , then

(41)

A bivariate example of these configurations where the second
component breaks Condition (37) is provided in Fig. 3. The
change-point location and the assignment of on the
current segment follow (32), (33) and (34).
3) Estimate of the Change Point : According to the pre-

vious paragraph, the piece-wise estimation procedure leads to
several possible change-point locations (at most . Here we
select the solution indexed by with tightest bounds and

, i.e.,

(42)

Fig. 3. Example of configurations leading to the detection of a change-
point. In this example . Since ,
condition (37) is violated. The left (resp. right) plot displays the configuration

(resp. described in Section IV.B2.

with

(43)

where, for every stands for the standard
deviation of . The factor permits to ensure that every
component contributes equally to the criterion (42). When the
minimizer of (42) is not unique, we select the index yielding
the largest . In other words, we choose the set of auxiliary
variables which permits to hold the prolongation condition (37)
as long as possible.
Therefore, it finally leads to an index which permits to

estimate and,

(44)

The starting location for the next segment is then,
, and the algorithm iterates as long as .

4) Starting a New Segment: Let us consider the location
of a new segment. For every , the initialization
step can be recast into

(45)

with .
Remark IV.2: The initialization step (45) implicitly depends

on the estimation of made on the last segment through the
term . Simulations have shown that (45) may lead to an
inconsistent solution as soon as has been poorly estimated on
a segment. Empirically, a better approximation of the iterative
solution is observed if each segment is treated independently,
i.e.,

(46)

V. PERFORMANCE ASSESSMENT

A. Experimental Setting
Unless specified otherwise, we consider that data consist of

a -multivariate piece-wise constant signal (solid
black), to which a centered Gaussian noise is additively su-
perimposed: .
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Fig. 4. Influence of the design of . Comparison over 100 realizations of an
homogeneous covering of the -ball (blue) against a random covering (red).
Two experimental settings are considered depending on whether if is one
order of magnitude larger than (left) or not (right). Top:
for different set sizes . Bottom (2nd and 3rd lines): distributions of where

has been selected by criterion (42) for .

Signal is generated as follows. First the length of each
segment is drawn according to a folded Gaussian distribution

. Then, for each , the ampli-
tudes of the corresponding changes are drawn independently
from a Gaussian distribution .
The exact minimizer of (2), labeled , is computed by means

of the ADMMalgorithm proposed in [22]. Iterations are stopped
when the relative criterion error is lower than . The pro-
posed solution computed with the predefined set is denoted

.
In a second set of experiments (see V.D), the proposed

on-the-fly algorithmic solution will be compared to an
on-the-fly ADMM solution.

B. Design of

We propose to compare solutions obtained with
two different sets in the bivariate case
(i.e., for . For both configurations, we choose

(47)

with . The first solution consists to homogeneously
cover the ball such that, for some some parameter

and . The second solution
draws a set of the same size whose values follow a
uniform distribution on .
Two experimental settings are investigated. In the first one,
is one order of magnitude larger than (Fig. 4, left plots)

whereas in the second one, both are of the same order of mag-
nitude (Fig. 4, right plots).
Estimation performances in terms of mean squared error

(where stands
for the sample mean estimator computed over 100 realizations)
are reported on the first line. It shows that a random covering
of the -ball provides solutions as good as the homogeneous
covering up to the limit of small.
On the 2nd and 3rd lines, the distributions of , where

has been selected by criterion (42), are reported for .
These histograms show the impact of the relative amplitude of

Fig. 5. Qualitative impact of on . For visibility, only 3 com-
ponents out of are displayed. dB. for

is more satisfying than for since it has more discontinuities
in common with .

Fig. 6. Estimation performance vs . for
different . SNR is set to 4 dB (resp. 10 dB) on left plot (resp. right plot).

the components on the distribution : components with same
order of magnitude yield a symmetric distribution while un-
balanced components yield an asymmetric distribution. For in-
stance, in Fig. 4 (right plots), it appearsmoremeaningful to draw

according to a Gaussian distribution than to a uniform distri-
bution. Therefore, if one has some knowledge of components
amplitudes, this can be incorporated to better design the set .
This will also decrease the computational cost discussed in sec-
tion V.D.
In the following, we restrict ourselves to a random covering

of the ball.

C. Offline Performance
In this section, we focus on the comparison of offline perfor-

mance, extended for , for two different signal-to-noise
ratios (SNRs), namely 4 dB and 10 dB.
Qualitative Impact of on : For a single realiza-

tion of noise, and are plotted Fig. 5 for , ad-
justed to provide the best visual (qualitative) performance. Solu-
tion for (light orange) provides a visu-
ally better approximation of (dashed blue) than for
(mixed red).
Estimation Performance vs. : The quality of

the approximation is further quantified Fig. 6 in terms of
as a function of for different .

It shows that the MSE systematically decreases when
increases. Further, on the examples considered here and de-
pending on , using no longer yields significantly
improved solutions, thus showing that the selection of does
not require a complicated tuning procedure.
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Fig. 7. Estimation performance vs. and vs. .
and for different . SNR is set to 4 dB (resp. 10 dB) on
left plot (resp. right plot).

Estimation Performance vs. and vs. : Let us
now compare the absolute quality of the solutions against .

and for different , are re-
ported in Fig. 7. MSEs are consistent with the previous para-
graph: it shows that increasing up to a certain value permits
to significantly lower the MSE. However, has a lower estima-
tion error than .

D. Online Performance
In this section we focus on the comparison between two

online solutions. The first one is derived from the proposed
on-the-fly algorithm whereas the second one is based on an
iterative algorithm.
Comparison is made for different values of on a signal

to which a Gaussian noise is superimposed
such that dB. Performance are provided for
and components.
Proposed Online Solution : As the time step in-

creases, is only computed up to the last and the
algorithm has not yet output a solution on . In
that sense, the solution is said to be “on-the-fly”. However, a
solution , providing an online approximation of , can
be output up to by imposing limit conditions at .
Windowed Iterative Solution : We consider a naive

online ADMM version, where at each time step a solution
is computed by optimizing over the previous points.

The choice of is of critical importance. On the one hand, if
this value is too small, the observer maymiss amplitude changes
in the multivariate data stream. On the other hand, if the window
size is too large, the computational cost may be too high to
handle any online observation. Three window sizes have been
investigated, respectively , 50 and 80.
Computational Cost: Comparisons of median computational

costs per incoming sample (in seconds), over 10 realizations of
noise, are reported Fig. 8 (left plots) as functions of .
As expected, we observe that the computational cost does in-

crease along with the size of . Therefore, acts as a trade-off
between the computational cost and the MSE. However, the
computational cost of is still several orders of mag-
nitude lower than the one associated to the online ADMM. In-
terestingly, computational costs are comparable for (top
left plot) and (bottom left plot). Note that a warm-up
starting strategy for online ADMM only reduces by a factor two
the computational cost with respect to the implementation dis-
played in Fig. 8.
The computational cost of could still be reduced in

two ways. First, one could design the set according to a priori

Fig. 8. Online Performance. The proposed solution is displayed
in solid line while the online ADMM solution is displayed in dashed
line. Performance for (resp. ) are illustrated top (resp. bottom).
Left: median computational cost per incoming sample (in seconds). Right:

and for different values of and .

knowledge of components amplitudes (see V.B). Second, one
could also benefit from the separable form of the algorithm and
compute solutions in parallel for every .
Change-Point Detection Accuracy: The Jaccard index

between any and is defined as
[35], [36]

(48)

It varies from 0, when , up to 1 when . The
Jaccard index is a demanding measure: As an example, if

is the truth and if has correctly identified
half non-zero values of but has misidentified the other half,
then .
The Jaccard index is used to measure the similarity between

change-point locations of and those obtained during the com-
putation of and . To this end, we consider the
change-point indicator vector of (as well
as and respectively associated to and

, defined as

(49)

In order to incorporate a tolerance level on change-point loca-
tions, and are first convolvedwith a Gaussian
kernel of size 10 with a standard deviation of 3.

and are averaged over 10 real-
izations of noise and reported in Fig. 8 (right plots) as functions
of for different set size and window size .
Performance show that for al-

most all and . Therefore, provides a better online
detection of change-points of . It also show that
does not vary significantly with but slightly decreases with
. Indeed, as increases, the prolongation condition (37) is

more likely to be violated, thus leading to more change-points.
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VI. CONCLUSION
In this contribution, we have developed an algorithm which

provides an on-the-fly approximate solution to the multivariate
total variation minimization problem. Besides a thorough ex-
amination of the KKT conditions, the key-step of the algorithm
lies in updating and controlling the range of the upper and
lower bounds of the dual solution within a tube of radius .
An on-the-fly derivation is achieved by means of an auxiliary
vector , which needs to be estimated, providing information
on the angle of contact with the tube. The latter estimation
strongly affects the quality of the solution and the proposed
on-the-fly estimation of is currently achieved by assigning a
value chosen within a predefined set . It has been shown that
the size of permits to achieve a desired trade-off between
the targeted quality of the solution and the application-depen-
dent affordable computational cost. In addition, the proposed
method could also be extended to other penalization norms
in the right-hand side of (2), for . However one would still
face the issue of estimating which would have to lie within a

ball of radius . Under current interest is the investigation
of how to estimate in the case where the assumption of
piece-wise constant behavior is a priori relaxed.

APPENDIX

A. Proof of (20)
According to the primal-dual relation (7), for every

and ,

(50)

and by definition of the lower and upper bounds of and
, we have

(51)
(52)

By subtracting (51) from (50) we obtain

(53)

and, according to (18), . The arguments are
similar for proving that .

B. Proof of (26)
For every and , if

(54)

then updating rules of , specified in (23), have under-evalu-
ated its value . Tomodify the lower bounds ,
on the one hand, we consider the cumulative sum of the obser-
vations which, according to (7), leads to

(55)

and thus, if , would lead to

(56)

by definition of . On the other hand, the updating
rules (22) and (23) have led to

(57)

The combinaison of (56) and (57) leads to

(58)

Because have been under-evaluated and by definition
, we can propose the following value

(59)

in order to adjust the lower bounds, i.e.,

(60)

In addition, as a result of and
according to the inequality (20), we set

(61)
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