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Abstract

An automatic photographic acquisition system to capture

images of fingerprints on crime scenes for the public force is

developed. For this, we propose a complete system, from the

physical acquisition device to the software that automatically

yields a 3D reconstruction of the fingerprint, i.e. the finger-

print and the surface on which the print is laid. The proposed

technological solution is innovative, as it relies on a single

captured color image of the scene, on which structured light

is projected. Thus, the system is portable and as easy to use

as a standard camera. Since the prototype is not finalized at

the present time, our study focuses on the feasibility of the pro-

posed solutions by means of simulations with a raytracer.

1. Introduction

The analysis of fingerprints plays a major role for the police

and justice agents, e.g. to establish the proof of a crime. Latent

fingerprints can be invisible but are revealed by a monochro-

matic powder applied with a pencil. Then they are lifted using

an adhesive tape, to be analyzed and identified once back in

the lab. Several drawbacks are inherent to this manual method,

including the possible involuntary deterioration of the finger-

print, the heavy, time-consuming and costly procedure of gath-

ering and analyzing a large amount of fingerprints, and finally

the fact that gathering the fingerprint removes it from its sup-

port, which can deprive the police of potential supplementary

elements of proof.

In this work1, we aim at proposing a 3D digital acquisition

system of fingerprints, to simplify and accelerate their analy-

sis. To do so, it is necessary to capture, simultaneously to the

image of the fingerprint itself, the geometry of the 3D scene,

under the form of a depth value for every pixel of the image.

The resulting mesh and its texture can then be used to unwrap

the fingerprint as it would have appeared on a plane, before

identification. The Fig. 1 schematically represents the chal-

1This work was performed in the frame of the project CARTES (Easy
and Fast Capture of Fingerprints on Crime Scenes) ANR-09-SECU-02-02
funded by the program CSOSG of the french Agence Nationale de la
Recherche.

Figure 1: Schematic representation of the challenges raised by the
project. The red arrows indicate the problems to solve, for which
solutions are proposed in the Sections 3 and 4.

lenge raised by the project.

Numerous solutions, in the academic and industrial worlds,

have been proposed, in order to capture the 3D geometry of a

scene. The passive methods, such as stereoscopy, require two

or more calibrated views, hence several cameras. Among the

active methods, based on the detection of a specific radiation

reflected by the object, some are based on laser beam scanners

so that the system has to be immobile during the acquisition

time of several seconds at least. We did not retain these so-

lutions for reasons of portability and cost. Thus, the natural

choice in our setting is structured light projection [9, 8], which

can be implemented using cheap consumer electronics devices,

like a digital camera and a LCD projector. In this method, the

geometry of the scene is obtained by analyzing the deforma-

tion of the light pattern projected on the scene, as it appears

in the image. The advantage of structured-light 3D scanners is

speed and precision. Instead of scanning one point at a time,

structured light scanners scan the entire field of view of the

camera at once so they are more faster than laser scanners and

also more precise, because they suffer less from the problem of

distortion from motion.

There exist many different types of patterns and for each

pattern, a specific reconstruction technique has been devel-

oped. Among these techniques, the projection of sinusoidal

1



fringes [7] has proved to give the best results in terms of accu-

racy, so that we adopted this approach for our purpose.

There are three main differences between the current tech-

niques in the literature based on sinusoidal fringe pattern and

our proposed method: we use a tele-centric camera instead of

a perspective camera; we use only one color pattern instead of

three gray patterns; and more importantly, we introduce an al-

gorithm which cleans the pattern from the input image in order

to recover the scene’s texture (see Section 4).

We employ a tele-centric camera for two main reasons.

First, using a tele-centric camera results in a sharper image

of the scene’s texture (fingerprint) since the depth-of-field of

a tele-centric camera is very long (theoretically infinite). Sec-

ond, for the acquisition system to work, we need first to cal-

ibrate the system in order to estimate the intrinsic parameters

of both camera and projector, as well as their extrinsic param-

eters (e.g. their relative orientation and position). Using a tele-

centric camera simplifies the calibration process by reducing

the number of extrinsic parameters to be estimated (we only

need to estimate the tilt angle of the projector, see Section 3.3).

We project only one RGB pattern instead of three sinusoidal

pattern, reducing the number of acquisitions from three to only

one, which means that the final system is small and portable.

Simultaneous projection of three patterns through the R, G, B,

channels of a single color pattern is not a new idea and it has

been tried on monochromatic scenes [6] but we are the first to

deal with a scene with color texture.

For the sake of portability and cost, we also recover the tex-

ture of the scene directly from the captured image without need

for an extra acquisition.

Thus, the proposed acquisition system consists in a digi-

tal tele-centric camera on which a fringe pattern projector is

mounted. From a single color image, shot on the fly without

any known reference frame or geometric constraint between

the object and the operator, the designed software is able to

automatically retrieve the 3D geometry of the scene from the

deformations of the projected pattern and also to separate the

texture information (the fingerprint; the image of the scene)

from the projected pattern.

2. Image formation model

The projector lens is not tele-centric, which means that in

the scene, the sines appear locally with a frequency all the

lower as the object is far away, as illustrated in Fig. 2 where

d is the distance from the projection point to the pattern. These

deformations, induced by the perspective projection, will be

used to infer the depth at every point of the image.

The color pattern projected on the scene consists in three

sinusoidal fringes in the red (R), green (G) and blue (B) bands

of the visible spectrum, varying along the horizontal direc-

tion, with same magnitude and phase shift of ±2π/3, forming

a rainbow-like pattern. The light pattern is projected using a

projector, tilted towards the bottom, which means that the rays

with same color form vertical slices. Thus, the frequency of

the fringes changes with the distance and every point of the

3D scene with coordinates (x, y, z) ∈ R
3 is illuminated by a

Figure 2: Schematic representation of the acquired image when the
scene is made of two identical half-planes orthogonal to the optical
axis. This figure illustrates the fact that the frequency of the sines de-
pends, proportionally in this case, on the distance between the object
point and the projection center of the projector.

radiance which can be written, in each of the three bands, as:

rR(x, y, z) = p
(

1 + cos(f.d.x/z − 2π/3)
)

,

rG(x, y, z) = p
(

1 + cos(f.d.x/z)
)

, (1)

rB(x, y, z) = p
(

1 + cos(f.d.x/z + 2π/3)
)

,

where p models the power of the light projector and f is the

frequency of the sines (rad/mm).

Consequently, we model each pixel value of the acquired

image v = (vR, vG, vB) by

vR[k] = uR[k]
(

aR + p(1 + cos(g[k]− 2π
3 ))

)

,

vG[k] = uG[k]
(

aG + p(1 + cos(g[k]))
)

, (2)

vB [k] = uB [k]
(

aB + p(1 + cos(g[k] + 2π
3 ))

)

,

where k = (k1, k2) ∈ Z
2 is the pixel location, a =

(aR, aG, aB) represents the color of the ambient light, assumed

constant throughout the image, and u = (uR, uG, uB) is the

color image of the texture of the scene. This simple model as-

sumes that the radiance, in each of the R, G, B bands, of a light

ray reflected by the object, is equal to the product of the re-

flectance of the object at the hit point with the radiance of the

incident light ray. This simplistic model of diffuse refection

does not take into account the Lambertian and specular aspects

of the interaction between ray lights and objects.

Thus, if the structured light projector had been switched off,

the acquired image would have been

ṽR[k] = aR.uR[k], ṽG[k] = aG.uG[k], ṽB [k] = aB .uB [k].

The main challenge of the project is then to recover, only

from the acquired image v, the texture image u and the phase

image g, the values aR, aG, aB and p being unknown. This

is clearly an ill-posed inverse problem, all the more since in

reality the image v is corrupted by distortions, like noise or

higher harmonics to the sines due to the nonlinearities of the

projector and sensor.

We note that the considered problem of recovering g and u

from v has common points with the classical problem of demo-

saicking in image processing [1], since the missing information

(the depth map) is encoded in some way in the spectrum of

the available image. This parallel motivated the choice of the

color sines as carrier waves modulating the missing informa-

tion, like in demosaicking where the chrominance is modulated

by sines [1].



3. Analysis of the pattern deformations

3.1. Extraction of the wrapped phase

The first problem to tackle is the extraction of the wrapped

phase at every pixel location k; that is, the value g[k] mod-

ulo 2π, within ]−π, π], for which several classical approaches

exist in the literature including Phase Stepping [6], Windowed

Fourier transform [10] and Wavelet transform [5]. Phase Step-

ping is valid only in the case the objects of the scene are white,

or monochromatic with known color. In our case, the texture

can be arbitrary. Windowed Fourier transform method is suit-

able in our setting, but it is sensitive to the choice of the win-

dow size, for which there is no criterion of choice.

The wavelet transform is a multiresolution tool which has

shown to be very effective to analyze fringes and yields bet-

ter results than the Fourier transform [5]. The Morlet wavelet

is known to provide the best compromise between spatial and

frequential localizations [2]. This 1D wavelet can be written

as:

ψ(x) = π−
1

4 eicxe−
x
2

2 , (3)

where i2 = −1 and c is a parameter bigger than 5. By tak-

ing the inverse tangent of the ratio between the imaginary and

real parts of the wavelet transform of the image, we obtain the

phase. We adopted this approach in our project, because it is

robust to the distortions like the presence of noise or higher

harmonics [5]. Using a 2D wavelet transform would further

improve the robustness of the phase detection, at the price of a

much higher computational cost [5]; we did not retain this so-

lution because the fringes that we analyze are mostly vertical.

The procedure to extract the wrapped phase is as follows.

We define a complex-valued image whose real and imaginary

parts are the two chrominance channels (more details in Sec-

tion 4). The wavelet analysis is performed on the rows of the

image, considered as 1D signals. For every pixel, we compute

the complex wavelet coefficient as the Hermitian product of the

scaled wavelet centered at the pixel and the row containing the

pixel. We run through a range of scales, refining the search

by dichotomy to find the scale maximizing the modulus of the

wavelet coefficient. At the found scale, the complex argument

of the wavelet coefficient gives the phase.

3.2. Phase unwrapping

The phase extraction methods presented in the previous sec-

tion provide wrapped phase values, between −π and π. Thus,

the wrapped phase image contains lines of discontinuities, un-

der the form of horizontal jumps of 2π. In order to recover the

phase g, it is necessary to apply a phase unwrapping algorithm

[3]. In our context, we suppose that the fingerprint lies on a

surface without discontinuity; that is, the fingerprint is not on

a stairstep. After having implemented and compared several

methods, we adopted the classical method of Goldstein et al.

[4], which is simple, fast, and robust.

3.3. Depth map computation

The last step of the analysis of the deformed fringes is the

conversion of the unwrapped phase image to a depth map, in

order to associate a depth value to every pixel of the extracted

fingerprint image (see Section 4). We denote by W and H the

horizontal and the vertical size of the sensor and we assume

that each pixel is a square with the size of ps millimeter. Sup-

pose that, in the projector, the projector tilt angle is denoted by

α. Then, ∀ k = (k1, k2) ∈ [0, . . . ,W − 1]× [0, . . . , H − 1], the

pixel value v[k] corresponds to the point of the surface having

real coordinates (X[k], Y [k], Z[k]), hit by the ray parallel to

the optical axis of the tele-centric camera and passing through

the photosite of index k of the sensor. Since the camera is tele-

centric, we have:

X[k] = (k1 −W/2)ps, Y [k] = (k2 −H/2)ps. (4)

Since g[k] = fX[k] and we already reconstructed g, based on

the similarity between right triangles (see Fig. 2) and taking

into account the angle α, we have:

Z[k] =
(2k2−h)g[k] sin(α)+f(2k1−w)d

2g[k] cos(α)
ps. (5)

We note that for k1 = W/2 or for the pixels which are very

close to the central column of the image, g[k] tends to be very

small and therefore, the informations Z is lost. Thus, we use

linear interpolation from the adjacent columns to calculate the

central column of the depth map.

4. Extraction of the texture

Separating the texture u, which includes the fingerprint,

from the color fringes in the image v is an essential and criti-

cal part of the project. If this separation fails, the image of the

fingerprint can not be exploited by the identification software,

because its information is corrupted by the fringes. It is known

that in natural images, the R, G, B channels are highly corre-

lated. That is why for many image processing and computer vi-

sion tasks, it is preferable to work within a luminance/chromi-

nance representation of colors instead. In this work, we adopt

the orthonormal basis made by luminance, red-green chromi-

nance and yellow-blue chrominance, which is an approxima-

tion of the way the human visual system treats the color infor-

mation, according to the well-known theory of opponent col-

ors. In this basis, the information of color natural images can

be considered as decorrelated, in first approximation. More

precisely, a vector q with components (qR, qG, qB) in the R, G,

B basis has following components in this luminance/chromi-

nance basis:

qL = 1√
3
(qR + qG + qB), qC1 = 1√

2
(qG − qR),

qC2 = 1√
6
(2qB − qR − qG). (6)

The variational approach we propose for extracting the texture

consists in seeking a texture image u and an ambient light vec-

tor a that minimize a quadratic regularized least-squares crite-

rion. The chosen Tikhonov regularizer is separable in the basis

L, C1, C2. Thus, the optimization problem we propose to solve

is the following:

min
u,a

C(u,a) =
∑

[k1,k2]∈Ω

|vR[k]− uR[k]bR[k]|2+

|vG[k]− uG[k]bG[k]|2 + |vB [k]− uB [k]bB [k]|2+ (7)

λ‖∇uL[k]‖2 + µ‖∇uC1 [k]‖2 + µ‖∇uC2 [k]‖2,



(aR,aG,aB) (.17,.18,.17) (.17,.18,.18) (.18,.19,.19)

Figure 3: Results of texture extraction and ambient light estimation
after 0, 50 and 100 iterations and at convergence (≈ 900 iterations),
from the left to the right, respectively. The true value of the ambient
light is a = (0.2, 0.2, 0.2).

where the vector b[k] = (bR[k], bG[k], bB [k]) is defined by:

bR[k] =
(

aR + p(1 + cos(g[k]− 2π/3))
)

,

bG[k] =
(

aG + p(1 + cos(g[k]))
)

, (8)

bB [k] =
(

aB + p(1 + cos(g[k] + 2π/3))
)

,

and ‖∇u‖2 denotes the scalar product < u, u ∗ r > calculated

with the discrete Laplacian filter

r =





0 −1 0
−1 4 −1
0 −1 0



 .

The parameters λ and µ are important, because they control

the tradeoff between the fit to the data, the smoothness of the

luminance and the smoothness of the chrominance. Currently,

these values are chosen empirically, depending on the noise

level, with µ/λ ≈ 10 as a rule of thumb.

The solution to this quadratic optimization problem is ob-

tained by setting to zero the partial derivatives of C with respect

to the unknowns uR[k], uG[k], uB [k], aR, aG, aB . Thus, we

obtain the following linear system to solve for u:

vR[k].bR[k] = uR[k](bR[k])2 + (
λ

3
+

2µ

3
)(uR ∗ r)[k] +

(
λ

3
−
µ

3
)(uG ∗ r)[k] + (

λ

3
−
µ

3
)(uB ∗ r)[k],

vG[k].bG[k] = uG[k](bG[k])2 + (
λ

3
−
µ

3
)(uR ∗ r)[k] +

(
λ

3
+

2µ

3
)(uG ∗ r)[k] + (

λ

3
−
µ

3
)(uB ∗ r)[k],

vB [k].bB [k] = uB [k](bB [k])2 + (
λ

3
−
µ

3
)(uR ∗ r)[k] +

(
λ

3
−
µ

3
)(uG ∗ r)[k] + (

λ

3
+

2µ

3
)(uB ∗ r)[k],

(9)

and the linear system to solve for a is:
∑

k
uR[k]vR[k] =

∑

k
uR[k]2(aR + sR[k]),

∑

k
uG[k]vG[k] =

∑

k
uG[k]2(aG + sG[k]), (10)

∑

k
uB [k]vB [k] =

∑

k
uB [k]2(aB + sB [k]),

where we introduced the vector s[k] = (sR[k], sG[k], sB [k])
defined by:

sR[k] = p
(

1 + cos(g[k]−
2π

3
)
)

, sG[k] = p
(

1 + cos(g[k])
)

,

sB [k] = p
(

1 + cos(g[k] +
2π

3
)
)

. (11)

Figure 4: Output of the proposed algorithm for 3 different scenes
(see the text for the explanation).

Since the optimization problem is convex, we use an alter-

nate minimization strategy. For a given estimate of a, we run

a fixed number of iterations of the conjugate gradient method

to approximately solve the linear system and find an estimate

of u. From this u, we update a by a closed-form least-squares

regression on the image. We iterate this process many times.

The Fig. 3 shows the results of this joint estimation of u and

a on a simulated image (see next section) after different num-

bers of total iterations of the conjugate gradient. We notice that

the process converges, which can be proved theoretically from

the convexity of the problem. The convergence speed highly

depends on µ and λ and remains to be studied more precisely.

Note that, as p is unknown, we actually recover a and u up to

a constant, which does not play any role.

5. Simulations

In order to test the different steps of the analysis process, we

implemented a simulator based on a rendering engine of 3D

scenes by raytracing. This simulator allows to take into con-



sideration the color and nature of the surface material to mimic

the physical reflection and refraction of the light rays. The im-

ages in Fig. 1 are the results of the algorithms described in this

article, where the surface is the compound of a sphere and a

plane orthogonal to the optical axis. Also, each column in the

Fig. 4 shows the obtained results from simulations with differ-

ent scenes; a plane tilted along the horizontal axis; a plane tilted

along the vertical axis and a scene composed of two spheres

cut by a plane tilted along the horizontal axis. The rows are,

from top to bottom, corresponding to the simulated images v,

the wrapped phase images (where black represents the value

−π and white the value π), the phase images, the depth map

images, the extracted texture images and finally the 3D recon-

structions of the scenes. We simply applied a median filter

on the Z coordinates of the point cloud to smooth the surface.

Using advanced surface fitting techniques results in smoother

surfaces.

The source code is freely available to download from the

website of the first author2.

6. Conclusion

In this paper we proposed a complete system for image ac-

quisition and 3D reconstruction of fingerprints, using a digi-

tal camera and a projector of structured light with a sinusoidal

fringe pattern. The main contributions of our proposed tech-

nique are threefold: we use a tele-centric camera, simplifying

the calibration and reconstruction processes; we project only

one color pattern on the textured scene, increasing the speed

and portability of the system and decreasing its cost, and fi-

nally we introduce a variational approach and use the same in-

put image in order to recover the scene’s texture.

The variational approach developed to jointly extract the

texture and estimate the ambient light has shown its efficiency

and robustness. Ongoing tests of performance should make the

choice of the model parameters more precise. Alternative so-

lutions based on the paradigm of sparsity in signal processing

or on total variation minimization should be studied.

The simulation results show that the system design and the

developed image processing methods are viable and relevant.

The project sheds light on a promising digital alternative to the

traditional manual lift of fingerprints.

The potential applications of our methodology are numer-

ous and go far beyond the lift of fingerprints. Arbitrary 3D

objects could be captured this way, e.g. 3D human faces for

biometry or entertainment.
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