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ABSTRACT
We propose a stable reconstruction method for polynomial splines from compressive samples based on the maximum a
posteriori (MAP) estimation. The polynomial splines are one of the most powerful tools for modeling signals in real
applications. Since such signals are not band-limited, the classical sampling theorem cannot be applied to them. However,
splines can be regarded as signals with finite rate of innovation and therefore be perfectly reconstructed from noiseless
samples acquired at, approximately, the rate of innovation. In noisy case, the conventional approach exploits Cadzow
denoising. Our approach based on the MAP estimation reconstructs the signals more stably than not only the conventional
approach but also a maximum likelihood estimation. We show the effectiveness of the proposed method by applying it to
compressive sampling of vehicular signals.

Keywords: Sparsity, signals with finite rate of innovation, B-spline, Cadzow denoising, particle swarm optimization
(PSO), MAP estimation, vehicular signals

1. INTRODUCTION
Polynomial splines of degree n are piecewise polynomials satisfying a smooth constraint that imposes the continuity up
to order (n − 1) at jointing points (knots).1 Because of their ease of use, polynomial splines are used as a standard tool in
signal and image processing, especially for interpolation. One difficulty of splines might arise from the fact that they are not
band-limited. Because of this, the classical sampling theorem2 cannot be applied to these signals. If splines are uniform,
namely the jointing points are equally spaced, a generalized sampling theorem provides a way for perfect reconstruction
under a proper choice of sampling functions.3, 4 If this is not the case, such a linear shift-invariant subspace approach does
not apply any more.

A breakthrough was brought by the so-called sampling theory for signals with finite rate of innovation.5–7 Typical
examples of applications are radar, echo, or sonar. In these techniques, a radio or ultrasonic wave is transmitted to a target
object, and the reflected waves enable us to compute the distance to the target. Since the transmitted pulse is known,
such sparse signals can be expressed only using a few parameters, i.e., time delays and attenuation coefficients. Rate
of innovation is defined by the degree of freedom of parameters per unit length. If it is finite, the signal is sampled at
frequency near rate of innovation and is completely recovered from noiseless measurements. Since polynomial splines are
also signals with finite rate of innovation, the same framework can be applied for sampling and recovery.

The standard framework can be summarized briefly as follows. The signal s(t) is sampled using an appropriate kernel,
like the Dirichlet kernel5 or a Sum-of-Sincs.8 Then, s(t) can be perfectly reconstructed from the noiseless measurements
using the annihilating filter technique (a.k.a. Prony’s method).5 If the measurements are corrupted by noise, the annihi-
lating filter approach is used to produce a least squares solution.9 To improve the performance of least squares, Cadzow
denoising10 is usually exploited.9 This method tries to find a Toeplitz matrix of rank K by alternative projection. Since
the set of matrices of rank K is not convex, however, any optimality or convergence are not guaranteed.11 To solve this
problem, the first and third authors proposed maximum likelihood approach, which works effectively in the regime of high
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signal-to-noise ratios (SNRs) in the sense that the Cramèr–Rao bound is mostly attained. On the other hand, for the case
of low SNRs, maximum likelihood estimation can get unstable, sometimes produces huge coefficients.

In this paper, we proposed a more stable reconstruction method exploiting a maximum a posteriori (MAP) estimation,
which penalizes huge coefficients by a quadratic regularization term. We keep the ideal performance of the maximum
likelihood estimation for the high SNR regime by setting the regularization constant a small number, say 10−6 or 10−8. The
main difficulty in the MAP approach is that the criterion is not convex, like for the maximum likelihood estimation. It is
possible to apply a convex optimization algorithm as a heuristic as in Ref 11. In this paper, however, we adopt a stochastic
approach called particle swarm optimization (PSO),12 because it is considered to be robust for getting trapped in local
minima. Even though we have to pay some computational cost,13, 14 simulation results show that the proposed approach
outperforms not only the least squares with Cadzow denoising, but also the maximum likelihood estimation using the same
PSO.

This paper is organized as follows. Section 2 formulates the sampling setup that uses the Sum-of-Sincs kernel. Section
3 defines nonuniform polynomial splines as signals with finite rate of innovation. Section 4 proposes the MAP approach for
recovery of the polynomial splines and show its effectiveness by simulations. Section 5 shows its application to vehicular
signal compressive sampling. Section 6 concludes the paper.

2. SAMPLING FORMULATION
We first formulate the sampling setup in this paper, which discusses periodic signals s(t), defined by

s(t) =
∑
k′∈Z

s0(t − k′τ), (1)

where s0(t) is the signal in the interval [0, τ). This signal is sampled using a kernel ψ(t) and yields N noiseless measurements

dn = ⟨s, ψn⟩ =
∫ ∞

−∞
s(t)ψ(t − nT )dt, (2)

for n = 0, . . . ,N − 1, T = τ/N, and z stands for the conjugate of a complex number z. We assume that the measurements
are corrupted by noise, as yn = dn + en, where en ∼ N(0, σ2) are independent random realizations of Gaussian noise.

We adopt for ψ(t) the Sum of Sincs kernel,8 which is defined in the frequency domain by

ψ̂(ω) =
τ
√

2π

P∑
p=−P

bpsinc

 ω2π
τ

− p

 , (3)

where

sinc(ω) =
{

sin(πω)/(πω) (ω , 0),
1 (ω = 0).

Its time domain expression is

ψ(t) =
rect(t/τ)

τ

P∑
p=−P

bpei2pπt/τ, (4)

where rect(t) = 1 if |t| ≤ 0.5 else 0 and P ≤ (N − 1)/2 is an integer. By setting bp = 1 for all p, this kernel reduces to the
standard Dirichlet kernel. Let d̂p =

1
τ

∫ τ

0 s(t)e−i2pπt/τdt be the Fourier coefficients of s(t). Then, it follows from Eq. (4) that

dn =

P∑
p=−P

bpd̂pei2pnπ/N .

This admits the matrix representation
d = F−1Bd̂, (5)

where B is the diagonal matrix diag(b−P, . . . , bP) and F is the discrete Fourier transform (DFT) matrix, defined accordingly.
In a nutshell, the Fourier coefficients are related to the noiseless measurements acquired using the Sum of Sincs kernel
exactly by the DFT.



3. NONUNIFORM POLYNOMIAL SPLINES AS FRI SIGNALS
Polynomial splines are special case of piecewise polynomials, which are defined as follows. For every k = 0, . . . ,K − 2, let
us define the function φk(t) as

φk(t) =
{
vk(t) (tk < t < tk+1),

0 (otherwise),
and the function φK−1(t) as

φK−1(t) =


vK−1(t + τ) (0 ≤ t < t0),
vK−1(t) (tK−1 < t < τ),

0 (otherwise),

where vk(t) =
∑R

r=0 αk,rtr. Then, a τ-periodic piecewise polynomial s(t) of degree R is defined by s(t) in (1) with

s0(t) =
K−1∑
k=0

φk(t).

The piecewise polynomials are signals with finite rate of innovation, because s(t) has K degrees of freedom from the
positions tk and RK from the coefficients αk,r per period. This implies that the rate of innovation is ρ = K(R + 1)/τ.

The measurements of piecewise polynomials obtained by the Sum-of-Sincs kernel can be expressed by the parameters
tk and αk,r as follows. Let us introduce matrices D, Vt, and Ṽt as

D =


0(

τ

i2π
diag

(
1
−P

,
1

−P + 1
, . . . ,

1
P

))R+1

1

0

 , Vt =


u−P

0 · · · (−P)Ru−P
K−1

u−P+1
0 · · · (−P + 1)Ru−P+1

K−1
...

. . .
...

uP
0 · · · (P)RuP

K−1

 , Ṽt =

(
Vt 0
0T 1

)
,

with uk = e−i2πtk/τ and 0 indicating the zero vector. Note that the R+1th derivative of the piecewise polynomial in the sense
of distribution is a sequence of derivatives of Diracs:5

s0(t) =
K−1∑
k=0

R−1∑
r=0

ck,rδ
(r)(t − tk),

where δ(r)(t) is the r th derivative of Dirac distribution. In this relation, the matrix D is the mapping from Fourier coefficients
of the sequence of derivatives of Diracs to those of the piecewise polynomial. Further, we introduce a matrix Wt which
maps αk,r to the coefficients ck,r of the sequence of derivatives of Diracs. For instance when R = 1 and K = 2, Wt is given
as

Wt =


0 0 1 −1
1 −1 t0 −(t0 + τ)
0 0 −1 1
−1 1 −t1 t1
t1−t0
τ

t0+τ−t1
τ

t2
1−t2

0
2τ

(t0+τ)2−t2
1

2τ


.

We refer to Ref. 15 for further details on the matrix Wt. Then, it holds that15

d = F−1BDṼtWtα,

where α = (α0,0 · · · αK−1,R)T. That is, the noiseless measurements of the piecewise polynomial is expressed by using the
locations tk and the coefficients αk,r.

A polynomial spline is a piecewise polynomial, in which the coefficient ck,r with 0 < r < R of the corresponding
sequence of derivatives of Diracs are zero. Let us denote a partial matrix of Wt by Wp, which consists of the rows corre-
sponding to the coefficients ck,r = 0. Then, the constraint can be expressed as Wpα = 0. This is satisfied any vector of
the form of α = (I −W†

pWp)ᾱ, where I is the identity matrix, W†
p is the Moore-Penrose generalized inverse,16 and ᾱ is an

arbitrary vector of the same dimension as α. In a nutshell, by using the auxiliary vector ᾱ, measurements dn are related
from the parameters tk and αk,r as

d = F−1BΦtᾱ, (6)

where Φt = DṼtWt(I −W†
pWp).
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(a) mean square errors for positions t (b) mean square errors for coefficients α

Figure 1. Mean square errors (MSEs) of (a) the positions t = (t0, t1) and (b) the coefficients α = (α0,0, α0,1, α1,0, α1,1), with respect to the
SNR in dB. The red, blue and black lines show the results by the proposed method (MAP), least squares (LS) with Cadzow denoising,
and maximum likelihood estimation, respectively.

4. MAP RECOVERY OF POLYNOMIAL SPLINES
As mentioned above, the R + 1th derivative of a polynomial spline is a sequence of Diracs. Hence, the classical approach
first estimates this sequence and then reconstructs the polynomial spline by integration. This approach works exactly when
the measurements are noiseless. When the measurements are noisy, Cadzow denoising is exploited. This method, however,
does not guarantee any optimality. Thus, we can further improve noise resilience. Hence, we propose a direct estimation
of the polynomial spline, without recasting the problem as the estimation of a sequence of Diracs. To this end, we exploit
the maximum a posteriori (MAP) estimation as follows.

Because of (6), the log-likelihood function is defined as

L(t, ᾱ) = −∥y − F−1BΦtᾱ∥2
2σ2 − N log(

√
2πσ).

Its maximization is equivalent to the minimization of the squared norm of ∥ŷ−BΦtᾱ∥2, where ŷ = Fy. Through simulations,
however, we found that minimization of only the squared norm provides huge value of α = (I − W†pWp)ᾱ occasionally
for low signal-to-noise ratio (SNR). To prevent this phenomenon, we penalize huge coefficients by adding a quadratic
regularization term to the squared norm, as

fo(t, ᾱ) = ∥ŷ − BΦtᾱ∥2 + λ∥(I −W†
pWp)ᾱ∥2. (7)

Eq. (7) is quadratic with respect to ᾱ, when t is fixed. Therefore, the optimal ᾱ for a fixed t is obtained analytically as

ᾱt = {Φ∗t B∗BΦt + λ(I −W†pWp)}−1Φ∗t B∗ŷ. (8)

Hence, the minimizer of fo(t, ᾱ) is found by searching t that minimizes

f (t) = fo(t, ᾱt) = ∥ŷ − BΦtᾱt∥2 + λ∥(I −W†pWp)ᾱt∥2

and then by computing ᾱt by (8). The coefficients α are given by (I −W†
pWp)ᾱt.

The criterion f (t) is non-convex and it is very difficult to find the global minimum solution. We thus exploit the so-
called particle swarm optimization (PSO) algorithm.12 The particles model the parameter t to be optimized. For each
particle j = 1, ..., J, we first initialize the position t j and its velocity ṫ j with uniformly distributed random vectors in the
domain. We use the particle’s and swarm’s best known positions b(p)

j and b(s), which are initialized by t j and the best
among the initial positions, respectively. Until a termination criterion is met, the particle’s velocity ṫ j and position t j are
updated by
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Figure 2. Mean square errors (MSE) of (a) the positions t0, t1 and (b) the coefficients α0,0, α0,1, α1,0, α1,1. The red, blue and black
lines show the results by the proposed method (MAP), least squares (LS) with Cadzow denoising, and maximum likelihood estimation,
respectively.

ṫ j ← w ṫ j + c1r1(b(p)
j − t j) + c2r2(b(s) − t j),

t j ← t j + ṫ j,

respectively, where c1, c2 are pre-defined constants near 1 and r1, r2 are uniform random variables within 0 and 1. If
f (t j) < f (b(p)

j ), then b(p)
j is updated by t j. If f (b(p)

j ) < f (b(s)), then b(s) is replaced by b(p)
j . Finally, b(s) gives the best found

solution. Because of its global and random nature, PSO is more robust than gradient approaches, against getting trapped in
local minima. Meanwhile, its drawback might be a relatively high computational cost caused by its random nature.

The performance of the proposed method was evaluated by simulations. The target signal is a τ = 1-periodic piecewise
polynomial of degree R = 1 with K = 2 knots. The unknown parameters are t = (0.2, 0.6) and α = (α0,0, α0,1, α1,0, α1,1) =
(−1, 3, 2,−2). For PSO, we used J = 150 particles and (w, c1, c2) = (0.4, 0, 9, 0.4), (0.9, 0.4, 0.4) and (0.4, 0.4, 0.9) for 75,
45 and 30 particles, respectively. One thousand noise vectors e were generated from the Gaussian distribution in which σ
was determined so that the SNR, defined by 10 log10

∥d∥2
σ2N , becomes 10, 15, . . ., 30[dB]. For each experiment, we computed

estimates t̂ and ĉ of t and c, for 1,000 different noise realizations. Accordingly, the mean square errors for t and α were
defined as the average over the 1,000 trials of ∥ t̂ − t∥2 and ∥ĉ− c∥2, respectively. The results are shown in Fig. 1, where the
red, blue and black lines show the results by the proposed method (MAP), least squares (LS) with Cadzow denoising,9 and
maximum likelihood estimation with PSO, respectively. The solid and dashed red lines show the results by the proposed
method with λ = 10−6 and 10−8, respectively. We can see that the proposed method outperforms the conventional methods
for every value of the SNR. Note that the maximum likelihood estimation works as well as the proposed approach for high
SNR values. For SNRs lower than 20dB, the performance suddenly degraded for coefficients. The small box in the top
right corner shows the entire shape of each curve. The main reason for the degradation is that in our approach, maximum
likelihood estimation requires the generalized inverse of BΦt, which gets unstable when the estimates for t0 and t1 are
very close. This effect is sufficiently suppressed by the regularization by the quadratic term. On the other hand, if we
search for t and ᾱ independently, then the performance of the maximum likelihood estimation might get better than the
results in the figure. One drawback of this approach is that we have to search more parameters than the current approach.
The regularization parameter for the proposed method is determined only by trials. Its elaborate tuning will improve the
performance.

An example of recovery with K = 4, R = 1, and N = 13 is shown in Fig. 2. The black curve shows the target Bspline
of degree 1. The black circles denote noiseless measurements. The noisy measurements are indicated by green circles.
The SNR is 25dB in Figure (a) and 15dB in (b). The red and black curves are the results by the proposed method with
λ = 10−6 and LS with Cadzow denoising, respectively. We can see that the proposed method gives better results than
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(a) Original data (b) reconstructed signals from compressive measurements

Figure 3. Application to vehicular signal compressive sensing. (a) signal of an accelerator pedal (gas pedal) open degree in percent,
acquired during a drive with a sampling interval of 0.032 second. The number of samples is 500. (b) reconstructed signal from N = 9
compressive samples downsampled by Direchlet kernel (98.2% compression rate). The red and blue lines show the reconstructed signals
by the proposed method and the LS with Cadzow denoising, respectively. The squared errors are 6.8% for the proposed method and
53.1% for the conventional method.

the conventional approach. Note that when SNR=25dB, the LS with Cadzow denoising worked as well as the proposed
method. When SNR=15dB, however, the LS with Cadzow denoising got unstable, while the proposed method provided
stable recovery.

5. APPLICATION TO VEHICULAR SIGNAL COMPRESSIVE SENSING
We applied our approach to compressive sampling of vehicular signals. The fundamental technology in the intelligent
transport system (ITS) is data transmission between vehicles, between vehicles and servers, or between vehicles and
pedestrians. Increase of transmission channels is a threat to communications infrastructure. Hence, we wish to reduce the
data amount with keeping its quality. Figure 3 (a) shows a signal of an accelerator pedal (gas pedal) open degree in percent.
This signal was actually acquired during a drive with a sampling interval of 0.032 second. The number of samples is 500.
The signal is quantized, hence looks like a step signal.

To produce compressive measurements, we computed (2) approximately by sum of the product between the original
samples in (a) and Dirichlet kernel (the kernel in (3) with bp = 1). The circles in Figure (b) shows those measurements.
Now, the number of measurements was reduced down to N = 9. The compression rate is 98.2%. From these measurements,
we reconstructed the target signal by using the proposed method with λ = 10−6 as well as the LS with Cadzow denoising.
The former and latter are shown by the red and blue lines, respectively. We can see that the proposed method provides much
better result than the conventional approach. The squared error between the original signal and the reconstructed signal
were 6.8% for the proposed method and 53.1% for the conventional method. These values also show the effectiveness of
the proposed method. In this simulations, the parameter K was determined by the programmer, while in real scenarios K
has to be determined automatically. We have to device a method to do it in near future.

6. CONCLUSION
We proposed a stable reconstruction method for polynomial spline signals from compressive samples based on the max-
imum a posteriori (MAP) estimation, which is equivalent to the minimization of the sum of a data fidelity term and a
quadrature regularization term. Since the criterion is not convex, it is very difficult to find the optimum solution. To this
end, we exploited a heuristic stochastic approach called PSO. The simulation results showed that the proposed method
outperformed not only the conventional approach based on least squares with Cadzow denoising but also a maximum like-
lihood estimation with PSO. We applied the proposed method to the acceleration pedal signal, which has discontinuous



change of values. We compressed the acquired data 98.2% and recovered the original data with an error less than 7%. To
device a method to determine the parameter K automatically is one of the our future tasks.
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