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Sampling Signals with Finite Rate of Innovation and Recovery by
Maximum Likelihood Estimation

Akira HIRABAYASHI†a), Member, Yosuke HIRONAGA††, Student Member,
and Laurent CONDAT†††, Nonmember

SUMMARY We propose a maximum likelihood estimation approach
for the recovery of continuously-defined sparse signals from noisy mea-
surements, in particular periodic sequences of Diracs, derivatives of Diracs
and piecewise polynomials. The conventional approach for this problem is
based on least-squares (a.k.a. annihilating filter method) and Cadzow de-
noising. It requires more measurements than the number of unknown pa-
rameters and mistakenly splits the derivatives of Diracs into several Diracs
at different positions. Moreover, Cadzow denoising does not guarantee any
optimality. The proposed approach based on maximum likelihood estima-
tion solves all of these problems. Since the corresponding log-likelihood
function is non-convex, we exploit the stochastic method called particle
swarm optimization (PSO) to find the global solution. Simulation results
confirm the effectiveness of the proposed approach, for a reasonable com-
putational cost.
key words: Signals with finite rate of innovation, sequence of Diracs,
derivatives of Diracs, piecewise polynomials, maximum likelihood estima-
tion, Cadzow denoising

1. Introduction

Compression plays the critical role in modern communica-
tions systems. In the standard approach, a huge amount of
high quality data is first acquired, and then it is compressed
to ten or five percent of essential data: only the compressed
data is transmitted to receivers. This means not only that
most of the acquired data are discarded, but also that both
sampler and encoder are necessary to facilitate transmission.
If we could directly extract the small amount of the essen-
tial data, there would be no data discarded and only sampler
is necessary. Sparse sampling is nothing but a technique
which enables us to do this [1]. There are two approaches
for sparse sampling. One is the so-called compressed sens-
ing, which is a technique for discrete signals [2], [3]. The
other is sampling theory for signals with finite rate of inno-
vation [4]–[7], which form a class of continuously-defined
signals. This paper focuses on the latter.

Typical examples of signals with finite rate of innova-
tion appear in radar, echo, or sonar. In these techniques, ra-
dio or ultrasonic waves are transmitted to a target object, and
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the reflected waves enable us to compute the distance to the
target. Even though channels for reflection are not single,
the sum of the reflected waves is sparse. Since the trans-
mitted pulse is known, such sparse signals can be expressed
only using a few parameters, i.e., time delays and attenua-
tion coefficients. We can exploit this parametric expression
to sample continuously-defined sparse signals at very low
frequency compared to the so-called Nyquist frequency.

The most important type of signals with finite rate of
innovation is the sequences of Dirac distributions (Diracs,
in short). It lies at the heart of the theories formulated for
analog signals. This is because simple convolutions of such
sequences with particular kernels creates a wide variety of
signals of practical interest. An even larger class of signals is
generated by convolutions from sequences of derivatives of
Diracs, including the important cases of piecewise polyno-
mials and piecewise sinusoids with discontinuities [4], [8].

Let δ(t) denote the Dirac distribution and τ be a positive
real. This paper discusses τ-periodic sequences of Diracs
and derivatives of Diracs and τ-periodic piecewise polyno-
mials. For example, the sequence of derivatives of Diracs is
expressed as s(t) =

∑
k′∈Z s0(t − k′τ), where

s0(t) =
K−1∑
k=0

Rk−1∑
r=0

ck,rδ
(r)(t − tk), (1)

for some known integers K ≥ 1 and {Rk}K−1
k=0 . This signal

has K degrees of freedom due to the time instants {tk}K−1
k=0

and K̃ =
∑K−1

k=0 Rk degrees of freedom due to the coefficients
{ck,r}, per period τ. Thus, the rate of innovation of the signal
is ρ = (K + K̃)/τ < ∞. The signal s(t) is sampled using an
appropriate kernel, like the Dirichlet kernel [4] or a sum-of-
sincs [7]. Then, the sequence can be perfectly reconstructed
from the noiseless measurements using the annihilating fil-
ter technique [4]. This technique recasts the problem of ob-
taining tk as that of computing the filter coefficients. As a
result, the conventional approach requires at least 2K̃ + 1
measurements [9], which is always more than the number
of unknown parameters K + K̃ because K̃ ≥ K. If K̃ is much
greater than K, 2K̃ + 1 is also much greater than K + K̃. If
the measurements are corrupted by noise, the annihilating
filter approach, a.k.a. least squares [6], yields K̃ locations
instead of K. To improve the performance of least squares,
Cadzow denoising [10] is usually exploited [6]; this method
merely tries to find a Toeplitz matrix of rank K, hence does
not guarantee any optimality [11].
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Table 1 Comparison of the proposed and conventional approaches.

Problem to be solved Solution

Proposed Maximum likelihood
estimation

PSO (Stochastic
global optimization)

Conventional [6]
Find a Toeplitz

matrix of rank K
Cadzow (Alternative
pseudo projection)

To solve these problems, we propose a method that re-
constructs the signal using maximum likelihood estimation.
The proposed method directly estimates tk without recasting
the problem as the filter coefficients problem. The corre-
sponding likelihood function is non-convex. Hence, to find
the global solution, we exploit a heuristic approach called
particle swarm optimization (PSO) [12]. Even though the
proposed method does not guarantee optimality of the so-
lution either, we can expect that it is near optimal. Simu-
lation results show that the proposed method can perfectly
reconstruct the signal from less than 2K̃ + 1 measurements,
whereas the conventional approach is not applicable in this
situation. We should note that, even though both approaches
suffer from the non-convexity, we can summarize contri-
butions of the present paper as follows: 1) we exploit the
maximum likelihood estimation, which was not used in the
conventional approach, 2) we use PSO to find the global op-
timum solution of the likelihood function. These points are
summarized in Table 1.

This paper is organized as follows. Section 2 defines
the signals with finite rate of innovation and describes the
sampling setup using the sum-of-sincs kernel. Section 3 for-
mulates maximum likelihood estimation for reconstruction
of the sequence of Diracs. Section 4 applies the same ap-
proach to the sequence of derivatives of Diracs. Section 5
is devoted to the periodic piecewise polynomials. Section 6
concludes the paper.

2. Sampling Signals with Finite Rate of Innovation

Consider a signal represented by linear combination of arbi-
trary shifts of R known function φr(t) (r = 0, . . . ,R − 1), but
the shift amounts tk and the coefficients ck,r are unknown.
We assume tk < t′k when k < k′. Then, the signal s(t) is
represented by

s(t) =
∞∑

k=−∞

R−1∑
r=0

ck,rφr(t − tk). (2)

The total number of tk in period [ta, tb] and ck,r with the iden-
tical k is denoted by Cs(ta, tb). Then, we define a rate of
innovation ρ as

ρ = lim
τ→∞

1
τ

Cs(−τ/2, τ/2). (3)

Definition 1: [4] A signal with a finite rate of innovation is
a signal whose parametric representation is given in Eq. (2)
and with a finite ρ, as defined in Eq. (3).

We can also define a local rate of innovation with re-
spect to a moving (yet fixed) window size τ, as

ρτ(t) =
1
τ

Cs(t − τ/2, t + τ/2) (4)

In this case, one is often interested in its maximum:

ρmax(τ) = max
t∈IR

ρτ(t)

If a signal has a period τ, the local rate of innovation ρτ(t) is
useful because it does not depend on t and gets a constant ρ.

This paper also discusses periodic signals s(t), defined
by

s(t) =
∑
k′∈Z

s0(t − k′τ), (5)

where s0(t) is the signal in the interval [0, τ), given as

s0(t) =
K−1∑
k=0

R−1∑
r=0

ck,rφr(t − tk). (6)

In this case, we enforce the condition that 0 ≤ t0 < · · · <
tK−1 < τ. The sequence of Diracs is s(t) in Eqs. (5) and (6)
with R = 1 and φ0(t) = δ(t). This is typically sparse, because
its value is mostly zero except at positions tk. Further, this
ideal pulse sequence produces the general pulse sequence
by convolving with φ(t) , δ(t). One generalization of the
sequence of Diracs is the sequence of derivatives of Diracs.
This is s(t) with φr(t) = δ(r)(t). Here the derivatives of Dirac
is defined by∫ ∞

−∞
δ(r)(t)ϕ(t)dt = (−1)rϕ(r)(0),

where ϕ(t) is an arbitrary function that has derivatives of
any order and tends to zero more rapidly than any power
of t, as |t| tends to infinity [13]. This signal is related to
piecewise polynomials by R + 1th derivatives. The present
paper discusses these three types of signals.

The target signal is sampled using a kernel ψ(t) and
yields N noiseless measurements

dn = ⟨s, ψn⟩ =
∫ ∞

−∞
s(t)ψ(t − nT )dt,

for n = 0, . . . ,N−1, T = τ/N, and z stands for the conjugate
of a complex number z. We adopt for ψ(t) the sum of sincs
kernel [7], which is defined in the frequency domain by

ψ̂(ω) =
τ
√

2π

P∑
p=−P

sinc

 ω2π
τ

− p

 , (7)

where

sinc(ω) =
{

sin(πω)/(πω) (ω , 0),
1 (ω = 0).

Its time domain expression is

ψ(t) =
rect(t/τ)

τ

P∑
p=−P

bpei2pπt/τ, (8)



HIRABAYASHI et al.: SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION AND RECOVERY BY MAXIMUM LIKELIHOOD ESTIMATION
3

where rect(t) = 1 if |t| ≤ 0.5 else 0 and P ≤ (N − 1)/2 is an
integer. By setting bp = 1 for all p, this kernel reduces to
the standard Dirichlet kernel. Let d̂p =

1
τ

∫ τ

0 s(t)e−i2pπt/τdt be
the Fourier coefficients of s(t). Then, it follows from Eq. (8)
that

dn =

P∑
p=−P

bpd̂pei2pnπ/N .

This admits the matrix representation

d = F−1Bd̂, (9)

where B is the diagonal matrix diag(b−P, . . . , bP) and F is
the discrete Fourier transform (DFT) matrix, defined accord-
ingly. In a nutshell, the Fourier coefficients are related to the
noiseless measurements acquired using the sinc kernel ex-
actly by the DFT.

3. Sequence of Diracs

The Fourier coefficients for the sequence of Diracs can be
derived from Eqs. (5) and (6) with φ(t) = δ(t) as

d̂p =

K−1∑
k=0

c̃kup
k ,

where uk = e−i2πtk/τ, c̃k = ck/τ. These values can be com-
puted from the noiseless measurements dn by d̂ = B−1Fd.
The locations tk then can be extracted by using the annihi-
lating filter method and ck are derived by solving the Van-
dermonde equation [4].

The clean measurements {dn}N−1
n=0 are corrupted by ad-

ditive noise, yielding the noisy measurements yn = dn + en,
for n = 0, . . . ,N − 1. Let y and e be vectors whose n-th
elements are yn and en, respectively: y = d + e. In this
case, there does not exist an FIR filter that annihilates the se-
quence ŷ = B−1Fy in general. The relevant solution for this
situation is to use a filter which minimizes sum of squared
residues. This approach is called least square (LS). If noise
level is not moderate, some preprocessing is necessary. For
this, Cadzow denoising [10] is the standard approach [6],
which is one of the technique for structured low-rank ap-
proximation of matrix [14]. A data matrix which appears in
the process has the Toeplitz structure and should have rank
K, but not because of noise. Therefore, the algorithm itera-
tively find a matrix which has the structure and rank K. Note
that the set of Toeplitz matrix is convex while that of rank K
is not. Because of this, any optimality is not guaranteed for
the solution obtained by the algorithm.

To resolve these difficulties, we exploit the formalism
of maximum likelihood estimation. Let Ut and c be the ma-
trix and the vector defined respectively as

Ut =


u−P

0 · · · u−P
K−1

u−P+1
0 · · · u−P+1

K−1
...

. . .
...

uP
0 · · · uP

K−1

 ,

c = [c̃0 c̃1 · · · c̃K−1]T .

Then, we have d̂ = Ut c and Eq. (9) yields

d = F−1BUt c. (10)

Assume that the probability density function p(e) is known.
Then using Eq. (10), we can define the log-likelihood
function as L(t, c) = log p(y − F−1BUt c), where t =
[t0 t1 · · · tK−1]T. Assume that p(e) is the Gaussian distri-
bution with zero mean and covariance matrix σ2I, where σ
is a known positive real and I is the identity matrix. Then,
the log-likelihood function reads

L(t, c) = −∥y − F−1BUt c∥2
2σ2 − N log(

√
2πσ). (11)

This implies that the maximization of the log-likelihood
function is equivalent to the minimization of the norm
∥y − F−1BUt c∥2. Further on, F is unitary up to constant.
Hence, this minimization is equivalent to that of

fo(t, c) = ∥ŷ − BUt c∥2. (12)

Finally, maximum likelihood estimation amounts to estimat-
ing the vector BUt c, which is the closest to ŷ in the least-
squares sense, in Fourier domain.

Eq. (12) is quadratic with respect to c, when t is fixed.
Therefore, the optimal c for a fixed t is obtained analytically
as c = (BUt)†ŷ, where T † stands for the Moore-Penrose
generalized inverse of the bounded operator T [15]. Hence,
the minimizer of fo(t, c) is found by searching t that mini-
mizes

f (t) = fo(t, (BUt)†ŷ) = ∥ŷ − (BUt)(BUt)†ŷ∥2,

and then by computing c = (BUt)†ŷ.
The criterion f (t) is non-convex and it is very diffi-

cult to find the global minimum solution. We thus exploit
the so-called particle swarm optimization (PSO) algorithm
[12]. The particles model the parameter t to be optimized.
For each particle j = 1, ..., J, we first initialize the position
t j and its velocity ṫ j with uniformly distributed random vec-
tors in the domain. We use the particle’s and swarm’s best
known positions b(p)

j and b(s), which are initialized by t j
and the best among the initial positions, respectively. Until
a termination criterion is met, the particle’s velocity ṫ j and
position t j are updated by

ṫ j ← w ṫ j + c1r1(b(p)
j − t j) + c2r2(b(s) − t j)

t j ← t j + ṫ j,

respectively, where c1, c2 are pre-defined constants near 1
and r1, r2 are uniform random variables within 0 and 1. If
f (t j) < f (b(p)

j ), then b(p)
j is updated by t j. If f (b(p)

j ) <

f (b(s)), then b(s) is replaced by b(p)
j . Finally, b(s) gives the

best found solution. Because of its global and random na-
ture, PSO is more robust than gradient approaches, against
getting trapped in local minima. The downside is a relatively
high computational cost.
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Fig. 1 Mean square errors (MSE) [dB] of estimated parameters for t and
c of a sequence of Diracs with respect to the SNR [dB]. The number of
measurements is 11. The red, blue and black lines show the results by the
proposed method, by LS with and without Cadzow denoising, respectively.

In simulations, the parameters are set as τ = 1, bp =

1, K = 2 and N = 11. The unknown parameters are
t = (t0, t1) = (0.42, 0.52), and c = (c0, c1) = (1.00, 1.00).
For PSO, we used J = 150 particles and (w, c1, c2) =
(0.4, 0, 9, 0.4), (0.9, 0.4, 0.4) and (0.4, 0.4, 0.9) for 75, 45 and
30 particles, respectively. One thousand noise vectors e
were generated from the Gaussian distribution in which σ
was determined so that the SNR† becomes 10, 15, . . ., 30
[dB]. For each experiment, we computed estimates t̂ and ĉ
of t and c, for 1,000 different noise realizations. Accord-
ingly, the mean square errors MSE(t) and MSE(c) were de-
fined as the average over the 1,000 trials of ∥ t̂ − t∥2 and
∥ĉ− c∥2, respectively. The results are shown in Fig. 1, where
the red, blue and black lines show the results by the pro-
posed method, by LS with and without Cadzow denoising,
respectively. We can see that the proposed method outper-
forms the conventional methods for every value of the SNR.

†The SNR is defined by 10 log10
∥d∥2
σ2N

.

4. Sequence of Derivatives of Diracs

The Fourier coefficients of the sequence of derivatives of
Diracs can be obtained from Eq. (6) with φr(t) = δ(r)(t), as

d̂p =

K−1∑
k=0

Rk−1∑
r=0

c̃k,r pup
k ,

where c̃k,r = (i2π)rck,r/τ
r+1. This is essentially different

from that of the sequence of Diracs because there is a poly-
nomial term p in the right-hand side. The sequence of this
Fourier coefficients still can be annihilated by an FIR filter
that has K̃ coefficients, not K. The classical approach tries
to find these coefficients in order to find K locations tk. This
is an augmentation of the number of unknown parameters.
In noiseless case, the K̃ coefficients give the K locations tk,
but in noisy case, K̃ locations are retrieved. Cadzow algo-
rithm can be applied to this denoising, but does not improve
the situation, as we expect.

To solve these problems, we also exploit maximum
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Fig. 2 MSE [dB] of estimated parameters for t and c of a sequence of
derivatives of Diracs with respect to the SNR [dB]. The legends are the
same as in Fig. 1.
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Fig. 3 MSE [dB] of the estimated parameters for t and c of a sequence of
derivatives of Diracs with respect to the number N of measurements. The
lines show the SNR for 20dB.The legends are the same as in Fig. 1.

likelihood formulation. Let Vt and c be the matrix and the
vector defined respectively as

Vt =


u−P

0 · · · (−P)Ru−P
K−1

u−P+1
0 · · · (−P + 1)Ru−P+1

K−1
...

. . .
...

uP
0 · · · (P)RuP

K−1

 ,
c = [c̃0,0 c̃0,1 · · · c̃K−1,R−1]T .

Then, we have d̂ = Vt c and therefore,

d = F−1BVt c. (13)

Similarly to the case of the sequence of Diracs, the log-
likelihood function reads

L(t, c) = −∥y − F−1BVt c∥2
2σ2 + N log(

√
2πσ), (14)

which is equivalent to the minimization of

fo(t, c) = ∥ŷ − BVt c∥2. (15)

The minimizer of this term is found by searching t that min-
imizes

f (t) = fo(t, (BVt)†ŷ) = ∥ŷ − (BVt)(BVt)†ŷ∥2,

and then by computing c = (BVt)†ŷ. The search of the min-
imizer was again conducted by PSO with the same setup
for the inner parameters as is in the case of the sequence of
Diracs.

In simulations, the parameters are set as τ = 1, bp = 1,
K = 2, and R0 = R1 = 2. The unknown parameters are
t = (t0, t1) = (0.19, 0.63), and c = (c0,0, c0,1, c1,0, c1,1) =
(−0.80, 0.65,−1.50, 0.85). For each experiment, we com-
puted estimates t̂ and ĉ of t and c, for 1,000 different noise
realizations. The mean square errors MSE(t) and MSE(c)
were defined as the average over the 1,000 trials of ∥ t̂ − t∥2
and ∥ĉ − c∥2, respectively. The number of measurements
are N = 13. The results are shown in Fig. 2. As well as
in Fig. 1, the red, blue and black lines show the results by
the proposed method, by LS with and without Cadzow de-
noising, respectively. We can see that the proposed method
performs better than the conventional approaches, whatever
the SNR. Fig. 3 shows MSEs with respect to the number
of measurements. The noise level is SNR=20dB. We can
see the proposed approach always outperforms the conven-
tional approaches in these simulations as well. Note that
the LS approach with/without Cadzow cannot be applied to
the case of seven measurements, while the proposed method
performs the best in this case for the estimation of c. We
have not yet clarified the reason why MSE(c) by the pro-
posed method increases as N increases.

5. Periodic Piecewise Polynomials

For every k = 0, . . . ,K−2, let us define the function φk(t) as

φk(t) =
{
vk(t) (tk < t < tk+1),

0 (otherwise),

and the function φK−1(t) as

φK−1(t) =


vK−1(t + τ) (0 ≤ t < t0),
vK−1(t) (tK−1 < t < τ),

0 (otherwise),

where vk(t) =
∑R

r=0 αk,rtr. Then, a τ-periodic piecewise
polynomial s(t) of degree R is defined by s(t) =

∑
k′∈Z s0(t −

k′τ), with

s0(t) =
K−1∑
k=0

φk(t).

The available samples are dn = ⟨s, ψn⟩ corrupted by noise:
yn = dn + en.

As mentioned before, the R + 1th derivative of s(t) is a
sequence of derivatives of Diracs. Hence, the classical ap-
proach consists in first estimating this sequence and then re-
constructing the piecewise polynomial by integration. This
implies that we are bound by the difficulties of estimating a
sequence of derivatives of Diracs. Further, integration may
augment the reconstruction error that was caused by noise
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Fig. 4 MSE [dB] of the estimated parameters for t and α of a piecewise
polynomial with respect to the number N of measurements. The legends
are the same as in Fig. 1.

in measurements.
To solve these problems, we propose a direct esti-

mation of the piecewise polynomial, without recasting the
problem as the estimation of a sequence of derivatives of
Diracs. To this end, we first introduce matrices D and Ṽt as

D =


0(

τ

i2π
diag

(
1
−P

,
1

−P + 1
, . . . ,

1
P

))R+1

1

0

 ,

Ṽt =

(
Vt 0
0T 1

)
,

with 0 indicating the zero vector. The matrix D is the map-
ping from Fourier coefficients of the sequence of derivatives
of Diracs to those of the piecewise polynomial. The relation
of differentiation was exploited here. We further introduce a
matrix Wt which maps αk,r to ck,r. For instance when R = 1
and K = 2, Wt is given by
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Fig. 5 MSE [dB] of the estimated parameters for t and α of a piecewise
polynomial with respect to the SNR [dB]. The legends are the same as in
Fig. 1.

Wt =


0 0 1 −1
1 −1 t0 −(t0 + τ)
0 0 −1 1
−1 1 −t1 t1
t1−t0
τ

t0+τ−t1
τ

t2
1−t2

0
2τ

(t0+τ)2−t2
1

2τ

 .
We refer [9] for further details on the matrix Wt. By using
these matrix, we introduce Φt = BDṼtWt. We then have

d = F−1Φtα,

where α = (α0,0 · · · αK−1,R)T. Finally, the noiseless mea-
surements of the piecewise polynomial is expressed by us-
ing the locations tk and the coefficients αk,r. Because of this
expression, the log-likelihood function is defined similarly
as in Eq. (11) and its maximization is equivalent to the min-
imization of ∥ŷ − Φtα∥2. We find the minimizer of this term
by searching t minimizing ∥ŷ − ΦtΦ

†
t ŷ∥2, and then calcu-

lating α = Φ†t ŷ. The search of the minimizer was again
conducted by PSO.

The performance of the proposed method was evalu-
ated by simulations. The target signal is a τ = 1-periodic
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Fig. 6 A simulation example with K = 4 and R = 2. The black line
shows the target signal and the red circles and black dots are measurements
with and without 20dB noise. The red and blue lines are reconstructed sig-
nals by the proposed method and LS with Cadzow denoising, respectively.

piecewise polynomial of degree R = 1 with K = 2 dis-
continuities. The unknown parameters are t = (0.20, 0.65)
and α = (α0,0, α0,1, α1,0, α1,1) = (−1.00,−3.00, 2.00, 4.00).
We reconstructed the signal from 7, 9, . . ., 15 measure-
ments with 20dB noise. The estimation errors MSE(t) and
MSE(α) were obtained by averaging ∥ t̂ − t∥2 and ∥α̂ − α∥2
over 1,000 noise realizations, respectively. The results are
shown in Fig. 4, with same legends as in Fig. 1. We can
see that the proposed method outperforms the conventional
methods in all cases. Fig. 5 shows MSEs in terms of the
SNR[dB]. Again, we can see that the proposed method out-
performs the conventional methods in all cases except for
the case of MSE(α) in 10dB noise. In this case, the noise
gets very large and PSO occasionally behaves unstably.

A simulation example with K = 4, R = 2, and N = 25
is shown in Fig. 6. We can see that the proposed method
gives much better results than the classical approach. We
should note that N = 25 is the minimum for the classical ap-
proach and the proposed method can reconstruct the signal
from fewer samples. It took 19.12s for the proposed method
to reconstruct the signal, while LS with Cadzow denoising
required 0.06s only, but Matlab is far from optimal for the
implemention of algorithms like PSO, whose potential for

parallelization is not exploited at all.

6. Conclusion

We proposed a maximum likelihood estimation method for
the recovery of periodic sequences of Diracs and derivatives
of Diracs, and periodic piecewise polynomials. The method
is able to reconstruct the signals from a number of measure-
ments equal to the number of unknown parameters, while
the conventional approaches are not applicable in that case.
Simulations results showed that the proposed method out-
performs the conventional methods. Unfortunately, when
noise level gets large, the proposed method tends to behave
unstable. To overcome such difficulty is one of our future
works, which also include comparison with other stochastic
optimization methods [16], [17], the use of other sampling
kernels, and the calculation of the Cramér-Rao bounds for
periodic variables [18].
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