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PAPER
Multiclass Dictionary-Based Statistical Iterative Reconstruction for
Low-Dose CT∗

Hiryu KAMOSHITA†, Nonmember, Daichi KITAHARA†a), Ken’ichi FUJIMOTO††b), Members,
Laurent CONDAT†††c), Nonmember, and Akira HIRABAYASHI†d), Member

SUMMARY This paper proposes a high-quality computed tomography
(CT) image reconstruction method from low-dose X-ray projection data. A
state-of-the-art method, proposed by Xu et al., exploits dictionary learning
for image patches. This method generates an overcomplete dictionary from
patches of standard-dose CT images and reconstructs low-dose CT images
by minimizing the sum of a data fidelity and a regularization term based on
sparse representations with the dictionary. However, this method does not
take characteristics of each patch, such as textures or edges, into account. In
this paper, we propose to classify all patches into several classes and utilize
an individual dictionarywith an individual regularization parameter for each
class. Furthermore, for fast computation, we introduce the orthogonality to
column vectors of each dictionary. Since similar patches are collected in the
same cluster, accuracy degradation by the orthogonality hardly occurs. Our
simulations show that the proposed method outperforms the state-of-the-art
in terms of both accuracy and speed.
key words: low-dose CT, image reconstruction, sparse representation, fast
dictionary learning, clustering

1. Introduction

X-ray computed tomography (CT) [2], [3] is widely used for
diagnosis and detection of various diseases because it scans
the inside of the human body noninvasively in a few seconds.
However, the induction of cancerous and genetic diseases
by X-ray exposure is a concern [4]. Therefore, it is desirable
to decrease the X-ray dose as much as possible. If we apply
the standard reconstruction method, filtered back projection
(FBP), to low-dose projection data, then unnatural artifacts
and large noise appear in reconstructed images, which leads
to overlooking diseased tissues in the diagnosis [5].

To reconstruct a high-quality CT image from the low-
dose projection data, we exploit the sparsity on the basis of
the compressed sensing theory [6]. In the image processing
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field, patch-based dictionary learning is often used to acquire
sparse representations of target images [4]–[9]. A dictionary
is generated as a matrix from training images, and the target
image patches are supposed to be expressed sparsely as lin-
ear combinations of a few column vectors of the dictionary.
In [4], Xu et al. utilized the patch-based dictionary learning
with statistical iterative reconstruction (SIR) [10]–[12] from
the low-dose projection data. Although this method can well
remove streak artifacts, detailed structures of the target im-
ages are lost by over-smoothing. In order to reconstruct the
detailed structures while suppressing the artifacts and noise,
it is necessary to express each image patch more sparsely.

To this end, this paper proposes to extend the recon-
struction method of Xu et al. [4] to a multiclass version. In
the proposed method, all training image patches are divided
into several classes, and a dictionary is created for each class.
Then, target image patches are also classified and supposed to
be expressed sparsely by the dictionary for each class. In this
case, approximation errors of the sparse representations for
the patches would differ depending on the class. Therefore,
we also change the regularization parameter value for each
class. Moreover, for fast reconstruction, we introduce the or-
thogonality to each dictionary, i.e., we replace overcomplete
dictionaries with orthogonal matrices. In general, reduction
of column vectors of the dictionary causes accuracy degrada-
tion of the sparse representations, and thus low image quality.
On the other hand, in the proposed method, since the dictio-
nary is utilized only for similar patches because of clustering,
the accuracy hardly deteriorates. Our simulations based on
actual CT images show that the proposed method can obtain
reconstructed results better than those by the state-of-the-art
method [4] in a shorter calculation time.

2. Basic Principles of X-ray CT

We formulate the X-ray CT image reconstruction in the xy-
coordinate system as shown in Fig. 1. Let µ(x, y) ≥ 0 be the
X-ray attenuation coefficient distribution in a field of view.
X-ray projection is described with the uv-coordinate system:{

u = x cos θ + y sin θ,
v = −x sin θ + y cos θ,

which is given by rotating the xy-coordinate system through
an angle θ ∈ [0, π). The ideal projection data l?θ,n are defined
by line integrals, that are parallel to the v-axis, of the distribu-
tion µ(x, y) as l?θ,n :=

∫
µ(γθ,n(v)) dv (n = 1, 2, . . . , N), where
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Fig. 1 X-ray projection in a parallel-beam CT system.

γθ,n(v) is a straight path from X-ray source to the nth detec-
tor. These line integrals are called the Radon transform. The
Radon transform is discretized by numerical integration, as:

l?θ,n = rT
θ,nµ + ξ

?
θ,n, (1)

where µ ∈ RJ+ is a nonnegative vector corresponding to a CT
image of size

√
J×
√

J, rθ,n ∈ RJ+ is a nonnegative vector cor-
responding to weights in the numerical integration, (·)T is the
transpose operator, and ξ?θ,n ∈ R is the discretization error.

The observed data zθ,n ∈ Z+ at the nth X-ray detector is
a nonnegative integer following a Poisson distribution of ex-
pected value E[zθ,n] = b exp(−l?θ,n), where b > 0 is theX-ray
radiation intensity of theX-ray source [4]. From this relation,
the ideal projection data is expressed as l?θ,n = ln(b/E[zθ,n]).
Actually, since E[zθ,n] is unknown, lθ,n := ln(b/zθ,n) is uti-
lized, instead of l?θ,n, as the projection data computed from
the observed data zθ,n. If we acquire the projection data with
N detectors for G angles θg ∈ [0, π) (θ1 < θ2 < · · · < θG),
the observation models in (1) are combined to a matrix form

l = Rµ + ξ , (2)

where l ∈ RI is a vector concatenating all lθg,n, R ∈ RI×J+ is a
matrix whose row vectors are rT

θg,n
, ξ ∈ RI is an error vector,

and the number of the observations is I := GN . In standard-
dose CT, since I � J and the noise level ‖ξ ‖2 is small, µ is
reconstructedwith high accuracy by the FBPmethod [2], [3].

3. Dictionary-Based SIR from Low-Dose Projection

There exist two approaches for low-dose CT: (i) reducing the
number G of projection views and (ii) lowering the X-ray ra-
diation intensity b. In the first approach, the number I of row
vectors of R decreases, implying rank(R) < J. In the second
approach, the noise level ‖ξ ‖2 in (2) becomes larger. As a re-
sult, in either case, the standard FBPmethod generates streak
artifacts and large noise in the reconstructed images [5].

Sauer et al. proposed a method that reconstructs µ by a
maximum a posteriori (MAP) estimation [10]. This method
reconstructs µ by iteratively minimizing a cost function

‖Rµ − l‖2w + λΨ(µ) :=
I∑

i=1
wi(r

T
i µ − li)2 + λΨ(µ), (3)

where the statistical weight wi := zi = b exp(−li) for the ith
projection data li is derived by the second-order Taylor series
approximation for the log-likelihood of the Poisson distribu-
tion, and Ψ : RJ → R is some regularization term based on
a prior distribution of µ. The regularization parameter λ > 0
controls the balance between the data fidelity and regulariza-
tion terms. The optimization algorithm of Sauer et al. and its
accelerated version which uses a majorization-minimization
(MM) technique [12] are called SIR methods [11].

Xu et al. combined (3) and patch-based dictionary learn-
ing [4]. In this method, a target image µ is decomposed into
small images Hsµ ∈ R

P
+ (s = 1, 2, . . . , S), called patches, of

size
√

P ×
√

P, where Hs ∈ {0, 1}P×J denotes the sth patch
extractionmatrix and S is the number of the patches. Then, µ
is reconstructed under an assumption that each patch can be
expressed by a linear combination of a few column vectors of
an appropriate dictionary D ∈ RP×K , where K is the number
of column vectors dk ∈ RP s.t. ‖dk ‖2 = 1 (k = 1, 2, . . . ,K).
Let cs ∈ RK be sparse representations (coefficients) for Hsµ,
and this method reconstructs the CT image µ by solving

minimize
µ,(D),C

‖Rµ− l‖2w +λ
S∑
s=1
(‖Hsµ−Dcs ‖

2
2 + νs ‖cs ‖0), (4)

where C := (c1, c2, . . . , cS) ∈ R
K×S is a coefficient matrix

and νs > 0 is a Lagrangian multiplier for each patch. There
are two setups for the problem in (4): (i) D is fixed to a ma-
trix pre-learned from training images, and (ii) D is updated
adaptively from a current estimate of the target image µ. The
former is called global dictionary-based SIR (GDSIR), and
the latter is called adaptive dictionary-based SIR (ADSIR).

Since it is difficult to directly solve the problem in (4),
the coefficient matrixC (and the dictionary D in ADSIR) and
the CT image µ are alternately updated from the initial image
µ(0). In this method, the initial image µ(0) is set to the FBP
result, in which negative pixel values are replacedwith zeros.
The matrix C (and D in ADSIR) is updated by solving

minimize
(D),C

S∑
s=1
(‖Hsµ

(m−1) − Dcs ‖
2
2 + νs ‖cs ‖0), (5)

where µ is fixed to the current estimate µ(m−1). In GDSIR,C
is updated by orthogonal matching pursuit (OMP) [13] (see
Sect. 4.2 in detail). InADSIR, after D is updated by an online
dictionary learning method e.g. [14], C is updated by OMP.
Thus ADSIR requires computational cost more than GDSIR.

The CT image µ is updated by solving

minimize
µ∈RJ+

‖Rµ − l ‖2w + λ
S∑
s=1
‖Hsµ − Dcs ‖

2
2 (6)

with fixedC and D. The optimal solution µ∗ to (6) is given by

µ∗ =

(
RTW R + λ

S∑
s=1

HT
s Hs

)−1 (
RTW l + λ

S∑
s=1

HT
s Dcs

)
with a diagonal matrixW = diag(w) ∈ RI×I+ . However, if the
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image size is large, this linear system is difficult to solve. To
avoid this, Xu et al. used the same MM technique as in [12].
Specifically, µ is updated from µ(m−1) by (7), where 0 and 1
denote vectors with all components 0 and 1, respectively, � is
the component-wise division, and max returns a larger value
for each pair of corresponding components of two vectors.

4. SIR with Multiclass Dictionary Learning

4.1 Multiclass GDSIR (MGDSIR)

Recently, in high-speed MRI and low-dose CT fields, image
reconstruction methods using multiclass dictionary learning
have been proposed for higher compression ratio, noise re-
duction, and artifact reduction [5], [15], [16]. In these meth-
ods, all image patches are divided into multiple classes using
geometric directions or pixel values. Since an individual dic-
tionary is generated for each class, sparse representations for
the patches become more accurate, and better reconstruction
results are obtained than whenwe utilize only one dictionary.
The methods in [15], [16] are proposed for high-speed MRI
and thus cannot be directly applied to low-dose CT images.
The method in [5], which is proposed for low-dose CT, uses
‖µ − µ(0)‖22 as the data fidelity term, and hence the recon-
struction results largely depend on µ(0) obtained by the FBP
method. On the other hand, since GDSIR uses ‖Rµ − l‖2w
in (4) as the data fidelity term, the reconstruction results are
robust against the initial image µ(0). Thus, in this paper, we
propose to extend GDSIR to a multiclass version in order to
reconstruct higher-quality images from low-dose projection.

Let Q be the number of classes and q = 1, 2, . . . ,Q be
the index of the class. A dictionary Dq ∈ R

P×Kq for the qth
class is generated in advance from standard-dose CT images,
where Kq is the number of column vectors of Dq . Each patch
Hsµ is classified into one of Q classes, and a patch index set
for the qth class is denoted bySq s.t.

⋃Q
q=1 Sq = {1, 2, . . . , S}

andSq∩Sq′ = ∅ (q , q′). We supposeSq is fixed hereafter.
We reconstruct µ by solving a multiclass version of (4):

minimize
µ,C

‖Rµ− l‖2w+
Q∑
q=1

λq
∑
s∈Sq

(‖Hsµ−Dqcs ‖
2
2+νs ‖cs ‖0),

(8)

where λq > 0 is a regularization parameter for the qth class.
The problem in (8) can be solved by a similar update to that of
GDSIR. We call this method multiclass GDSIR (MGDSIR).

4.2 Significance of Multiple Regularization Parameters λq

In this part, we explain themerit of usingmultiple regulariza-
tion parameters λq . When updating coefficient matrix C by

OMP in a similar manner to (5) of GDSIR, there are mainly
three types of update-rules [17]. Type 1 update-rule fixes the
Lagrangian multipliers as νs = ν (s = 1, 2, . . . , S) and solves

minimize
C

S∑
s=1
(‖Hsµ

(m−1) − Dq(s)cs ‖
2
2 + ν‖cs ‖0),

where q(s) denotes the class of the sth patch. Type 2 update-
rule restricts the sparse level of each cs under T and solves

minimize
C

S∑
s=1
‖Hsµ

(m−1) − Dq(s)cs ‖
2
2 s.t. ∀s ‖cs ‖0 ≤ T .

Type 3 update-rule restricts each error under ε and solves

minimize
C

S∑
s=1
‖cs ‖0 s.t. ∀s ‖Hsµ

(m−1) − Dq(s)cs ‖
2
2 ≤ ε.

Note that Type 2 and 3 problems can be expressed in Type 1
form as in (8) by using different Lagrangian multipliers νs .

In multiclass dictionary learning, the number of patches
is different for each class. Further, there is a possibility that
the ratio of the number of patches in each class is quite differ-
ent between training images and a target image. As a result,
the approximation errors of the sparse representations, with
the same sparse level, differ depending on the class. For high-
quality image reconstruction, Kq , ν, T , and ε should be set to
different values for each class, and then we should choose the
best update-rule. However, such a parameter tuning becomes
more burdensome as the number Q of the classes increases.

To avoid the above burden in the multiclass dictionary
learning, in the proposed method, we also extended the regu-
larization parameter λ in (4) to the multiclass ones λq in (8).
This extension allows us to reconstruct high-quality images
by an appropriate tuning of each λq even if we set Kq , ν, T ,
and ε to the same values for all classes. Specifically, we set
λq to a large value for a class of high representation accuracy,
and to a small value for a class of low accuracy. Indeed, λq
removes the burdensome tuning in the dictionary learning.

5. Acceleration and Update Formulae of MGDSIR

5.1 Fast MGDSIR (FMGDSIR)

To accelerate MGDSIR, we further propose to introduce the
orthogonality to column vectors of each dictionary in (8) as

minimize
µ,C

‖Rµ− l‖2w+
Q∑
q=1

λq
∑
s∈Sq

(‖Hsµ−D̂qcs ‖
2
2+νs ‖cs ‖0),

(9)

µ(m) = max

{
0, µ(m−1) −

[
RTW(Rµ(m−1) − l) + λ

S∑
s=1

HT
s (Hsµ

(m−1) − Dcs)

]
�

[(
RTW R + λ

S∑
s=1

HT
s Hs

)
1

]}
(7)
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where D̂q ∈ R
P×P is an orthogonal dictionary s.t. D̂T

q D̂q =

E , and E denotes the identity matrix of order P. In general,
if we replace an overcomplete dictionary with an orthogonal
dictionary, then dictionary learning can be accelerated while
the accuracy of the sparse representation deteriorates. On the
other hand, in the proposedmethod, since each dictionary has
only to deal with similar patches thanks to clustering, the ac-
curacy hardly deteriorates even if we use the orthogonal dic-
tionaries. We call this method Fast MGDSIR (FMGDSIR).

MGDSIR and FMGDSIR reconstruct µ from the initial
estimate µ(0) by alternately updating the sparse coefficients
and the image M times after generating the global dictionar-
ies. Because of the orthogonality, both dictionary generation
and image reconstruction can be quickly done in FMGDSIR.

5.2 Global Dictionary Generation

First, patches are extracted from training images and divided
into Q classes by the K-means algorithm in the same manner
as in [16]. Note that the clustering centers are also used in the
reconstruction step to classify target patches. In FMGDSIR,
an orthogonal dictionary D̂q is generated∗∗ for each class as
an approximate solution to the optimization problem

minimize
D̂q,C

tr
q

∑
s∈Str

q

(‖Hsµ
tr−D̂qc

tr
s ‖

2
2+νs ‖c

tr
s ‖0) s.t. D̂T

q D̂q = E ,

(10)

where µtr is a standard-dose training image, ctr
s is a sparse co-

efficient vector for the sth training patch Hsµ
tr, Str

q is a patch
index set for training patches of class q, and all ctr

s for s ∈ Str
q

are combined to a matrix Ctr
q . We solve the problem in (10)

according to [8], and thus while fixing Ctr
q , D̂q is updated by

D̂∗q = argmin
D̂q

‖Φtr
q − D̂qCtr

q ‖
2
F s.t. D̂T

q D̂q = E , (11)

where Φtr
q ∈ R

P×|Str
q | is a matrix whose column vectors are

Hsµ
tr s.t. s ∈ Str

q , and ‖·‖F denotes the Frobenius norm.
The cost function in (11) is expressed as

‖Φtr
q − D̂qCtr‖2F = ‖Φ

tr
q ‖

2
F + ‖D̂qCtr‖2F − 2 Trace

(
CtrTD̂T

qΦ
tr
q

)
= ‖Φtr

q ‖
2
F + ‖C

tr‖2F − 2 Trace
(
Φ

tr
qCtrTD̂T

q

)
,

where Trace returns the sum of all diagonal components of a
square matrix. In this equation, the first and second terms on
the right side are constant for D̂q . Thus, (11) is expressed as

D̂∗q = argmax
D̂q

Trace
(
Φ

tr
qCtrTD̂T

q

)
s.t. D̂T

q D̂q = E . (12)

This problem is known as the orthogonal Procrustes problem
[6] and can be solved as follows. By using singular value de-
composition (SVD) Φtr

qCtrT = UΣVT with one diagonal ma-
trix Σ ∈ RP×P

+ and two orthogonal matrices U ∈ RP×P and
∗∗In MGDSIR, an over-complete dictionary Dq is generated by

solving the problem in (10) without the orthogonality constraint.

V ∈ RP×P , the cost function in (12) yields

Trace
(
Φ

tr
qCtrTD̂T

q

)
= Trace

(
UΣVTD̂T

q

)
= Trace

(
ΣVTD̂T

qU
)
.

Since VTD̂T
qU is an orthogonal matrix and every component

is smaller than 1, the cost function in (12) is maximizedwhen
VTD̂T

qU = E . As a result, the optimal solution is given by

D̂∗q = UVT. (13)

After the dictionary update by (13), we update a coeffi-
cientmatrixCtr while fixing D̂q = D̂∗q in (10). In FMGDSIR,
we utilize the property that the `2-norm is unitarily invariant,
and the coefficient matrix is updated∗∗∗ by

Ctr∗
q = argmin

C tr
q

∑
s∈Str

q

(‖Hsµ
tr − D̂qc

tr
s ‖

2
2 + νs ‖c

tr
s ‖0)

= argmin
C tr

q

∑
s∈Str

q

(‖D̂T
qHsµ

tr − ctr
s ‖

2
2 + νs ‖c

tr
s ‖0). (14)

In the orthogonal dictionary learning, Type 1 update-rule is
often used [8] and (14) is solved for each column vector cs as

ctr∗
s = argmin

ctr
s

‖D̂T
qHsµ

tr − ctr
s ‖

2
2 + ν‖c

tr
s ‖0, (15)

where the Lagrangian multipliers are fixed as νs = ν for all
s ∈ Str

q . The optimal solution to (15) is easily given by

ctr∗
s = hard_thresh√ν (D̂

T
qHsµ

tr) (16)

with the hard thresholding operator:

hard_thresh√ν (c)[i] :=

{
c[i] if |c[i]| ≥

√
ν,

0 if |c[i]| <
√
ν,

where [i] stands for the ith component of a vector. Note that
Type 2 and 3 update-rules are also easily given. By repeating
(13) and (16) for each class, the dictionaries D̂q are obtained.

5.3 Image Reconstruction

To solve (9) with the multiclass orthogonal dictionaries D̂q ,
first, the initial estimate µ(0) is obtained by applying the FBP
method to the low-dose projection data l. Then, by using the
stored clustering centers in the dictionary generation step, the
initial patches Hsµ

(0) are classified into one ofQ classes, and
hereafter the patch index setsSq are fixed. We reconstruct an
image by alternately updating C and µ for m = 1, 2, . . . , M .

At themth update ofC, if we choose Type 1 update-rule,
we solve, as shown in Sect. 4.2, the problem

minimize
C

S∑
s=1
(‖Hsµ

(m−1) − D̂q(s)cs ‖
2
2 + ν‖cs ‖0), (17)

where µ is fixed to the current estimate µ(m−1). In the same
∗∗∗In MGDSIR, coefficients are updated by OMP as in Sect. 4.2.

Note that Dq can be updated by the same rule for any OMP type.
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Class 1  (38,529) Class 2  (18,263) Class 3  (3,400) Class 4  (2,246) Class 5  (1,571)

(a) Training image (f_1601). (b) Clustering results of Q = 5 for the training image and the five clustering centers.

Fig. 2 Training image used for dictionary learning and the clustering results of the K-means algorithm in the proposed method.

manner as (14), the problem in (17) is solved for each cs as

c∗s = hard_thresh√ν (D̂
T
q(s)Hsµ

(m−1)). (18)

Differently from the problem in (5), the orthogonal dictio-
naries allow us to quickly compute the exact closed-form so-
lution to (18) without using a greedy algorithm such as OMP.
At the mth update of µ, we solve a least squares problem

minimize
µ∈RJ+

‖Rµ − l‖2w +

Q∑
q=1

λq
∑
s∈Sq

‖Hsµ − D̂qcs ‖
2
2 (19)

for a fixed C. For the problem in (19), to avoid the computa-
tion of a large inversematrix, we use the sameMM technique
as in [12], and µ is updated from µ(m−1) by (20). Note that
in MGDSIR, D̂q is replaced with Dq in the update by (20).

6. Numerical Simulations and Discussions

In this section, we compare the proposedmethods, MGDSIR
and FMGDSIR, with the conventional methods, ADSIR and
GDSIR, by simulations based on actual CT images in [18].

6.1 Simulation Data and Environment

We used a female head image ‘f_1601’ as training data, and
female head images ‘f_1610’ and ‘f_1615’ and male head
images ‘m_1114’ and ‘m_1132’ were targets. The original
sizes of these images were 512× 512. By cropping the outer
black pixels, we made training and target images composed
of the central 256× 256 pixels (J = 65,536). Thus, the pixel
length in the training and target images was the same as the
original pixel length, i.e., 1 mm. CT values vCT in the images
were transformed to theX-ray attenuation coefficients by µ =
µwater(1+vCT/1000), where µwater = 0.2059 cm−1. In (2), the
Radon transform Rwas created on the basis of parallel beams
to 579 X-ray detectors (N = 579) of width 0.625 mm. Initial

images µ(0) were obtained by FBP with the Ram–Lak filter.
We reconstructed the target images by ADSIR, GDSIR,

MGDSIR, and FMGDSIRwith M = 1,000 iterations. We set
Kq = K = 256 and νs = ν = 0.001 for ADSIR, GDSIR and
MGDSIR, and set νs = ν = 0.0007 for FMGDSIR. In over-
complete dictionary leaning and OMP, we used the program
in [17] for fast implementation. Dictionaries were generated
with 100 iterations inADSIR,with 2,000 iterations inGDSIR
and MGDSIR, and with 1,000 iterations in FMGDSIR. Nu-
merical simulations were conducted withMATLABR2018a
64-bit on a MacBook Pro, OS Mojave ver. 10.14.6, CPU 3.1
GHz Intel Core i5, and memory 8 GB 2133 MHz LPDDR3.

6.2 Clustering and Regularization Parameters

We extracted S = 64,009 image patches of size 4×4 (P = 16)
by shifting the areas pixel by pixel. After clustering by the K-
means algorithm, themean value, called a DC component, of
each patch is subtracted right before dictionary learning [17].
The dictionaries of GDSIR, MGDSIR, and FMGDSIR were
generated from the training image in Fig. 2(a), where we di-
vided the training patches into Q = 5 classes in the proposed
methods. The clustering results of the K-means algorithm
and each clustering center are shown in Fig. 2(b). The cluster
indices were ordered by the number of patches in descend-
ing order. The class 1 is mainly composed of dark patches,
e.g., the background and the maxillary sinus. The class 2 is
mainly composed of gray patches of soft tissues. The class 4
is mainly composed of middle-level patches in the boundary
between the classes 1 and 2. The classes 3 and 5 are com-
posed of bright patches of bones and detailed structures.

To determine the values of the multiple regularization
parameters λq in MGDSIR and FMGDSIR, we use that of λ
in GDSIR as a reference. For patches in the classes 1 and 2,
DC components are dominant, and the patches are well ap-
proximated by both the overcomplete dictionaries Dq and the

µ(m) = max

{
0, µ(m−1) −

[
RTW(Rµ(m−1) − l) +

Q∑
q=1

λq
∑
s∈Sq

HT
s (Hsµ

(m−1) − D̂qcs)

]
�

[(
RTW R +

Q∑
q=1

λq
∑
s∈Sq

HT
s Hs

)
1

]}
(20)
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(a) Ground truth (m_1132). (b) FBP [41.03 / 0.950]. (c) ADSIR [47.07 / 0.995].

(d) GDSIR [47.00 / 0.995]. (e) MGDSIR [47.20 / 0.995]. (f) FMGDSIR [47.27 / 0.995].
Fig. 3 Reconstruction result of m_1132 from its standard-dose projection data by each method [PSNR / SSIM].

Table 1 PSNR [dB] and calculation time [sec] in 60/300 views.
SIR \ Image f_1610 f_1615 m_1114 m_1132 calc. time
ADSIR 37.43 37.81 38.16 36.76 0.240/iter.
GDSIR 37.27 37.66 38.04 36.67 0.146/iter.
MGDSIR 38.13 38.34 38.78 37.24 0.168/iter.
FMGDSIR 38.14 38.41 38.92 37.20 0.090/iter.

orthogonal dictionaries D̂q . Hence, λ1 and λ2 can be larger
than λ. On the other hand, patches in the classes 3 and 5 are
very complex and not well approximated by the dictionaries,
and hence λ3 and λ5 can be smaller than λ. The class 4 is dif-
ficult to handle. Patches in the class 4 mainly correspond to
the boundary between the classes 1 and 2, which are better
approximated by the overcomplete dictionary than by the or-
thogonal dictionary. Based on these considerations, we first
adjusted λ in GDSIR, and then adjusted λq in MGDSIR and
FMGDSIR manually by the simple change-and-test process.

6.3 Standard-Dose Simulation Results

We first reconstructed ‘m_1132’ from standard-dose projec-
tion data inG = 300 views, where we set θg := 0.6(g−1) deg
and the X-ray radiation intensity to b = 106. We set the regu-
larization parameters to λ = 2,000 in ADSIR and GDSIR, to
λ1 = 2,560, λ2 = 2,560, λ3 = 1,280, λ4 = 2,880, λ5 = 1,280
in MGDSIR, and to λ1 = 4,000, λ2 = 2,600, λ3 = 1,600,
λ4 = 2,200, λ5 = 1,600 in FMGDSIR. Figures 3(a), (b), (c),
(d), (e), and (f) show the original image, the initial image µ(0)

Table 2 PSNR [dB] and calculation time [sec] in 1/40 X-ray intensity.
SIR \ Image f_1610 f_1615 m_1114 m_1132 calc. time
ADSIR 38.15 39.07 39.00 38.00 0.345/iter.
GDSIR 38.46 39.36 39.33 38.20 0.244/iter.
MGDSIR 39.12 39.97 39.73 38.68 0.266/iter.
FMGDSIR 38.50 39.36 39.24 38.18 0.185/iter.

given by FBP, the reconstructed images by ADSIR, GDSIR,
MGDSIR, and FMGDSIR, respectively. In this case, since
a lot of projection data (I = 173,700 � J) is available with
small noise, we can see that FBP reconstructs a high-quality
image. Therefore, we can confirm that G = 300 and b = 106

are proper values as the setting of a standard-dose situation.
We can also see that all SIR methods reconstruct even better
results than that by FBP with mostly the same quality.

6.4 Low-Dose Simulation Results

Low-dose projection data were generated in two situations:
(i) reducing projection views from G = 300 to G = 60, and
(ii) lowering X-ray intensity from b = 106 to b = 2.5 × 104.
Note that there is a significant difference between these two
approaches. The first approach reduces the number of obser-
vations (I = 34,740 < J), while the second approach does
not reduce the number of observations (I = 173,700 � J)
but enlarges the variance, 40 times, of zθg,n/b = exp(−lθg,n).
The reduction of the number I of the observations in the first
approach makes the reconstruction problem in (2) more dif-
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(a) Ground truth (f_1615). (b) FBP [32.92 / 0.893]. (c) ADSIR [37.81 / 0.983].

(d) GDSIR [37.66 / 0.983]. (e) MGDSIR [38.34 / 0.984]. (f) FMGDSIR [38.41 / 0.985].
Fig. 4 Reconstruction result of f_1615 from its low-dose projection data (60/300 views) by each method [PSNR / SSIM].

(a) Ground truth (m_1132). (b) FBP [31.66 / 0.858]. (c) ADSIR [36.76 / 0.978].

(d) GDSIR [36.67 / 0.978]. (e) MGDSIR [37.24 / 0.981]. (f) FMGDSIR [37.20 / 0.981].
Fig. 5 Reconstruction result of m_1132 from its low-dose projection data (60/300 views) by each method [PSNR / SSIM].
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(a) Ground truth (f_1615). (b) FBP [30.48 / 0.525]. (c) ADSIR [39.07 / 0.985].

(d) GDSIR [39.36 / 0.986]. (e) MGDSIR [39.97 / 0.987]. (f) FMGDSIR [39.36 / 0.987].
Fig. 6 Reconstruction result of f_1615 from its low-dose projection data (1/40 intensity) by each method [PSNR / SSIM].

(a) Ground truth (m_1132). (b) FBP [29.92 / 0.525]. (c) ADSIR [38.00 / 0.980].

(d) GDSIR [38.20 / 0.981]. (e) MGDSIR [38.68 / 0.982]. (f) FMGDSIR [38.18 / 0.981].
Fig. 7 Reconstruction result of m_1132 from its low-dose projection data (1/40 intensity) by each method [PSNR / SSIM].
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(a) f_1615. (b) FBP. (c) ADSIR. (d) GDSIR. (e) MGDSIR. (f) FMGDSIR.
Fig. 8 Enlarged images of each reconstruction result in Fig. 5.

(a) f_1615. (b) FBP. (c) ADSIR. (d) GDSIR. (e) MGDSIR. (f) FMGDSIR.
Fig. 9 Enlarged images of each reconstruction result in Fig. 7.

ficult than the increase of the noise level ‖ξ ‖2 in the second
approach. If we set a same reduction ratio of the X-ray dose
for both approaches, then the reconstruction quality is low in
the first approach or difference of the quality is not visible in
the second one. Hence, we used the different reduction ratios
1/5 and 1/40 in the first and second approaches, respectively.

1) G = 60 and b = 106: We set θg := 3(g − 1) deg and
the regularization parameters to λ = 3,800 in ADSIR and
GDSIR, to λ1 = 7,500, λ2 = 3,800, λ3 = 1,000, λ4 = 2,500,
λ5 = 1,000 inMGDSIR, and to λ1 = 7,500, λ2 = 6,000, λ3 =
1,000, λ4 = 1,500, λ5 = 1,000 in FMGDSIR. When µ(0) was
created by FBP, the projection data were linearly interpolated
to 300 views. Table 1 summarizes PSNRof the reconstructed
images and the calculation time per iteration for eachmethod.
FromTable 1, we see thatMGDSIR and FMGDSIR achieved
higher reconstruction accuracy than by ADSIR and GDSIR
with the same regularization parameters for all the images.
In addition, FMGDSIR reduced the calculation time approx-
imately 46% from MGDSIR without accuracy degradation.

2)G = 300 and b = 2.5×104: We set the regularization
parameters to λ = 800 in ADSIR and GDSIR, to λ1 = 800,
λ2 = 800, λ3 = 400, λ4 = 900, λ5 = 400 in MGDSIR, and to

λ1 = 2,000, λ2 = 1,300, λ3 = 800, λ4 = 1,100, λ5 = 800 in
FMGDSIR, which are constant multiples of λq in Sect. 6.3
since the matrix R is the same and the noise level is different
in (2). Table 2 shows PSNR and the calculation time for each
method. From Table 2, we see that MGDSIR achieved the
highest reconstruction accuracy. FMGDSIR reduced the cal-
culation time by about 30% from MGDSIR with almost the
same accuracy as with the conventional GDSIR. In our sim-
ulations, FMGDSIR performed more effectively in the view
reduced situation than in the weakened intensity situation.

In Figs. 4–7, (a), (b), (c), (d), (e), and (f) show the orig-
inal image, the initial image µ(0) by FBP, the reconstructed
images by ADSIR, GDSIR, MGDSIR, and FMGDSIR, re-
spectively, in the two low-dose simulations for ‘f_1615’ and
‘m_1132’, where Figs. 4 and 5 show the results in the view re-
duced situation, and Figs. 6 and 7 show ones in the weakened
intensity situation. From these figures, we see that each ini-
tial estimate has serious artifacts or noise while all SIRmeth-
ods reconstruct high-quality images. Figures 8 and 9 show
enlarged images of Figs. 5 and 7, and the red arrows indicate
that detailed structures are lost in ADSIR and GDSIR while
the proposed methods can reconstruct them more precisely.
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Table 3 Settings of P,Q and λq in FMGDSIR and the reconstruction accuracy for m_1132 in the view reduced situation.

P Q (λ1, λ2, . . . , λQ ) PSNR / SSIM
4 × 4 5000 × (1.5, 1.2, 0.2, 0.3, 0.2) 37.20 / 0.981
6 × 6 2500 × (1.5, 1.2, 0.2, 0.3, 0.2) 37.05 / 0.980
8 × 8 5 1500 × (1.5, 1.2, 0.2, 0.3, 0.2) 36.91 / 0.980

10 × 10 800 × (1.5, 1.2, 0.3, 0.2, 0.2) 36.78 / 0.979
12 × 12 600 × (1.5, 1.2, 0.3, 0.2, 0.2) 36.62 / 0.978

1 4200 36.18 / 0.976
2 5000 × (1.5, 0.8) 36.23 / 0.976
3 5000 × (1.5, 1.0, 0.2) 36.72 / 0.979
4 5000 × (1.5, 1.2, 0.2, 0.3) 37.08 / 0.980
5 5000 × (1.5, 1.2, 0.2, 0.3, 0.2) 37.20 / 0.981
6 5000 × (1.5, 1.2, 0.2, 0.2, 0.3, 0.3) 37.22 / 0.981
7 5000 × (1.5, 1.2, 0.3, 0.2, 0.2, 0.2, 0.2) 37.25 / 0.981

4 × 4 8 5000 × (1.5, 1.2, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2) 37.23 / 0.981
9 5000 × (1.5, 1.2, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2) 37.27 / 0.981
10 5000 × (1.5, 1.2, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2) 37.26 / 0.981
11 5000 × (1.5, 1.2, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2) 37.23 / 0.981
12 5000 × (1.5, 1.2, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2) 37.27 / 0.981
13 5000 × (1.5, 1.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.2, 0.3, 0.3, 0.2, 0.3, 0.2) 37.24 / 0.980
14 5000 × (1.5, 1.2, 0.2, 0.2, 0.2, 0.3, 0.2, 0.3, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2) 37.24 / 0.981
15 5000 × (1.5, 1.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3) 37.26 / 0.981
16 5000 × (1.5, 1.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.2, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2) 37.25 / 0.981

(a) Relation between the accuracy and the patch size. (b) Relation between the accuracy and the number of classes.
Fig. 10 Values of PSNR (©) and SSIM (∗) in terms of the patch size P and the number Q of classes.

For example, a light-gray vertical line is visible clearly at the
tip of the left arrow in the upper image of Fig. 9(e) while the
lines in Figs. 9(c) and 9(d) are blurred. Such detailed struc-
tures are often used for medical diagnosis, and a radiologist
in a hospital supported the results of the proposed methods.

6.5 On the Patch Size P and the Number Q of Classes

To analyze the effects of P andQ, we reconstructed ‘m_1132’
by FMGDSIR in the view reduced situation, using several P
and Q with a rough parameter tuning for λq as in Table 3.

1) Patch size: We used
√

P = 4, 6, . . . , 12. Figure 10(a)
shows PSNR and SSIM in terms of the patch size. We found
that the reconstruction accuracy decreased as the patch size
increased. Hence, we have chosen P = 16 as the patch size.
Note that the width and height of each pixel were 1 mm and
P = 16 was optimal for this pixel length. We expect that if
the pixel length is smaller than 1 mm, the optimal P will be
larger. If the target is not a head, we have to adjust P again.

2) Number of classes: We used Q = 1, 2, . . . , 16. Fig-
ure 10(b) shows that PSNR and SSIM largely increased until
Q = 5. After that, the accuracy vibrated and the image qual-

ity hardly changed. Hence, we have chosen Q = 5 consider-
ing the difficulty in tuning of the regularization parameters
λq , although we can see that, in Table 3, FMGDSIR keeps
the reconstruction accuracywith the rough parameter tuning.

7. Conclusion

In this paper, we proposed low-dose CT reconstructionmeth-
ods exploiting multiclass dictionary learning. We used mul-
ticlass dictionaries and multiclass regularization parameters.
The proposed methods, MGDSIR and FMGDSIR, achieved
higher reconstruction accuracy than the conventional single-
class dictionary-based methods, ADSIR and GDSIR. In ad-
dition, since MGDSIR performs clustering for target image
patches only once, computational cost hardly increases from
GDSIR. Moreover, by introducing orthogonal dictionaries,
FMGDSIR achieved fast reconstruction. Simulation results
showed that the proposedmethods reconstruct detailed struc-
tures of the targets while suppressing artifacts and noise.
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