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A New Pansharpening Method Based on Spatial
and Spectral Sparsity Priors
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Abstract— The development of multisensor systems in recent
years has led to great increase in the amount of available remote
sensing data. Image fusion techniques aim at inferring high
quality images of a given area from degraded versions of the
same area obtained by multiple sensors. This paper focuses
on pansharpening, which is the inference of a high spatial
resolution multispectral image from two degraded versions with
complementary spectral and spatial resolution characteristics:
1) a low spatial resolution multispectral image and 2) a high
spatial resolution panchromatic image. We introduce a new
variational model based on spatial and spectral sparsity priors
for the fusion. In the spectral domain, we encourage low-rank
structure, whereas in the spatial domain, we promote sparsity
on the local differences. Given the fact that both panchromatic
and multispectral images are integrations of the underlying
continuous spectra using different channel responses, we propose
to exploit appropriate regularizations based on both spatial and
spectral links between panchromatic and fused multispectral
images. A weighted version of the vector total variation norm of
the data matrix is employed to align the spatial information of the
fused image with that of the panchromatic image. With regard
to spectral information, two different types of regularization are
proposed to promote a soft constraint on the linear dependence
between the panchromatic and fused multispectral images. The
first one estimates directly the linear coefficients from the
observed panchromatic and low-resolution multispectral images
by linear regression while the second one employs the principal
component pursuit to obtain a robust recovery of the underlying
low-rank structure. We also show that the two regularizers are
strongly related. The basic idea of both regularizers is that the
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fused image should have low-rank and preserve edge locations.
We use a variation of the recently proposed split augmented
Lagrangian shrinkage algorithm to effectively solve the proposed
variational formulations. Experimental results on simulated and
real remote sensing images show the effectiveness of the proposed
pansharpening method compared with the state-of-the-art.

Index Terms— Image fusion, pansharpening, remote sensing,
principal component pursuit, total variation, low rank recovery,
convex optimization, proximal splitting method, split augmented
Lagrangian shrinkage (SALSA).

I. INTRODUCTION

NOWADAYS multisensor systems are widely used in
many fields such as remote sensing, medical imaging

and computer vision. The increasing availability of different
data sources from the same phenomenon, object, or area, often
with complementary characteristics, has stimulated research in
data fusion aimed at producing better inferences about the phe-
nomenon, object, or area under study. In general, image fusion
combines information of multiple images with the purpose
of providing significant advantages over single source image,
such as improved system reliability or classification accuracy
[1], [2]. In the context of remote sensing, pansharpening is
a type of image fusion which has become a hot research
topic for the enhancement of the image spatial resolution
[3]–[10]. High quality remote sensed images are valuable for
many applications, such as environmental monitoring, natural
resources locating, or weather and natural disaster forecasting.
Remote sensing systems rely primarily on spaceborne imaging
sensors, which provide panchromatic (Pan) and multispectral
(MS) images with different characteristics. A Pan image
contains only one band of reflectance data that covers a
broad spectral range. This allows smaller detectors to be used
while maintaining a high signal-to-noise ratio. Therefore, a
Pan image has generally low spectral resolution but high
spatial resolution. By contrast, an MS image contains more
than one band. The spectral range of each band of an MS
image is less than that of the Pan image, resulting in high
spectral resolution but low spatial resolution. It is beneficial
to combine the complementary information of Pan and MS
images, so as to generate a color image of both high spectral
and high spatial resolutions, using pansharpening techniques.
Qualitative advantages of pansharpening for remote sensing
systems have been demonstrated in many papers, e.g. for
improving the accuracy of snow map detection [11], change
detection [12] and classification [2].

A large number of pansharpening techniques has been
proposed over the last years [13]. The most commonly
used procedures among the remote sensing community are
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component substitution methods, because of their fast imple-
mentation [14]–[16]. These methods first project the upsam-
pled MS images into a new space. The assumption is that
one component of this new representation contains equivalent
structures to those of the Pan image. The fusion occurs then
with a total or partial substitution of these stuctures by those
of the Pan image. Finally, an inverse projection is performed
to obtain the high resolution pansharpened image. Examples
of component substitution methods include Intensity-Hue-
Saturation (IHS) methods [17], Principal Component Analysis
(PCA) [14], [16] and Gram–Schmidt (GS) based method [15].
However, this kind of methods often suffers from the induced
spectral distortion, due to the fact that the Pan image does
not cover exactly the same wavelengths as the MS image
[3]. Several spectral adjustment schemes have therefore been
proposed, aiming at improving the spectral quality of the fused
image [18]–[20].

Compared to the component substitution methods,
multiresolution-analysis methods [21]–[23] have been
proposed, with the objective of preserving better spectral char-
acteristics in the high resolution fused image. These methods
rely on the injection of the high frequency information of the
Pan image into the upscaled MS image. Spatial filters, such as
the Discrete Wavelet Transforms (DWT) are often employed
to extract the high spatial frequency information from the
Pan image [24]–[27]. In contrast to component substitution
methods, multiresolution-analysis methods often experience
spatial distortions, like ringing or stair-casing effects.

Like many other ill-posed problems in imaging, it is possible
to regularize the inverse problem of pansharpening by injecting
in the formulation some prior knowledge about the sought-
after solution. This way, the problem is transformed into a
well-posed convex optimization problem. Typically, consis-
tency with the available data and low energy or sparsity of
the solution in some representation is enforced. Within this
paradigm, we can mention the P+XS pansharpening method of
Ballester et al. [28], based on two assumptions. The first is that
the Pan image can be approximated as a linear combination
of the high resolution multispectral bands. The second is
that the geometry information of the spectral channels of
an MS image is contained in the topographic map of the
corresponding Pan image. One drawback of the P+XS method
is that the first assumption is not realistic and may lead to
some severe spectral distortion [3]. Therefore, Möller et al.
[29] proposed to combine the ideas of wavelet based fusion
and P+XS method in order to obtain higher spectral quality,
while preserving the geometry information of the Pan image.

Departing from these methods, we present in this paper
two new regularized formulations of pansharpening, without
the aforementioned assumptions. By analyzing the spatial
and spectral relationship between the available low-resolution
MS image and high-resolution Pan image on one hand, and
the unknown high-resolution MS image to estimate on the
other hand, we shed light on the sparsity patterns expected
in the solution: a spectral low-rank property and a spatial
alignment of the geometric structures across the bands. The
two proposed formulations based on Linear Regression (LR) or
Principal Component Pursuit (PCP) are two different ways of

mathematically expressing the low-rank spectra sparsity prior.
In both cases, a variant of the Total Variation (TV) seminorm
is introduced and used for spatial regularization, enforcing
sparsity in the differences between adjacent pixels.

The paper is organized as follows. In Section II, we formu-
late the inverse problem of pansharpening and we give a brief
description of two methods of the literature to solve it. This
is followed by the presentation of our regularized formulation
in Section III. The proposed algorithm, called PanSALSA and
based on the Split Augmented Lagrangian Shrinkage (SALSA)
methodology, is introduced in Section IV. Then, in Section V,
we evaluate the proposed method and compare its performance
with classical pansharpening methods.

II. FORMULATION OF THE PANSHARPENING INFERENCE

PROBLEM AND RELATED WORK

First, let us introduce some notations. Multivalued quanti-
ties, like vectors, matrices and images, are denoted by bold
letters. Unless otherwise stated, all vectors are arranged into
columns. We denote by I and 0 the identity matrix and the zero
matrix, respectively, and their dimensions, when not explicitly
given, shall be inferred from the context. The symbols (·)T
and (·)H stand for the transpose and Hermitian (i.e., transpose
conjugate) operations, respectively. Let vl ∈ R

N , for l =
1, . . . , L and N = N1 N2, denote the L original high spatial
resolution multispectral image bands of size N1 × N2, to be
estimated from a) the panchromatic image p ∈ R

N of same
size N1 × N2 and b) the low-resolution multispectral image
bands ul ∈ R

M of size (N1/S) × (N2/S), for l = 1, . . . , L,
where M = N/S2 and the downsampling factor S ≥ 1
is supposed an integer. The images ul are degraded (i.e.,
blurred, downsampled and noisy) versions of vl . Given a
sequence of vectors xl ∈ R

N , for l = 1, . . . , L, usually rep-
resenting image bands, let x = vec([x1, x2, . . . , xL ]) ∈ R

N L

and vec−1(x) = [x1, x2, . . . , xL] stand for the columnwise
stacking and unstacking operations, respectively. Given n =
(n1, n2) ∈ �, where � = {1, . . . , N1} × {1, . . . , N2} is the
image domain, xi [n] denotes the pixel value of xi at location
n and x[n] = [x1[n], . . . , xL[n]]T .

Introducing v = vec([v1, v2, . . . , vL ]) and u =
vec([u1,u2, . . . ,uL ]), we are in position to formulate the
observation model, like in [30], as

u = Rv + w, (1)

where R : R
N L �→ R

M L is the linear operator modeling
blurring and downsampling by a factor of S taking place at the
sensor and w is a vector of i.i.d. noise with zero mean. R maps
a multispectral image of size N1 × N2 to a multispectral image
of size (N1/S)× (N2/S), with same number of bands, in their
stacked form. The estimation of v based on the observation
model (1) is obviously an ill-posed problem, mainly due to
loss of information in the downsampling process. Thus, it is
necessary to regularize the problem, by introducing penalties
that promote solutions with desirable properties. This turns
the estimation problem into an optimization problem, which
consists in minimizing an objective function containing data
terms, accounting for the consistency with the available data,
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and regularization terms, favoring desirable properties in the
solution image.

The total variation (TV) seminorm [31]–[33] is an effective
regularizer for inverse problems. In particular, TV based meth-
ods have achieved great success in many image processing
applications, like restoration, denoising, or inpainting [34].
Generally, for a scalar image z with domain �, the TV
seminorm is defined as

‖z‖T V =
∑

n∈�
‖∇z[n]‖, (2)

where ‖ · ‖ is the usual Euclidean norm and ∇z[n] is the
discrete gradient of z at location n, calculated using finite
backward differences:

∇z[n] = [z[n] − z[n − (1, 0)], z[n] − z[n − (0, 1)]], (3)

with periodic boundary conditions. TV regularization amounts
to a prior of sparsity of the gradient in natural images;
hence, it favors solutions which are piecewise smooth with
sharp discontinuities, inducing sharp object contours in the
image. It is thus desirable to introduce the total variation
in the pansharpening model, so as to keep the geometrical
information of the Pan image.

Palsson et al. [35] proposed a variational formulation for
pansharpening. They make use of the traditional assumption
that the Pan image can be represented as a linear combination
of the bands of the high resolution fused image. The observa-
tion model is presented as

y = Mv + w, (4)

where

y =
(

u
p

)
, M =

(
M1
M2

)
,

with M1 denoting a decimation matrix for downsampling and
w representing additive Gaussian noise. Suppose that the MS
image contains four bands; then M2 = { 1

4 I, 1
4 I, 1

4 I, 1
4 I}. Based

on a direct TV regularization, the optimization problem for
pansharpening is defined in [35] as

minimize
v

‖Mv − y‖2
2 + λ

L∑

i=1

‖vl‖T V . (5)

As mentioned in the Introduction, the ideal assumption that the
Pan band is an average of the high resolution MS image bands
may lead to spectral distortion. Moreover, the sum of the total
variation of the individual bands does not favor discontinuities
at the same place in the different bands, contrary to what is
systematically observed in real images.

Another way of regularizing the problem of estimating v
given u and p consists in solving an optimization problem of
the form

minimize
v

(1/2)
∥∥Rv − u

∥∥2
2 + φ(v,p), (6)

where the data fidelity term (1/2)‖Rv−u‖2
2 measures the data

misfit with respect to u and the regularizer φ(v,p) promotes
a solution v with desired properties, which depend on the Pan
image p. In this vein, the authors of [30] proposed to add the

gradient of the Pan image into the total variation functional, in
order to inject important geometric and structural information
of the Pan image into the fused image. The optimization
problem is defined in [30] as

minimize
v

‖Rv − u‖2
2 + λ ‖(v,p)‖ET V , (7)

where λ > 0 is the regularization parameter and ‖(v,p)‖ET V
is an extended version of the total variation defined as

‖(v,p)‖ET V

=
∑

n∈�

√
‖∇v1[n]‖2 + · · · + ‖∇vL[n]‖2 + a2 ‖∇p[n]‖2,

(8)
where the parameter a controls the importance of the geo-
metric information of the Pan image in the fused image.
A small value of a will lead to similar results as with the
classical total variation, whereas a large value of a gives more
emphasis to the information of the Pan image. Note that there
is an important difference between the truly vectorial TV in
(8) and the separable form in (5), used in [35]: only the
former promotes spatially aligned discontinuities across the
MS bands, as expected in natural images.

III. PROPOSED APPROACH

To go beyond the relatively simple regularization functionals
presented in the previous section, we must remark that both
p and v are integrations of the underlying continuous spectra
using different channel responses. Given that the support of the
spectral response of the Pan channel contains those of the MS
channels, there is a strong dependency between v and p. To
shed light on this issue, let s[n] ∈ R

B stand for a discrete
representation of the true continuous reflectance spectra at
given pixel indexed by n with B 	 L bands covering the
Pan and MS wavelengths. We have then

[
v[n]
p[n]
]

=
[

AT
m

aT
p

]

︸ ︷︷ ︸
AT

s[n], (9)

where the columns of Am and the vector ap hold, respectively,
the spectral responses of the MS channels and of the Pan
channel. Expression (9) unveils two important links between
images v and p; one is spatial and the other spectral. Below,
we address these links and explain the way they are herein
exploited to build the regularizer φ(v,p).

A. Spatial Links Between the MS and the Pan Images

From (9), it is evident that the spatial variations of v and of
p on a given location are caused by the spatial variations of
s in the same locations. Therefore, it makes sense to promote
solutions v with high frequency content at the same locations
as in the Pan image. In practice, this is achieved by using
the extended total variation (ETV) seminorm defined in (8).
For a given pixel n, if the weight a in (8) is much larger
than one, the discrete gradients ∇vl[n] have little influence on
the value of ‖(v,p)‖ET V , whenever the value of ‖∇p[n]‖ is
large. Therefore, setting a 	 1 promotes solutions v where the
discrete differences ∇vl[n] with large amplitude are spatially
aligned with those of p.
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B. Spectral Links Between the MS and the Pan Images

From expression (9), we obtain the projection of s[k] on
the range of Am as

s‖[n] = (AT
m)
�v[n],

where (AT
m)
� denotes the right inverse of AT

m , which exists
because the columns of Am are linearly independent. Decom-
posing s[n] = s‖[n] + s⊥[n], where s⊥[n] is the projection of
s[n] onto the null space of AT

m , and making use of the last
equation of (9), we may write

p[n] = αT v[n] + ε[n], (10)

where αT = aT
p (A

T
m)
� and ε[n] = aT

p s⊥[n]. Expression (10)
states that the Pan band is given by a linear combination of
the MS bands plus an unknown component. Since, in a given
scene, the spectrum s belongs very often to a low dimensional
subspace of smooth functions, not far from the range of Am ,
the magnitude of the unknown component ε[n] tends to be
small.

At this point, we want to remark that numerous works
have exploited the linear constraint p[n] = αT v[n]
(see [3], [28], [29], and references therein). However, a care-
less enforcement of this constraint yields often poor inferences,
owing to the presence of the error ε in (10) and to the use
of poor approximations for the regression vector α. In this
paper, we cope with these two drawbacks by using (10) as
a soft constraint and by accurately estimating the regression
vector α from the data.

Assume that the linear operator R acts equally on all bands
by applying the same convolution operator to all bands, rep-
resented by matrix Cb ∈ R

N×N , followed by downsampling
in space. Under these circumstances, and from (10), we may
write

Cbp =∑L
l=1 αlCbvl + Cbε. (11)

Expression (11) points the way to estimating α from the
observed Pan and low resolution MS images: since u =
Rv + w, we can find α by computing a linear regression
between Cbp[n1S, n2 S] and u[n1, n2] for n1 = 1, . . . , N1/S
and n2 = 1, . . . , N2/S.

C. The Proposed Pansharpening Inference Criteria

Based on the rationale developed in the above
Sections (III-A) and (III-B), we introduce the following
regularizer:

φ1(v,p) = (λβ/2)
∥∥∥p − βT v

∥∥∥
2

2
+ λT V ‖(v,p)‖ET V , (12)

where β = α⊗1S2 N , ⊗ denotes Kronecker multiplication, and
1m denotes a column vector size m containing only ones. The
term

∥∥p − βT v
∥∥2

2 in φ1 promotes linear dependence between
the Pan band and the MS bands and the term ‖(v,p)‖ET V
promotes alignment of the high frequency components of v
with those of p.

Because of limitations of spaceborne sensors, remote sensed
image may contain outliers such as noise and missing or
corrupted pixels. To cope with these degradation mechanisms,

and inspired by the work of Candès et al. [36], we introduce
another pansharpening regularizer, which is a robust version
of φ1 where the quadratic term

∥∥p − βT v
∥∥2

2 is replaced by a
weighted combination of the nuclear norm ‖A‖∗ =∑i σi (A)
(σi (A) denotes the i th singular value of A) and the 	1 norm
‖A‖1 =∑i j |[A]i j |. The proposed regularizer is given by

φ2(v,p,q) = λ∗
∥∥[vec−1(v),q]∥∥∗ + λ1 ‖q − p‖1

+λT V ‖(v,q)‖ET V , (13)

where the optimization variables are v ∈ R
N L and q ∈ R

N .
We remark that vec−1(v) maps vector of size N L into a matrix
with N rows and L columns. So, the matrix [vec−1(v),q] has
N rows and L + 1 columns.

In spite of a different structure, the regularizers φ1(v,p)
and φ2(v,p,q) are strongly related. For a while, let us assume
that q = p. In this case, the last term of (13) is as in φ1 and
the first term promotes linear dependence among the L + 1
bands of (v,p). We remark that the term

∥∥p − βT v
∥∥2

2 in φ1
also promotes linear dependence, although this dependence is
only between the Pan band and the MS bands. We conclude,
therefore, that in the case q = p, φ1 and φ2 are strongly
related. For q = p, the presence of the 	1 regularizer promotes
solutions with p[n] = q[n] in most pixels, apart from a
set of outliers in which p and q become “disconnected”.
Therefore, the 	1 introduces robustness with respect to the
linear dependence assumption.

With the recent increase in attention given to low-rank
matrix recovery in compressive sensing, Candès and Plan have
shown that a robust recovery can be obtained by properly
constrained trace norm minimization [37]. In particular, the
minimization of a weighted combination of the trace norm and
of the 	1 norm, called Principal Component Pursuit (PCP),
may recover successfully both the low-rank and the sparse
components in a data matrix [36]. Applications for PCP are
widespread, such as video surveillance, face recognition, latent
sematic indexing, or graphic model learning [38]. In the
field of remote sensing, high spectral resolution images are
demonstrated to have low-rank structure, due to correlations
among the spectral bands [39], [40]. Therefore, it is natural to
introduce the PCP ideas into the pansharpening process.

In conclusion, aiming at obtaining fused images that pre-
serve both low-rank structure of the MS image and important
geometric details of the Pan image, we introduce the following
two pansharpening inference criteria:

LR-TV minimize
v

(1/2)
∥∥Rv − u

∥∥2
2 + (λβ/2)

∥∥∥p − βT v
∥∥∥

2

2
+λT V ‖(v,p)‖ET V (14)

PCP-TV minimize
v,q

(1/2)
∥∥Rv − u

∥∥2
2 + λ∗

∥∥[vec−1(v),q]∥∥∗
+λ1 ‖q − p‖1 + λT V ‖(v,q)‖ET V . (15)

The designations LR-TV and PCP-TV are associated to the
respective regularizers, where TV stands for total variation, LR
for linear regression, and PCP for principal component pursuit.
The positive Lagrangian parameters λβ and λT V in LR-TV
and λ∗, λ1, λT V in PCP-TV control the trade-off between the
antagonist criteria.
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TABLE I

LR-TV LINEAR OPERATORS

TABLE II

PCP-TV LINEAR OPERATORS

We note that a constraint of nonnegativity for the pixel
values of an image could be added in the optimization prob-
lem, but the difference between the solutions would not be
significant for an increased complexity of the algorithm.

IV. OPTIMIZATION ALGORITHMS

In this Section, we develop two algorithms, inspired by
the Split Augmented Lagrangian Shrinkage (SALSA) method-
ology introduced in [41], to solve the LR-TV and the
PCP-TV optimizations. We start by rewriting the LR-TV and
the PCP-TV optimization problems in a format more suitable
to SALSA [41].

A. LR-TV Optimization

Let us define the matrix X = [x1, . . . , xL, xL+1] and
its vectorized representation x = vec([x1, . . . , xL , xL+1]) =
[vT ,pT ]T ; that is, xn = vn , for n = 1, . . . , L, hold the L bands
of the high resolution pansharpened image and xL+1 holds the
panchromatic image. In addition, the symbol ⊗ stands for the
Kronecker product, diag(ω), with ω = [ω1, . . . , ωp]T , stands
for a diagonal matrix with diagonal elements ω1, . . . , ωp , and
a = [α1, α2, . . . , αL ,−1]T . Table I lists the definitions of the
matrices representing the linear operators used in the LR-TV
formulation.

The matrix Cb ∈ R
N×N in the definition of C implements

a cyclic convolution modeling the sensor PSF1. The matrix
Mb ∈ R

N/S2×N in the definition of M accounts for the
MS spatial downsampling; the matrices Dh

b,Dvb ∈ R
N×N

in the definition of D compute horizontal and vertical first
order backward differences, respectively, and the weights
ω1, . . . ωL+1 allow to weight the L + 1 bands in a non-
uniform fashion, with relevance to the Pan band as discussed
in Section III.

1The subindex b indicates that the matrix acts on the bands.

With these definitions in place, the LR-TV optimization may
be written as

minimize
x

(1/2)
∥∥MCx − u

∥∥2
2 + λT Vφ(Dx)

+ (λβ/2) ‖Aαx‖2
2 (16)

subject to Apx = p,

where

φ(Dx) =
∑

n∈�

√∥∥Dhx[n]∥∥2
2 + ∥∥Dvx[n]∥∥2

2 (17)

is an alternative way of expressing the ETV regularizer
‖(v,p)‖ET V introduced in (8).

B. PCP-TV Optimization

In a way similar to the definitions introduced in
Section IV-A, let us define X = [x1, . . . ,
xL, xL+1, xL+2] and its vectorized representation
x = vec([x1, . . . , xL , xL+1, xL+2]) = [vT ,qT ,pT ]T .
The linear operators used in the PCP-TV formulation are
presented in Table II.

With these definitions in place, the PCP-TV optimization
may be written as

minimize
x

(1/2)
∥∥MCx − u

∥∥2
2 + λT Vφ(Dx)

+λ∗
∥∥∥vec−1(Vx)

∥∥∥∗ + λ1‖Ar x‖1 (18)

subject to Apx = p.

C. Unified Formulation for LR-TV
and PCP-TV Optimization

Both optimization problems (16) and (18) may be written as

minimize
x

∑J
i=1 gi(Hi x) subject to H0x = p, (19)

where gi , for i = 1, . . . , J , denote, closed, proper, and convex
functions, and Hi , for i = 0, 1, . . . , J , denote linear operators.
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TABLE III

DEFINITIONS OF THE ENTITIES USED IN UNIFIED FORMULATION FOR LR-TV AND PCP-TV OPTIMIZATION (OPTIMIZATION PROBLEM (19))

The specific definitions of these entities are given in Table III,
where ξ are dummy variables whose dimensions depend on
the functions gi , for i = 1, 2, 3, 4. In the case of g2, we have
ξ = [(ξh)T , (ξ v )T ]T where ξh and ξ v are in the range of Dh

and Dv , respectively.
We now introduce the variable splitting zi = Hi x, for

i = 1, . . . , J , in (19) and convert the original optimization
into the equivalent constrained form

minimize
z,x

J∑

i=1

gi(zi ) subject to Fz = Gx + b, (20)

where zi ∈ R
nzi , z = [zT

1 , . . . z
T
J ]T ∈ R

nz with nz = nz1 +
nz2 + · · · + nz J , and

F =
[
0T

N×nz
Inz

]T

G = [HT
0 ,HT

1 ,HT
2 , . . . ,HT

J ]T

b = [−pT , 0T
nz1
, . . . , 0T

nz J
]T .

The next step consists in applying a minor modification
of SALSA methodology [41] to (20). SALSA is essentially
an instance of the alternating method of multipliers (ADMM)
[42]–[44] designed to optimize sums of an arbitrary number
of convex terms. The following is a simplified version of
a theorem by Eckstein and Bertsekas, adapted to our set-
ting, stating convergence of SALSA [42]–[44]. The notation
d = [dT

0 ,dT
1 . . .d

T
J ]T stands for scaled Lagrange multipliers

associated with the equality constraint Fz = Gx + b, where
dim(di ) = dim(Hi x).

Theorem 1: Assume that G is full column rank and let
f (z) = ∑J

i=1 gi(zi ) be closed, proper, and convex. Consider
arbitrary μ > 0 and z0,d0. Consider three sequences {xk, k =
0, 1, . . .}, {zk, k = 0, 1, . . .}, and {dk, k = 0, 1, . . .} that satisfy

xk+1 = arg min
x

∥∥Gx − Fzk + b − dk
∥∥2

2 (21)

zk+1 = arg min
z

f (z)+ μ

2

∥∥Gxk+1 − Fz + b − d
∥∥2

2 (22)

dk+1 = dk − [Gxk+1 − Fzk+1 + d
]
. (23)

Then, if (20) has a solution, the sequence {xk} converges to it;
otherwise, at least one of the sequences {zk} or {dk} diverges.

Given that the matrix G in both optimization problems
(16) and (18) has full rank and that the objective functions
are closed, proper, and convex and coercive2, thus having

2Although we do not prove it, we claim that the objective functions in (16)
and (18) are coercive, i.e. their value tends to +∞ when ‖x‖ → +∞, if the
constant images are not in the null space of the linear operator R and ωi > 0
for i = 1, . . . , L + 1.

Fig. 1. Pansharpening via Augmented Lagrangian Shrinkage Algorithm
(PanSALSA).

solutions, then the sequence xk generated by (21)-(22)-(23)
converges to a solution of (20) for any μ > 0.

Fig. 1 shows the pseudocode of the derived algorithm, which
we term Pansharpening via Augmented Lagrangian Shrinkage
Algorithm (PanSALSA). A distinctive feature of PanSALSA,
and of any SALSA instance, is that optimization with respect
to z is decoupled into optimization problems with respect
to the blocks zi , for i = 1, . . . J , whose solutions are the
so-called Moreau proximity operators [45] for the respective
convex functions gi , for i = 1, . . . , J . In order to implement
SALSA, we need to solve the quadratic optimization problem
in line 5 and to apply the Moreau proximity operators in
lines 5, 8, 10, . . . , 13. Below, we present the solutions to these
optimization subproblems.

D. Optimization With Respect to x

The solution of the quadratic optimization (21) is given by

xk+1 =
(

GT G
)−1

GT
(

Fzk − b + dk
)

=
(

J∑

i=0

HT
i Hi

)−1 (
HT

0 (p + dk
0)+

J∑

i=1

HT
i (z

k
i + dk

i )

)
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TABLE IV

DETAILS FOR THE COMPUTATION OF HT
i Hi INVOLVED IN THE OPTIMIZATION WITH RESPECT TO x

Having in mind the definition of Hi given in Sections IV-A,
IV-B, and IV-C, the computations HT

i ξ , for a given ξ with
suitable dimensions, have computational complexity no larger
than O(L N), for i = 2 and O((2N L) ln(N L)) for i = 2.

Concerning the action of
(
GT G

)−1
, we note that

(
GT G

) =∑J
i=0 HT

i Hi and that
∑J

i=0 HT
i Hi = ∑J+1

i=0 �i ⊗ Ti , where,
for i = 1, . . . , J + 1, �i and Ti are diagonal and block
circulant matrices with circulant blocks, respectively. More
details for the computation of HT

i Hi are given in Table IV.
Using the eigendecomposition of a 2D circulant matrix

Ti = FH	i F, where FH is the matrix of eigenvectors (i.e.,
the 2D Fourier matrix) and 	 is a diagonal matrix holding the
eigenvalues of Ti , we may write

(
GT G

)
=

J+1∑

i=0

�i ⊗ Ti =
J+1∑

i=0

�i ⊗ (FH	i F
)

= (I ⊗ FH )(
J+1∑

i=0

�i ⊗ 	i

)(
I ⊗ F

)
,

and thus

(
GT G

)−1 = (I ⊗ FH )(
J+1∑

i=0

�i ⊗ 	i

)−1(
I ⊗ F

)
.

The action of
(
GT G

)−1
on a given vector ξ is implemented

as follows: compute the discrete Fourier transform (DFT) of
the bands of ξ , divide elementwise by the diagonal elements
of
(∑J+1

i=1 �i ⊗ 	i

)
, which are positive owing to the term

I⊗I, and finally compute the inverse discrete Fourier transform
(IDFT) of each band. Using the fast Fourier transform to
compute the DFTs and the IDFTs, the total complexity in
computing

(
GT G

)−1
ξ is O((L + 1)N ln N) in the case of

LR-TV and O((L + 2)N ln N) in the case of PCP-TV.

E. Moreau Proximity Operators

The optimization subproblems shown in lines 8, 10, . . . , 12
correspond to evaluating the Moreau proximity operators [45]
of the convex functions g1, g2, . . . , gJ , respectively. In
this section, we present closed form expressions for these
operators.

1) Moreau Proximity Operator for g1 (LR-TV and
PCP-TV):

ψg1/μ(ν) = arg min
ξ
(1/2)

∥∥Mξ − u
∥∥2

2 + (μ/2)
∥∥ξ − ν

∥∥2
2

(24)

=
(

MT M + μI
)−1 (

MT u + μν
)
. (25)

Because M is a sampling matrix, MT M is diagonal with ones
corresponding to the sampled pixels and zero elsewhere; by the
same token, MT ξ yields zeros for non-sampled components of
ξ and leaves the sampled elements of ξ unchanged. Therefore,

ψg1/μ(ν)[n] ={
(u + μν)[n]/(1 + μ) if pixel n is sampled,
ν[n] if pixel n is not sampled.

(26)

The complexity to compute ψg1/μ is O(N L).
2) Moreau Proximity Operator for g2 (LR-TV and

PCP-TV): The optimization problem

ψg2λT V /μ(ν) = arg minξ λT V
∑

n∈�

√∥∥ξh [n]∥∥2
2 + ∥∥ξ v [n]∥∥2

2

+(μ/2)∥∥ξ − ν
∥∥2

2 (27)

is pixelwise decoupled and yields the vector-soft-thresholding
operator [45]

ψg2λT V /μ(ν)[n] = max
{

0, ‖ν[n]‖ − λT V /μ
} ν[n]
‖ν[n]‖ . (28)

The complexity to compute ψg2λT V /μ is O(N(L + 1)).
3) Moreau Proximity Operator for g3 (LR-TV):

ψg3λβ/μ(ν) = arg min
ξ
(λβ/2)

∥∥Aαξ
∥∥2

2 + (μ/2)
∥∥ξ − ν

∥∥2
2

(29)

=
(

AT
αAα + (μ/λβI)

)−1
(μ/λβ)ν. (30)

From the definition of Aα = aT ⊗ I, we have
(

AT
αAα + (μ/λβ)I)

)−1 =
(

aaT + (μ/λβ)I)
)−1 ⊗ I,

implying that the ψg3λβ/μ acts only the spectral domain. More
precisely,

ψg3λβ/μ(ν)[n] =
(

aaT + (μ/λβ)I
)−1

ν[n].
The complexity to compute ψg3λβ/μ, in LR-TV, is

O(N(L + 1)2).
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4) Moreau Proximity Operator for g3 (PCP-TV):

ψg3λ∗/μ(ν) = arg min
ξ
λ∗
∥∥vec−1(ξ)

∥∥∗ + (μ/2)‖ξ − ν‖2
2

(31)

= vec
(

U(� − (λ∗/μ)I)+VT
)
, (32)

where U�VT is the singular value decomposition of matrix
vec−1(ξ ) and (·)+ denotes the nonnegative part [46].

The complexity to compute ψg3λβ/μ, in PCP-TV, is
O(K N2(L + 1)), with 4 ≤ K ≤ 22.

5) Moreau Proximity Operator for g4 (PCP-TV): Having
in mind that vec−1(ξ ) = [ξ1 . . . , ξ L+2] and that vec−1(ν) =
[ν1 . . . , νL+2], it follows that

ψg4λ1/μ(ν) = arg min
ξ
λ1
∥∥Arξ

∥∥
1 + (μ/2)‖ξ − ν‖2

2 (33)

= arg min
ξ
λ1
∥∥ξ L+2 − ξ L+1

∥∥
1

+(μ/2)
L+2∑

l=1

‖ξ l − νl‖2
2, (34)

and then [45]

(ψg4λ1/μ(ν))l

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

νl , l = 1, . . . , L

(1/2)
(
νL+1 + νL+2

+soft(νL+1 − νL+2, 2λ1/μ)
)

l = L + 1

(1/2)
(
νL+1 + νL+2

−soft(νL+1 − νL+2, 2λ1/μ)
)

l = L + 2

(35)

where soft(x, τ ) = max{0, |x | − τ } sign(x).
The complexity to compute ψg4λ1/μ, in PCP-TV, is

O(N(L + 2)).

F. PanSALSA-LR and PanSALSA-PCP Algorithms

The instances of the PanSALSA algorithm to solve the LR-
TV and the PCP-TV problems (14) and (15) are shown in
Figs. 2 and 3, respectively. Vector λ (line 4 of both algorithms)
holds the diagonal elements

∑J+1
i=0 λi ⊗ 	i . Recall that this

matrix is diagonal and therefore completely defined by λ. The
vector xk+1 in line 8 is obtained by applying FFT to the bands
of x, followed by elementwise division by λ, denoted by �,
followed by IFFT. Lines 10-15 in PanSALSA-LR and 10-17
in PanSALSA-PCP compute the respective Moreau proximity
operators, and lines 17-19 in PanSALSA-LR and 19-22 in
PanSALSA-PCP update the Lagrange multipliers.

Both PanSALSA algorithms converge for any μ > 0.
However, the convergence speed is highly sensitive to the value
of μ. This issue is currently a hot research topic. In this work,
we have implemented the selection rule discussed in [47, Ch.
3.4] and therein formalized in expression (3.13). Nevertheless,
we have observed experimentally that a value of μ � 0.05
yields nearly optimum convergence speed, provided that the
MS and Pan images are scaled to the interval [0, 1]. Regarding
the stopping criterion, we impose that the primal and dual
residuals be smaller than a given threshold, as suggested in
[47, Ch. 3.3.2]. Nevertheless, we have observed that a fixed

Fig. 2. LR-TV algorithm.

Fig. 3. PCP-TV algorithm.

number of iterations of the order of 200 provides excellent
results.

Finally, we give an indication of the computational complex-
ity of PanSALSA-LR and PanSALSA-PCP. Having in mind
the computational complexities involved in the computation
of x and of the Moreau proximity operators, we conclude that
the PanSALSA-LR computational complexity per iteration is
dominated by the term O((L + 1)N ln N), associated to the
computation of x, and that of PanSALSA-PCP is dominated
by the term O(K (L + 1)N2), associated to the SVD decom-
position in the computation of the Moreau proximity operator
for the nuclear norm.
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TABLE V

DATA SET DESCRIPTION: PATTERN DATA

V. EXPERIMENTAL RESULTS

In this section, we present some experimental results on sev-
eral simulated and real datasets: the Pattern image simulated
with the USGS libary, the ROSIS Pavia image and the Pléiades
satellite image. The two proposed pansharpening methods
LR-TV and PCP-TV, are compared with seven state-of-the-
art methods, including two recent component substitution
methods with spectral adjustment: FIHS-SA3 [18] and GSA4

[20]; two multiresolution-analysis methods, which are joint
winners of the 2006 IEEE Data Fusion Contest5 [13]: AWLP
[23] and GLP-CBD [22], [49]; and three variational methods6:
P+XS [28] and the two TV based methods presented in
Sect. II (respectively referred to as TV_1 for the method in
[30] and TV_2 for the method in [35]).

A. Parameter Setting

We solve the optimization problems (14) and (15) by the
PanSALSA algorithm presented in Sect. IV, with initializa-
tions vi = p and q = p. The choice of the regularization
parameters for each term in (14) and (15) is an important
issue. For the problem of LR-TV, the two parameters λβ
and λT V need to be set, whereas for PCP-TV, we have
the three parameters λ∗, λ1 and λT V to fix. A result from
the theory underlying the PCP is the optimal choice λ1 =
λ∗/

√
max(n1, n2), where (n1, n2) is the size of the matrix

to be decomposed [36]. Following this recipe, we first set
λ1 = λ∗/

√
max(N1 N2, L + 1). It remains then to tune only

two parameters λT V and λ∗. We have conducted experiments
by trying different combinations of some preset values on a
subset of each dataset. The optimum values are those providing
the best compromise between two widely used quality indices
for pansharpening: SAM and ERGAS (described in detail in
the following subsection). The parameters are almost constant
for all datasets. In our experiments, we set λβ = 10−2 and
λT V = 10−3 for LR-TV and λ∗ = 10−2, λT V = 10−3

and λ1 = 100 for PCP-TV. In all cases, a = 10. Due to
space limit, we omit the details of the parameter selection
and the algorithm performance here. Interested readers could
refer to the Supplementary Material, which can be downloaded
online7.

3Implemented by us. For the Pattern image and the ROSIS Pavia image, the
spectral weights are the same as those obtained in the original paper, that is,
the weights for the four multispectral bands (B, G, R, Nir) are (0.25, 0.75, 1,
1). For the Pléiades satellite image, the real weights are used, that is (0, 0.5,
0.5, 0).

4Implemented by us, with the GS spectral sharpening of ENVI.
5Code kindly provided by Dr. G. Vivone, which will be released soon [48].
6Implemented by us.
7http://www.gipsa-lab.fr/j̃ocelyn.chanussot/SupplementaryMaterial.pdf

Fig. 4. Comparison of different pansharpening methods on Pattern image.
The resulting image is represented as a true-color combination of the Red,
Green and Blue bands. The scene presented is of size 500×500. (a) Reference
MS image. (b) Pan image. (c) FIHS-SA fused image [18]. (d) GSA fused
image [20]. (e) AWLP fused image [23]. (f) GLP-CBD fused image [22].
(g) P+XS fused image [28]. (h) Fused image using TV_1 [30]. (i) Fused
image using TV_2 [35]. (j) Fused image using the proposed method LR-TV.
(k) Fused image using the proposed method PCP-TV.

B. Quality Assessment Indices

In order to evaluate the quality of the fused results of
different methods, both visual inspection and quantitative
assessement were conducted. Visual inspection can give a
general idea of the image quality as perceived by human



HE et al.: NEW PANSHARPENING METHOD BASED ON SPATIAL AND SPECTRAL SPARSITY PRIORS 4169

TABLE VI

QUANTITATIVE EVALUATION OF THE FUSED RESULTS OF DIFFERENT METHODS ON THE PATTERN DATA

observers, but it may be subjectively biased. Quantitative
measures are attractive, because they are defined mathemat-
ically and independent of individual observers. Let v̇ =
[v̇1, v̇2, . . . , v̇L ] ∈ R

N1×N2×L be the high resolution reference
MS image, where v̇l is the image of band l. Let N = N1 N2 be
the total number of pixels in each band. In our experiments,
we employ the following universal image quality indices for
the evaluation of fused images. As the universal indices are
proposed initially for monochrome images, we shall calculate
these measurements for each band of the MS image and
average the results over all the bands to obtain a global
measure.

(1) Error based measurements are the most widely used
quality indices in image processing community, such as
the maximum error,

Err_max = max
n1,n2

|vl[n1, n2] − v̇l[n1, n2]| , (36)

the 	1 norm error

Err_	1 = 1

N

∑

n1,n2

|vl[n1, n2] − v̇l[n1, n2]| , (37)

and the 	2 norm error

Err_	2 =
√

1

N

∑

n1,n2

(vl[n1, n2] − v̇l[n1, n2])2. (38)

(2) The Q index proposed by Wang and Bovik [50] has
shown great ability in measuring image distortions. It
combines the loss of correlation, luminance distortion
and contrast distortion of an image and is calculated by:

Q = 4σ(vl,v̇l )v̄l ¯̇vl

(σ 2
vl

+ σ 2
v̇l
)[(v̄l)2 + ( ¯̇vl)2]

, (39)

where σ(vl,v̇l ) is the covariance between pixel values in
the fused image and in the reference high resolution MS
image, v̄l and ¯̇vl are the mean value of the fused image
and of the reference image, respectively, and σ 2

vl
and σ 2

v̇l
are the variance of the fused image and of the reference
image, respectively.

In addition to the above universal measures, we also employ
quality indices that have been specifically developed by the
remote sensing community for evaluating the quality of pan-
sharpened MS image, with much attention paid to the spectral
and spatial quality. The following indices are considered.

(3) The Spectral Angle Mapper (SAM) [51] reveals spectral
distortion of the fused image by calculating the absolute

angle between the spectral vector of each pixel of the
fused image and that of the reference image:

SAM = arccos

( 〈v[n1, n2], v̇[n1, n2]〉
‖v[n1, n2]‖2 ‖v̇[n1, n2]‖2

)
. (40)

It is usually averaged over the whole image and a value
equal to zero means that there is no spectral distortion.

(4) The ERGAS index proposed by Ranchin and Wald
is the French acronym for “Erreur Relative Globale
Adimensionnelle de Synthèse” (relative dimensionless
global error in synthesis) [52]. This index gives a global
quality assessment of the fused MS image and is defined
as

ERGAS = 100
dh

dl

√√√√ 1

L

L∑

l=1

(
RMSE(l)

μ(l)

)2

, (41)

where dh and dl are respectively the pixel sizes of the
Pan and of the MS image, μ(l) is the mean of the l-th
band of the reference image, and RMSE(n) is the root
mean square error between the l-th band of the fused
image and that of the reference image.

(5) The quality index Q4 has been specifically developed
for assessing MS images with four spectral bands [51].
It extends the idea of the universal Q index, which
was initially designed for monochrome images, to the
application on MS images based on the theory of
hypercomplex numbers, or quaternions. The authors
propose to represent an MS image of four bands by
z = a+ib+ jc+kd with i , j , k the imaginary units and
a, b, c and d the radiance values of a pixel respectively
in the Blue, Green, Red and Nir bands. With this new
representation, the Q4 index can be calculated using the
same equation (39) of the Q index. This index considers
both spectral and spatial qualities of the fused image.

C. Fusion Results on Pattern Data

We start with the simulated Pattern dataset. Table V gives
a brief description of the dataset. The test image is generated
with different shapes by using pure pixels randomly selected
from USGS spectral library,8 see Fig. 4(a).

In Fig. 4, we show the fusion results of different methods in
form of true color images (as a combination of the Red, Green
and Blue bands). The reference MS and Pan image at high
resolution are also presented. Visually, it can be observed that

8Available online at http://speclab.cr.usgs.gov/spectral.lib06.
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Fig. 5. Comparison of different pansharpening methods on Pavia image. The
resulting image is represented as a true-color combination of the Red, Green
and Blue bands. The scene presented is of size 608×336, at 1.3-m resolution.
(a) Reference MS image. (b) Pan image. (c) FIHS-SA fused image [18].
(d) GSA fused image [20]. (e) AWLP fused image [23]. (f) GLP-CBD fused
image [22]. (g) P+XS fused image [28]. (h) Fused image using TV_1 [30].
(i) Fused image using TV_2 [35]. (j) Fused image using the proposed method
LR-TV. (k) Fused image using the proposed method PCP-TV.

the two proposed methods LR-TV and PCP-TV (cf. Figs. 4(j)
and 4(k)) have the best spectral quality. TV based method
TV_1 provides also a good spectral quality. In contrast, TV_2
exhibits a high spectral distortion. Component substitution
methods with spectral adjustment FIHS-SA and GSA produce

Fig. 6. Comparison of different pansharpening methods on Pléiades images.
The resulting image is represented as a true-color combination of the Red,
Green and Blue bands. The scene presented is of size 1024 × 1024, at 0.8-
m resolution. (a) Reference MS image. (b) Pan image. (c) FIHS-SA fused
image [18]. (d) GSA fused image [20]. (e) AWLP fused image [23]. (f)
GLP-CBD fused image [22]. (g) P+XS fused image [28]. (h) Fused image
using TV_1 [30]. (i) Fused image using TV_2 [35]. (j) Fused image using
the proposed method LR-TV. (k) Fused image using the proposed method
PCP-TV.

fused images with spectral quality competitive to that of
multiresolution-analysis methods AWLP and GLP-CBD. For
the spatial quality, we observe that TV_2 performs the worst.
Both FIHS-SA and P+XS result in a blurred fused image
(Figs. 4(c) and 4(g)). GSA, AWLP and GLP-CBD suffer from
ringing and aliasing artifacts on the rectangulars and circles
in the fused images (cf. Figs. 4(d), 4(e), and 4(f)).

In Table VI, we present a detailed quantitative evaluation
of the fused results of different methods using all the afore-
mentioned image quality indices (cf. Sect. V-B). The ideal
value of each index is also given and the best results are
highlighted in bold. We can see that, in accordance with the
visual inspection, the two proposed methods LR-TV and PCP-
TV perform significantly better than the other methods, with
LR-TV performing slightly better than PCP-TV. The method
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TABLE VII

DATA SET DESCRIPTION: ROSIS PAVIA DATA

TABLE VIII

QUANTITATIVE EVALUATION OF THE FUSED RESULTS OF DIFFERENT METHODS ON THE ROSIS PAVIA DATA

TABLE IX

DATA SET DESCRIPTION: PLEIADES DATA

TABLE X

QUANTITATIVE EVALUATION OF THE FUSED RESULTS OF DIFFERENT METHODS ON THE PLÉIADES DATA

TV_1 also shows a good performance whereas TV_2 performs
the worst. Among non-variational methods, multiresolution-
analysis method GLP-CBD presents a higher spectral quality
(low SAM value) whereas component substitution method
FIHS-SA has a better spatial quality (low ERGAS value).

D. Fusion Results on ROSIS Pavia Data

In this section, we present the experimental results on a
subset of the ROSIS Pavia data (Fig. 5(a)). We generated a
couple (v,p) according to Equation (9) using the spectral
responses of the IKONOS sensor [53] and a hyperspectral
image of the urban area of the University of Pavia, Italy,
acquired by the Reflective Optics Imaging Spectrographic
System (ROSIS) optical sensor. The image has a very high
spatial resolution of 1.3 meters per pixel. The number of
bands in the original acquired image is 103, covering the
spectral range from 0.43 to 0.86 μm. The low resolution MS
image was computed as u = Rv using a downsampling factor
S = 4 and a lowpass filter with symmetric Gaussian shape.
The characteristics of the experimental setting are summarized
in Tab. VII.

Fig. 5 illustrates the reference image and the fused results
of different methods. This dataset is more difficult with many

cars in the scene. Through visual inspection, we can see that
with this dataset, P+XS performs the worst and TV_2 has
severe spectral distortion. The pansharpened images obtained
by FIHS-SA and GSA have better spatial quality but FIHS-
SA suffers from spectral distortion. In contrast, the weighted
TV based methods (TV_1 and the two proposed methods)
show better spectral quality. The fusion results of TV_1 and
of the two proposed methods are visually quite similar. Spatial
distortions, like aliasing artifact can be easily observed on the
fused images obtained by AWLP and GLP-CBD (Figs. 5(e)
and 5(f)). Table VIII reports the quantitative evaluation of the
fused results of different methods using universal and specific
image quality indices. We can see that TV_2 has the worst
results. On average, GSA has the lowest maximum error. PCP-
TV and LR-TV perform the best in terms of all the other
indices. Again the two proposed methods show comparable
results, with LR-TV performing slightly better than PCP-TV.

E. Fusion Results on Pléiades Data

The Pléiades images provided by the French Space Agency
CNES (Centre National d’Études Spatiales) were taken over
the city of Toulouse in France. The dataset consists of MS
images with four bands (Blue, Green, Red and Nir) at both
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high resolution of 0.8-m and low resolution of 3.2-m. The Pan
image of the same scene at 0.8-m resolution is also provided.
In particular, the Pan image in this dataset is generated as the
average of the red and green bands of the high resolution MS
image; that is, the linear coefficient vector α is given by α =
(0, 0.5, 0.5, 0). The main advantage of the Pléiades dataset is
that the reference high resolution MS image is available. So,
we can evaluate the fusion results of different pansharpening
methods with all the aforementioned quality indices directly.
The Pan image and the low resolution MS image used in our
experiments are respectively of size 1024 × 1024 and 256 ×
256, while the reference high resolution MS image is of size
1024 × 1024. A brief description of the dataset can be found
in Table IX.

In Fig. 6 we show the fusion results of different methods in
form of true color images (as a combination of the Red, Green
and Blue bands). We can see that only the variational method
P+XS suffers from both severe spectral and spatial distortion
(cf. Fig. 6(g)). The results produced by the other methods
are visually very similar. In Table X, we list the quantitative
assessment results of different methods using universal and
specific image quality indices. We can see that TV_2 and LR-
TV outperform the other methods in terms of the universal
indices (Err_max, Err_	1, Err_	2 and Q). On average, TV_2
performs the best in terms of Err_max and Q index and
LR-TV performs the best in terms of Err_	1 and Err_	2.
Concerning the specific image quality indices, TV_1 has the
best spectral quality (lowest SAM value). TV_2 performs the
best in terms of Q4 index and LR-TV has the lowest ERGAS
value. Remarkably, the TV_2 performs clearly better on this
dataset than on other datasets. This may be due to the fact
that the linear coefficient vector for the Pléiades dataset is
known (M2 = α) whereas without a priori information we set
M2 = { 1

4 I, 1
4 I, 1

4 I, 1
4 I} for the other datasets. This again proves

that the estimation of the exact value of α has an important
effect on the pansharpening process.

VI. CONCLUSION

In this paper, a new variational pansharpening model is
presented. With the objective that the fused image should pre-
serve both low-rank structure of the MS image and important
geometric information of the Pan image, two pansharpening
inference criteria, named LR-TV and PCP-TV respectively,
are introduced. Both methods employ a weighted version
of the total variation norm for preserving edge locations.
In order to exploit the low-rank structure, LR-TV estimates
the underlying linear coefficients between the Pan image
and the fused image by linear regression while PCP-TV
resorts to the principal component pursuit. The optimization
problems can be efficiently solved within the framework of
proximal splitting methods for convex optimization, with the
proposed PanSALSA algorithm. The main difference between
the proposed methods and other pansharpening methods is
that, instead of the tight linear relationship assumption between
the Pan image and the fused high resolution image, we
investigate the low-rank structure of the data matrix composed
of the fused image and an extra band of the Pan image.

Experimental results show that both LR-TV and PCP-TV
outperform traditional methods in terms of both subjective
assessment via visual inspection and objective quantitative
assessment. In our method, we select the optimum value of the
regularization parameters among a group of preset values. We
have introduced the selection method based on the V-curve,
which, in the reported experiments, yielded nearly optimum
results. Improvements may be obtained by further analysis of
the relationship between different regularization terms in the
optimization problems.
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