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Abstract—The goal of pansharpening is to generate a fused
image having both the high spatial resolution of a panchromatic
(PAN) and the high spectral resolution of a multispectral (MS)
image. For modern low-cost satellite, we envision a strategy for
a compressed acquisition with a matrix of custom sensors, which
can be seen mathematically as a linear combination of masked
sources. We analyze the effectiveness of different masks, both
novel and adapted from the literature, on the quality of a fused
product, whose reconstruction is based on a flexible inversion
scheme based on a variational approach.

I. INTRODUCTION

Pansharpening refers to a particular instance of data fusion,
targeted at combining information from two remotely sensed
sources: the high spatial resolution, characteristic of sensors
such as the PAN, and the high spectral diversity, charac-
teristic of the MS, into a single product [1]. Technological
and physical limitations (e.g., signal to noise ratio of the
acquisitions) prevent the acquisition of a single image of both
high spatial and spectra resolution, demanding a data fusion
scheme. Several algorithms have been proposed to deal with
this problem, ranging from classical approaches (e.g., based on
band substitution) [2] to more advanced ones (e.g., variational
approaches) [3].
In this work, we consider a scenario in which the original PAN
and MS sources are not available in their original form; instead
we envision that the platform is equipped with a system yield-
ing compressed acquisitions that could be implemented with
optical elements. This scheme generates a custom combination
of the specific multi-resolution acquisitions which are typical
on the platforms of high quality commercial satellites. Indeed,
on-board image compression has became an increasingly in-
teresting field to compensate for limited on-board resources in
terms of mass memory and downlink bandwidth. [4]
Various optical devices have been proposed for compressed
acquisition: the most common approaches are either based
on spectral filter arrays (SFA) or masks. The structure of a
SFA defines how a set of MS sensors should be placed over a
pixel matrix; this process is also called mosaicking/mosaicing,
since different pixel sensors capture light with different spec-
tral responses, hence forming a mosaic of pixel acquisitions
with different characteristics. A vast literature is dedicated to
choosing optimal SFAs in various applicative scenarios [5],
[6], [7], and to reconstruct (demosaic) the missing samples for
each band [6], [8].
Masks represent an alternative way to generate compressed ac-

quisitions; if the original sources are fully available, each band
component passes through an optical filter such as a Digital
Micromirror Device (DMD) and the results are recombined on
a focal plane array (FPA). An example of such device is the
Coded Aperture Snapshot Spectral Imaging (CASSI) [9].
Since these devices implement operations that are in first
approximation linear, they could be interchangeable in the
mathematical framework that is used in this article. We propose
an intuitive inversion model based on a variational approach
which is automatically adapted to the used mask and jointly
deals with the problem of image fusion and reconstruction of
compressed data. To the best of our knowledge, no approach
based on mosaic/mask deals with multi-modal data such as
PAN and MS sources; we will hence provide some insights
on how to adapt the literature of SFA to the scenario under
study. We also present some preliminary results with different
categories of masks, such as deterministic and random, binary
and weighted, including a novel theoretical mask design that
provides the best results against state-of-the-art alternatives in
our experiments.

II. PROBLEM STATEMENT

A. Notation

We will assume that every matrix, denoted with a bold
uppercase variable, will be represented by the corresponding
lowercase letter when represented in lexicographic order (by
concatenating each column into a single vector). In partic-
ular, the original source is composed of a wideband PAN
P ∈ Rnp1×np2 and a MS M ∈ Rnm1×nm2×nb (whose
upscaled version is denoted by M̃). The total number of pixels
np = np1np2 of the PAN and nm = nm1nm2 of the MS are
related by nm = np/r

2, where r represents the spatial scale
ratio between the two sources; nb represents the amount of
bands to sharpen in the MS. The k-th band of the MS will
be denoted by Mk. Additionally, ⊗ denotes the Hadamard
(element-wise) product, the [.; .] and [., .] operators respectively
stand for column and row concatenation, 0n1,n2

and 1n1,n2
are

n1 × n2 matrices of respectively all zeros and all ones.

B. Compression step

In this work we aim at generating a compressed product
Y ∈ Rnp1×np2 having exactly the same size of the PAN image,
hence achieving a compression ratio ρ = r2/(r2 + nb). This
signal embeds information from both the PAN and the MS,



Fig. 1. Direct model with binary masks, used as example for reconstruction in subsection II-C.

which for simplicity we assume to be perfectly co-registered,
to share the same radiometric resolution (e.g., 11 bits in many
satellite bundles) and to be histogram matched over mean and
variance to match their dynamics. The compressed source can
be obtained as a linear combination of masked acquisition in
the following way:

Y = P⊗H0 +

nb∑
k=1

M̃k ⊗Hk (1)

where H0 and Hk are the masks assigned to the PAN and to
the k-th band of the upsampled MS, respectively. To allow
the compressed acquisition to share the same radiometric
resolution of the sources we have to impose that the following
sum to one condition is satisfied:

nb∑
k=0

Hk = 1np1,np2 (2)

This general framework automatically includes the standard
SFA scenario, for which we can use binary masks (whose
coefficients are either ones or zeros) with no overlap in the
position of the ones. If this condition is not satisfied, the
resulting sensors would have a different spectral response than
the original elements of the set. To re-frame this step as a
linear system, this compression step can be also rewritten as:

y = C[p; m̃] (3)

where C = [diag(h0),diag(h1), ...,diag(hnb
)]

C. Inversion step

We will consider a classical formulation of pansharpening
based on variational approach; let us denote the unknown ideal
target image with X ∈ Rnp1×np2×nb , which would be captured
by an unavailable MS sensor at PAN spatial resolution. The
generation of the PAN and upsampled MS sources are modeled
by the following system:{

m̃ = Bx+ em
p = Rx+ ep

(4)

where B ∈ Rnmnb×npnb and R ∈ Rnp×npnb are given
matrices that respectively model the blurring of the MS sensor
and the spectral response of the MS sensor relative to the one
of PAN sensor. em and ep are statistically characterized as
independent instances of additive white Gaussian noise with
zero mean. Since the original sources are not available on the
ground segment, we need to include a compression step in the
model that generates the actual observation y, as shown in
fig. 1. In the inverse problems framework, our target translates
into finding the estimation X̂ that performs the following
minimization:

x̂ = argmin
x′
‖Ax′ − y‖22+λφ(x′) (5)

where A = C[B;R], ‖.‖2 is the l2-norm operator, φ :
Rnpnb → R+ is a scalar function, called regularizer, and λ
is a user-chosen scalar which weights each of the two contri-
butions. In our experiments we will employ the vector total
variation [10] as regularizer and the PDFP2O algorithm [11]
as solver. We want to stress here that the inversion model
automatically adapts to any choice of the mask, hence the joint
problem of optimal choice for mosaicking and demosaicking
is decoupled, essentially leaving the analysis to just the former.

III. MASK DESCRIPTION

An appropriate choice of the masks {Hk}k=0,...,nb
is

crucial for a good reconstruction of the target image. The
compressed sensing theory, in particular, has developed a
whole mathematical background to choose well-performing
observation matrices for signal which are sparse in nature [12].
In the SFA literature, various strategies have been proposed to
deal with this problem, although the application to sensors
with wildly different spectral and especially spatial resolution
such as PAN and MS is still in its initial stages and a
tentative approach is provided in [13]. We provide below
a brief summary of the generic approaches and discuss the
adaptability to our testbed, consisting of a linear combination
of a PAN and nb = 4 bands MS.

A. Deterministic masks

Since standard SFA can be represented by binary masks
that satisfy eq. 2, the latter can be color coded to highlight



(a) Uniform (UNIF) [7] (b) Condat (MAXDIS) [5] (c) e2v Onyx [14] (d) Kodak ver.1 [15]

(e) Kodak ver.3 [15] (f) Vertical PAN (VERT) (g) Diagonal PAN (DIAG) (h) Squared PAN (SQUA)

Fig. 2. Various color coded binary masks; the bolded frame denotes the periodicity. RGB sensors are assigned to the corresponding color, while yellow denotes
a NIR sensor. White and gray pixels denote wideband sensors at the same resolution of the MS and the PAN, respectively. Brown pixels may be filled with any
MS pattern.

the band which is assigned to each pixel. For deterministic
patterns, two main strategies have arisen. The first tends to
distribute as much as possible uniformly the different sensors
on the whole pixel matrix, e.g. for 4 bands, following the
approach proposed in [7] (UNIF in fig. 2a) or in [5] (MAXDIS
in fig. 2b), where the latter additionally tries to maximize
the average distance between sensors with the same spectral
characteristic. A second strategy consists in privileging a single
band, the so-called dominant band, in the filter arrays. This
scenario supposes that it may be easier to recover the spatial
component from a single band making use of the latter as a
guide to recover the supposedly correlated information from
the samples of the remaining bands [6]. In our framework, the
PAN is a good candidate to be used as a dominant band. In
fact, SFAs that follow this concept were already manufactured
for commercial cameras e.g., by Teledyne e2v (Onyx [14])
or Kodak [15]. The pixel matrices of those devices (shown
in fig. 2c-e) are composed of sparse elements belonging to
MS and predominant wide-band sensors (though they share
the same spatial resolution conversely to the scenario of our
work). This structure can be easily adapted to combine PAN
and MS sensors, as shown in fig. 2f-h, where the PAN takes
the place of the ”white” pixels and a generic MS pattern, such
as the ones presented in the first part of this section, may be
used to fill the gaps. Additionally, since the signal M̃ is an
upsampled version of the original image, the mask can be setup
in a way that includes only the original samples of the signal
M and none of the processed ones; if r = 2, this is the case
of the squared pattern in fig. 2h.

B. Random masks and proposed approach

While deterministic masks are mainly the standard in
commercial cameras (with the Bayer’s mask being the most
widespread), recent studies have shown potential in employing

random patterns. In [16], [8], the authors investigate the
effectiveness of random binary masks, by proposing an SFA
with a completely randomized mosaic. This approach uses a
custom demosaicking algorithm, although random masks have
proven their effectiveness in other contexts using a variational
approach such as in CASSI [9]. In its single dispersion version
(SD-CASSI), each MS band is sequentially shifted by one pixel
in the horizontal direction through a dispersive element, these
are then filtered with a coded aperture (which emulates the
behavior of a binary mask) and combined over a FPA. To
introduce the shifting, eq. 1 has to be slightly modified:

Y = [P,0np1,nb
]⊗H0 +

nb∑
k=1

(
[M̃k,0np1,nb

]→k

)
⊗Hk (6)

where → k denotes a circular shift of k columns to the right
and, contrary to the reference, we have included the PAN as if
it was an added band of the MS. The masks {Hk}k=0,...,nb

are
usually chosen to be equal, binary and random. Matrix R in
eq.5 also has to be modified to take the shifting into account.
In this paper we propose a non-conventional approach to
generate random masks, by employing non-binary random
masks. On a practical level, this would correspond to have
a matrix of sensors with vastly different spectral responses.
For silicon based technologies, a possibility could be to filter
a different set of wavelengths for each pixel from a wideband
response; as example, this setup could be realized with COLOR
SHADES by SILIOS technologies, which combines thin film
deposition and micro/nano-etching processes onto a silica
substrate to provide band-pass filters in the visible and near
infrared range [17]. Since the resulting responses may be set
to be wider compared to the usual MS, it is likely that the
higher amount of incoming light could overcome some of the
SNR limitations of available sensors, thus possibly allowing to
increase the spatial resolution of the sensor. A reasonable con-



TABLE I. REDUCED RESOLUTION NUMERICAL EVALUATION OF THE FUSED PRODUCT FOR THE HOBART AND RIO DE JANEIRO DATASETS. BEST
RESULTS FOR COMPRESSED SOURCES IN BOLD AND SECOND BEST ARE UNDERLINED.

Hobart Rio de Janeiro
PSNR ERGAS SAM Q4 sCC PSNR ERGAS SAM Q4 sCC

Ideal value +∞ 0 0 1 1 +∞ 0 0 1 1
EXP 37.1032 6.4464 3.0248 0.8819 0.5162 29.0509 0.6870 3.7359 0.8483 0.4899
MTF-GLP-CBD 39.9756 4.3109 3.0792 0.9420 0.7171 32.7204 6.8705 3.6105 0.9008 0.7485
VERT+UNIF 37.0034 6.3335 3.8910 0.8805 0.4625 29.7089 9.7154 4.3647 0.8556 0.5617
VERT+MAXDIS 36.9776 6.3517 3.9099 0.8802 0.4606 29.6793 9.7725 4.4136 0.8558 0.5600
DIAG+UNIF 37.2036 6.1698 3.8497 0.8863 0.4709 29.8874 9.5050 4.3572 0.8612 0.5616
DIAG+MAXDIS 36.8407 6.4718 4.0381 0.8791 0.4715 29.7310 9.7007 4.4972 0.8584 0.5598
SQUA+UNIF 36.4308 6.7259 4.5490 0.8682 0.5380 29.6189 9.7017 5.0142 0.8562 0.6246
SQUA+MAXDIS 36.4037 6.7634 4.5508 0.8675 0.5389 29.5992 9.7320 5.0250 0.8560 0.6253
CASSI 34.1820 8.6927 5.9083 0.7922 0.4242 27.7434 12.1075 6.2626 0.7985 0.5037
Random binary 37.1369 6.2899 3.4661 0.8775 0.4121 29.3319 10.2690 4.2973 0.8501 0.4757
Proposed 37.4205 5.9500 3.9747 0.8938 0.5163 29.8829 9.4967 4.8633 0.8558 0.5810

dition to impose randomness under the constraint of eq. 2 is to
generate the weights for each pixel of the masks {Hk}k=0,...,nb

according to a flat Dirichlet distribution [18], which enforces
an uniform distribution on a (nb + 1)-dimensional simplex. If
the need arises, one could even assign a less/more prominent
contribution of the weights assigned to the PAN by employing
a generic Dirichlet distribution such as D(α,11,nb

), which
causes the mean of the elements of H0 to be α times bigger
than the ones of {Hk}k=1,...,nb

.

IV. EXPERIMENTAL RESULTS

Two datasets will be considered in the experiments; they
both feature a PAN image, whose sizes are 2048×2048 pixels,
and a 4-band MS with a scale ratio between MS and PAN of
1:4. The Hobart dataset was acquired by the GeoEye-1 satellite
(PAN spatial resolution: 0.5m) and represents a moderately
urban area in Tanzania. The Rio de Janeiro dataset represents
a densely urban coastal Brazilian area and was acquired by the
WorldView-3 platform (PAN spatial resolution: 0.4m).
For the quantitative assessment, we employ the reduced re-
solution validation paradigm, according to the Wald’s proto-
col [19], and setting a scale ratio of r = 2. In more details,
the original MS image will work as reference (or ground truth
- GT); the latter and the original PAN image are degraded
with spatial filters matching the sensor characteristics and
taken as sources to generate the sharpened image. In eq. 4 the
blurring effect modeled by the matrix B is obtained by a linear
convolution with a Gaussian shaped bell whose amplitude at
Nyquist cut frequency matches the one provided in satellite
sensors datasheets. Regarding R, the PAN signal is instead
assumed to be a linear combination of the bands of X, whose
weights match the percentage of overlap between the spectral
responses of the PAN and the MS. This product is then
compared with the GT by using a set of quality indices; in
particular, we consider the PSNR, the Spectral Angle Mapper
(SAM), Erreur Relative Globale Adimensionnelle de Synthese
(ERGAS), the Q4 index and the spatial Cross Correlation
(sCC), whose references are included in [2]. When needed, the
interpolated MS data (EXP) is obtained via a 23-tap Lagrange
polynomial filter [20]. The degraded sources were fused with
the best performing classical protocol to assess the expected
performances when no compression step is provided. The best
results were achieved with the Generalized Laplacian Pyramid
with MTF-matched filter and regression based injection model
(MTF-GLP-CBD), whose reference is included in [2]. The
inversion algorithm described in II-C was tested with a set
of different masks, by setting in each case the λ which gives
the best Q4 result. For the deterministic SFA we emulate

the dominant band approach of commercial venues such as
e2V and Kodak, by employing the three different basic PAN
patterns in figures 2f-h. The remaining (brown colored) spots
will be filled by the MS mosaics figures 2a-b, extending the
periodicity in accord to the placement of the PAN sensors;
in particular, the combination DIAG+MAXDIS design gives
the same mosaic which is proposed in [6] for five-band
cameras. For random patterns, we first simulate the compressed
acquisition of the CASSI; despite the unfairness of this testbed,
as the CASSI reaches a lower compression ratio, because
the compressed signal has slightly more samples and better
radiometric resolution, it seems to achieve the worst results
in our simulation. We finally tested the random binary and
weighted masks drawn from a Dirichlet density distribution.
The numerical results are shown in table I and a visual analysis
is provided in fig. 3; regardless of the pretty harsh compression
level of this experiment (ρ = 50%), the degradation of the
fused product is still acceptable. Notice that this compression
ratio is exactly the same as the interpolated MS, which can be
seen as a compressed acquisition that ignores the information
provided by the PAN. The proposed solution provides the best
compromise between spectral and spatial quality of the final
product, as it has in general the best numerical results for
synthetic indices such as PSNR, ERGAS and Q4. For binary
masks this compromise is ruled by the percentage of PAN
samples. This is confirmed by the fact that the squared pattern
from fig. 2h, which has the most prominent PAN component,
shows the best numerical results for sCC, an index specifically
tailored for evaluating the accuracy of the spatial quality
and that is reflected by the sharper edges in the building of
SQUA+MAXDIS in fig. 3f. On the opposite side, the random
binary mask, which has the greatest PAN sub-sampling ratio,
achieves the best results for the SAM, which evaluate the
accuracy of the spectral quality; this can be easily seen in
the more accurate colors of the tree patch in 3g, despite the
difficulty of the human eye to evaluate spectral distortion.
An interesting insight of our proposed solution is that it is
characterized by higher spatial quality than the random binary
mask, despite having the same equal representation of PAN and
each band of the MS. We recall that, if the application requires
so, this proportion could be adjusted in random masks to suit
the needs by acting with the parameter α described in III-B,
which was set as 1 in this test for simplicity. Such an approach
can be intuitively extended also to random binary masks.

V. CONCLUSION

In this work, we have analyzed the effect of different
masks in a joint image fusion and reconstruction scheme. The



(a) GT (b) PAN (c) EXP (d) MTF-GLP-CBD

(e) DIAG+UNIF (f) SQUA+MAXDIS (g) Random Binary (h) Proposed

Fig. 3. Visual comparison of selected tests described in section IV on the Rio de Janeiro dataset (detail).

results show interesting prospects for the use of non-binary
random masks, which may elicit the manufacture of a wide
array of sensors with aleatory wider spectral responses with
potentialities in overcoming the physical limitations of current
MS platforms. The reduced burden of the downlink capacity
may justify the production of a constellation of low-budget
satellites which relay the burden of software processing to the
ground segment. In the future, we would like to investigate
more advanced regularizations and the mathematical models
that may justify the different behavior of the tested masks;
a comparison with existing demosaic model is also currently
under investigation and the model could be eventually extended
for the treatment of hyperspectral images.
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