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Abstract—We propose an algorithm that enhances the pixel
number in high-speed camera image acquisition. In high-speed
cameras, there is a principle problem that the number of pixels
reduces when the number of frames per second (FPS) increases.
To suppress this problem, we first propose an optical setup that
randomly selects some percent of pixels in an image. Then,
the proposed algorithm reconstructs the entire image from the
selected partial pixels. In this algorithm, we exploit not only
sparsity within each frame but also sparsity induced from the
similarity between adjacent frames. Based on the two types of
sparsity, we define a cost function for image reconstruction. Since
this function is convex, we can find the optimal solution by
using a convex optimization technique, in particular the Douglas-
Rachford Splitting method, with small computational cost. Sim-
ulation results show that the proposed method outperforms a
conventional method for sequential image reconstruction with
sparsity prior.

I. INTRODUCTION

High speed cameras are capable of capturing images more
than one hundred frames per second (fps). Originally they
were used for engineering measurements, especially in the
automotive industry. Recently, they have been used for sports
training or entertainment. High spec products can capture 4.91
mega (2560×1920) pixel images by two thousand fps [1]. For
casual purposes, “iPhone 6 plus” [2] and “Go Pro Hero 4” [3]
are also useful because they are able to capture images at 240
and 120 fps, respectively.

One issue of high speed cameras is the decrease of pixels
when fps increases. For example, in the above camera, the
pixel number decreases from 2 mega, to 920 kilo pixels
when fps increases form 4,500 to 10,000. The reason of this
phenomenon is that time for swipe out is proportional to the
number of image pixels while the increase of fps number
suppresses the time for swipe out. Our goal is to keep the pixel
number as high as possible even when fps increases. Our idea
is that: a camera captures randomly selected pixels only, say
25%, by an optical setup such as the one shown in Fig. 1.
This is the multiple pixel version of the single pixel camera
[4]. In particular, we adopt block random selection, as shown
in Fig. 2. That is, an image is divided into pixel blocks of, say
2×2, and one pixel out of the block is randomly selected. Then,
an image processing technique recovers the entire original
image by filling in the missing pixels. It should be noted that
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Fig. 1. Proposed optical setup for pixel enlargement in high speed camera
image acquisition.

this is spatio-temporal image reconstruction problem. Thus, we
can exploit sparsity not only within images, but also along the
time axis. There is a lot of research relevant to this problem
[5]–[10]. Early work by Wakin et al. regarded this problem
as a three dimensional sensing problem [5]. It is, however,
difficult to implement such a sensing mechanism in high speed
cameras. Kang and Lu exploited similarities between adjacent
frames [6]. They changed the compression rate depending on
frames (key or non-key) and used efficient optimization initial
values for each. However, such change of compression rate
is difficult in high speed cameras because of a limited swipe
out time. Vaswani proposed methods supposing that sparsity
pattern (support of the sparsifying transform vector) changes
slowly over time [7], [8]. It is, however, difficult to choose
appropriate thresholds for adding and deleting small part of the
support. Another approach is based on dictionary learning [9].
This approach requires a high computational cost. To reduce
the cost, images are divided into small patches, which results
in block noise and occasionally the need for post processing
[11], [12].

In this paper, we propose a simple, yet novel approach
based on the combination of ℓ1 norms within each frame and
between adjacent frames. That is, we reconstruct images by
minimizing the sum of ℓ1 norms of sparsifying transform’s
coefficients and the difference of adjacent frames under the
observation constraint. The latter is similar to the total variation
along a time axis, which has already been implemented in
e.g. [10]. This work did not, however, combine the total



variation with ℓ1 norm within each frame. The proposed cost
function amounts to the sum of three convex terms which are
proximable, but not differentiable. We regard the sum of the ℓ1
norm of the difference of adjacent frames and the observation
constraint term as a single part, which is still proximable. Then,
the cost function can be regarded as a sum of two proximable
and non-differentiable terms. It is effectively minimized by the
Douglas-Rachford splitting algorithm [13]. We show by sim-
ulations that the proposed method outperforms conventional
methods [8] with small computational cost.

The rest of the present paper is organized as follows. In
section 2, we formulate the image reconstruction problem and
define a criterion (cost function) for the image reconstruction
in this paper. In section 3, we propose a fast reconstruction
algorithm based on the Douglas-Rachford splitting method. In
section 4, we show the effectiveness of the proposed method
by computer simulations. Section 5 concludes the paper.

II. IMAGE RECONSTRUCTION BY CONVEX OPTIMIZATION

Suppose that a fixed high speed camera captures a scene
at a high frame rate and a sequence of images xr ∈ RN (r =
1, . . . , R) is obtained1. Such a sequence is sometimes stacked
and forms a long vector, as seen in [10]. That approach results
in a huge computational cost. We treat the sequence frame by
frame as done in [8]. Pixels in the rth image xr is randomly
selected so that M pixels are remaining (M < N ). Let Ar and
yr ∈ RM be a random selection matrix (M rows are randomly
selected from the identity matrix of the corresponding size) and
a vector consisting of the selected pixels. Then, it holds that

yr = Arxr, (r = 1, 2, . . . , R). (1)

Note that the random selection pattern in Ar is generated
at every frame, not fixed. Our goal is to estimate the image
sequence {xr}r=1,...,R from {Ar}r=1,...,R and {yr}r=1,...,R.
Because of this goal, we do not take blur nor noise into
account.

We solve this problem by using two priors. First, we
suppose that each captured image is sparse in an appropriate
sparsifying transform domain, such as discrete wavelet or
cosine transform domains. In simulations, we adopted DCT
for the sparsifying transform since the target image sequence
is about a natural scene. Second, because of the high frame
rate, the difference between adjacent frames is small. Further,
if only a small part in the scene is moving and other objects do
not move so much, then the difference is not only small, but
also sparse. Based on these two assumptions, we reconstruct
the image xr by using the following cost function for the DCT
coefficient vector u = (un) ∈ RN :

ûr = arg min
ArCTu=yr

{ ∥u∥1+λ∥CTu−x̂r−1∥1 } (r = 2, . . . , R),

(2)
where ∥·∥1 is the ℓ1 norm of the corresponding vector and CT

is the transpose of the two-dimensional DCT matrix C, thus
the inverse transform. The rth frame xr is then estimated by
x̂r = (x̂r,n) = CT ûr. For r = 1, we obtain û1 by setting 0
for λ, thus (2) amounts to the standard ℓ1 norm minimization
as in the compressed sensing [14].

1Images are raster scanned and regarded as column vectors.

Fig. 2. Block random selection. Single pixel (shown by red) is randomly
selected from each 2×2 block.

III. RECONSTRUCTION ALGORITHM

We solve the problem (2) by using the Douglas-Rachford
splitting (DRS) algorithm [13]. Let S be a set of u satisfying
ArC

Tu = yr. This is a convex set. Then, (2) is equivalent to

ûr = arg min
u∈RN

{ ∥u∥1 + λ∥CTu− x̂r−1∥1 + ıs(u) }, (3)

where ıs(u) is the indicator function that takes value 0 if u ∈
S, +∞ else. Now, our problem becomes the minimization of
the sum of three convex terms, which are not differentiable but
proximable. As is well known, the proximity operator of the
first term ∥u∥1 is proxθ∥·∥1

(u) = (softthreshold(un, θ)) ∈
RN with θ = 1, where

softthreshold(u, θ) =


u− θ if u ≥ θ,

u+ θ if u ≤ −θ,
0 if − θ < x < θ.

(4)

We next turn our attention to the second and the third terms.
Let us denote the sum of the two terms by g(u):

g(u) = λ∥CTu− x̂r−1∥1 + ıs(u).

The proximity operator of g(u) can be computed by the
following operations. First, apply the inverse two-dimensional
DCT to u as CTu ≡ v = (vn) ∈ RN . Then, for the pixels in
the mask Ar, replace the values vn by the the corresponding
element of yr. For the other pixels, apply the operation

vn ← softthreshold(vn − x̂r−1,n, λ) + x̂r−1,n. (5)

Finally, apply the two-dimensional DCT to the updated vector
v for returning to the DCT domain. These operations result in
proxg(u).

We are now ready to solve the problem (2) by the DRS
algorithm. Namely, we view (3) as

ûr = arg min
u∈RN

{ ∥u∥1 + g(u)},

where both terms are non-differentiable but proximal. Thus, the
problem (2) can be solved by the following DRS algorithm:
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Fig. 3. The reconstructed image with λ=2 and 0 for the image sequence of “water balloon”.
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Fig. 4. The reconstructed image with λ=2 and 0 for the image sequence of “tennis”.



(a) “water balloon” (b) “tennis”

Fig. 5. PSNR [dB] of the reconstructed images with and without reference to the adjacent frame.

Algorithm 1: Image recovery for rth frame
Input: yr, Ar, x̂r−1

Output: x̂r

1. Set γ > 0, δ ∈ ]0, 2[
2. Set zero vector for v as an initial value.
3. Repeat the following two operations:

ur ← proxγ∥·∥1
(v),

v ← v + δ{proxγg(2ur − v)− ur},
until a stopping condition is met.

4. Compute x̂r = CTur

The proximity operator proxγg can be computed simply
by replacing λ in (5) by γλ. The parameters γ and δ control
the speed of convergence. Through several trials, we adopted
γ = 20 and δ = 1.7 in the following simulations. Several
stopping criteria exist in the literature. Here, we simply stop
the algorithm after twenty iterations, since we observed that
this is sufficient to ensure convergence with high precision.
For simple presentation, we explained the algorithm using the
raster scan, which results in huge sensing and DCT matrices.
However, we implemented the program by Matlab exploiting
two-dimensional expression to reduce both computational time
and memory use. Thus, we can compute relatively high dimen-
sional images, say 256×256, which was not computed by the
method in [8] provided from [15].

IV. SIMULATIONS

A water balloon bursting scene was captured indoors by
Optronis CR450x3, nac Image Technology at 6,000 fps, and
210 frames of uncompressed 256×256 images were obtained.
Fig. 3 shows those images in column (a). The image (a1) is a
frame of little change while (a2) is a frame of intense change.
Similarly, a tennis playing scene was captured outdoors by
the same camera and a sequence of images of the same
specifications was obtained. Fig. 4 shows those images in
column (a). The image (a1) shows a frame with less motion
while (a2) shows that of impact.

Pixels in these images are selected in the block random
manner, as shown in Fig. 2. The block size was 2×2. That

is, we have 25% pixels of the entire image as measurements.
Images in column (b) are the randomly selected pixels.

The column (c) shows the reconstructed images by the
proposed method, using λ = 2. The images in column (d)
are reconstructed images without reference to the adjacent
image, using λ = 0. One can watch videos of the image
sequences from http://www.ms.is.ritsumei.ac.jp/HSC/. Com-
paring (c) with (d) in Fig. 3, the reconstructed image for (a1)
is of better quality than those obtained not referring to the
adjacent frames. Even when image change is intense as in (a2),
the background of the reconstructed images by the proposed
method is of good quality, while we can see mosaic artifact
around splashing water areas. As for Fig. 4, the image (c1) is
of good quality while the image (c2) shows a blurry area in
the racket. Fig. 5 shows the peak signal to noise ratio (PSNR)
in dB of the reconstructed image x̂r with respect to the frame
number r, defined as

PSNRr = 20 log10
255
√
N

∥x̂r − xr∥2
[dB],

where N is the number of pixels. The red line is the values
of PSNRr of the reconstructed images with reference to the
adjacent image. The black line shows those of the recon-
structed images without referring to the adjacent image. Figure
(a) shows the result for “water balloon”. The maximum and
minimum of PSNRr were 44.86dB and 24.39dB, respectively,
with an average of 30.15dB when the image was reconstructed
by the proposed method with reference to the adjacent image.
On the other hand, the maximum and minimum were 34.38dB
and 25.34dB, with an average of 28.38dB when the image was
reconstructed without reference to the adjacent image. The av-
erage for the method with reference is higher than that without
reference by 1.7dB. Note that the reconstructed images without
reference were better than the referenced results between 20
and 40 frames. This is because the change of image is intense
within these frames. The blue line shows PSNRr of images
reconstructed by the proposed method with reference to the
adjacent frame from 25% random observation without block
segmentation. The maximum and minimum were 44.65dB and
24.15dB, respectively, and the average was 30.13dB. Hence,
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Fig. 6. Reconstructed images by The proposed method and The LS-CS method

it can be seen that the random observations with and without
block segmentation amount to almost a similar result. Figure
(b) shows the PSNRs for the sequence of “tennis”. In this case,
the results with the reference to the previous frame are mostly
better than those without the reference.

Next, we compare the proposed method to the LS-CS
method in [8]. We run the method by using the program
provided in [13]. Because of the CVX toolbox used in the
program, it was not capable of processing image sizes of
256×256 pixels. Due to this we cropped the original image of
“water balloon” to 30×30 pixels. These results are shown in
Fig 6. The original images are in the column (a) in the figure,
while 25% random observations with block segmentation are
in column (b). The reconstructed results by the proposed
method and the LS-CS methods are in columns (c) and (d),
respectively. The image (a1) was reconstructed with high
quality by the proposed method even with this small size
of image. This is because the motion was not much in this
frame, while for the image (a2), the water surface is moving,
so that the reconstructed image is noisy. The change of the
PSNR [dB] of these methods are shown in Fig. 7, where
the red and black lines indicate the value of the proposed
and the LS-CS methods, respectively. The maximum and
minimum for the proposed method were 43.91dB and 16.56dB,
respectively with the average 31.52dB, while the maximum
and the minimum for the LS-CS method were 34.85dB and
6.44dB, respectively with the average 14.08dB. The average of
the proposed method is higher than that of the LS-CS method
by 17.4dB. It takes 0.1 second to compute a single frame by
the proposed method, while 100 seconds to do the same by
the LS-CS method.

Fig. 7. PSNR [dB] of the reconstructed images by the proposed and the
LS-CS methods.

V. CONCLUSION

To suppress the principle problem of high speed cameras,
the number of pixels reduces when the number of frames
per second (FPS) increases, the present paper proposed an
optical setup that randomly selects some percent of pixels
in an image and developed an algorithm that reconstructs
the entire image from the selected partial pixels. In this
algorithm, sparsity not only within each frame but also induced
from the similarity between adjacent frames was exploited.
Based on these two types of sparsity, a cost function for
image reconstruction was defined using ℓ1 norms. Since this



function is convex, the optimal solution was efficiently found
by using the Douglas-Rachford Splitting method, one of the
convex optimization techniques. Simulation results showed
that the proposed method is capable of recovery of high-
quality 256×256 images from 25% of pixels that are randomly
selected in a block-segmentation manner. We also found that,
when there are intensive changes between adjacent frames,
the reference to the adjacent frame should be reduced. To
automatically control such reference is one of our future tasks.
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