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A Convex Approach to Superresolution and Regularization of Lines in Images\ast 
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Abstract. We present a new convex formulation for the problem of recovering lines in degraded images. Fol-
lowing the recent paradigm of superresolution, we formulate a dedicated atomic norm penalty and
we solve this optimization problem by means of a primal-dual algorithm. This parsimonious model
enables the reconstruction of lines from lowpass measurements, even in presence of a large amount of
noise or blur. Furthermore, a Prony method performed on rows and columns of the restored image,
provides a spectral estimation of the line parameters, with subpixel accuracy.
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1. Introduction. Many restoration or reconstruction imaging problems are ill-posed and
must be regularized. So, they can be formulated as convex optimization problems formed by
the combination of a data fidelity term with a norm-based regularizer. Typically, given the
data y = Ax\sharp + \bfitepsilon , for some unknown image x\sharp to estimate, some known observation operator
A, and some noise \bfitepsilon , one aims at solving a problem like

Find \~x \in argmin
\bfx 

1

2
\| Ax - y\| 2 + \lambda R(x) ,

where \lambda controls the trade-off between data fidelity and regularization and R is a convex
regularization functional. R can be chosen to promote some kind of smoothness. The classical
Tikhonov regularizer R(x) = \| \nabla x\| 22 generally makes the problem easy to solve but yields
oversmoothing of the textures and edges in the recovered image \~x. A popular and better
regularizer is the total variation R(x) = \| \nabla x\| 1 (see, e.g., [16, 26]); it yields images with
sharp edges, but the textures are still oversmoothed, there are staircasing effects, and the
pixel values tend to be clustered in piecewise constant areas. To overcome these drawbacks,
one can penalize higher order derivatives [9, 49] or make use of nonlocal penalties [21, 24, 62].
Another approach, which is at the heart of the recent paradigm of sparse recovery [41, 76] and
compressed sensing [35, 80], is to choose R to favor some notion of low complexity. Indeed,
many phenomena, when observed by instruments, yield data living in high dimensional spaces
but inherently governed by a small number of degrees of freedom. One early choice was to
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set R as the \ell 1 norm of wavelet coefficients of the image. But the signals encountered in
applications like radar, array processing, communication, seismology, or remote sensing are
usually specified by parameters in a continuous domain, from which they depend nonlinearly.
So, modern sampling theory has widened its scope to a broader class of signals, with so-called
finite rate of innovation, i.e., ruled by parsimonious models [6, 37, 51, 84]. This encompasses
reconstruction of pulses from lowpass measurements [28] and spectral estimation, which is the
reconstruction of sinusoids from point samples [77, 78], with many applications [10, 18, 27, 47,
50, 68, 75, 79, 83]. The knowledge of the kind of elements we want to promote in the image
makes it possible to estimate them from coarse-scale measurements, even with infinite precision
if there is no noise. Methods achieving this goal are qualified as super-resolution methods,
because they uncover fine-scale information, which was lost in the data, beyond the Rayleigh or
Nyquist resolution limit of the acquisition system [13, 43]. However, in this context, maximum
likelihood estimation amounts to structured low-rank approximation, which forms nonconvex
and very difficult, even NP-hard in general, problems [28, 54]. An elegant and unifying
formulation, which yields convex problems, is based on the atomic norm [4, 25]. We place
ourselves in this general framework of atomic norm minimization: the sought-after image x\sharp 

is supposed to be a sparse positive combination of the elements of an infinite dictionary \scrA ,
indexed by continuously varying parameters. Then, one can choose R as the atomic norm
\| x\| \scrA of the image x, which can be viewed as the \ell 1 norm of the coefficients, when the image
is expressed in terms of the unit-norm elements of \scrA , called atoms:

\| x\| \scrA = inf \{ t > 0 : x \in t conv(\scrA )\} ,(1)

where conv(\scrA ) is the convex hull of the atoms. In this paper, we consider the setting, which
is new to our knowledge, where the atoms are lines. Expressed in the Fourier domain, these
atoms can be characterized with respect to their rows and columns and the problem can be
reduced to a dictionary of one-dimensional (1-D) complex exponential samples, indexed by
their frequency and phase, whose atomic norms can be computed via semidefinite program-
ming [85]. This formulation makes it possible to derive a convex optimization problem under
constraints, solved by mean of a primal-dual splitting algorithm [23]. Then, applying a Prony-
like method [70] to the solution of the algorithm allows us to extract the parameters of the
lines. This approach estimates the lines with high accuracy, whereas the Hough [45, 46, 55]
and the Radon [31, 56, 69] transforms fail, due to their discrete nature. Our motivation stems
from the frequent presence in biomedical images, e.g., in microscopy, of elongated structures
like filaments, neurons, and veins, which are deteriorated when reconstructed with classical
penalties.

Some related works are dedicated to the recovery of curve-like singularities, by variational
methods [1, 87], Riesz-based models [52, 53], or so-called finite rate of innovation methods
[20, 42, 51, 58, 60, 60, 74]. The originality of our method is that we reduce the minimization
over an infinite dictionary of lines to a semidefinite programming problem, taking advantage
of the line structure in both directions of the grid. Although there are works in the same vein
to recover 2-D point sources, or equivalently to estimate the parameters of 2-D exponentials
[29, 36, 63, 66], applying similar principles to the estimation of lines is not straightforward
and is new, to our knowledge.
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The paper is organized as follows. The model is described in section 2, the framework of
atomic norm minimization underlying the superresolution principle is introduced in section 3,
and the algorithms we derive are presented in section 4. Then a Prony-like method is developed
in section 5, as a way to perform spectral estimation of the line parameters. Section 6 gives
an overview of related works. Finally some experimental results are shown in section 7.
Part of this work has been published in a conference paper [65]. In the present paper, we
add mathematical developments, another algorithm, a new estimation procedure for the line
parameters, an extension to the whole range of line angles without any more restriction, an
application to inpainting problems, and several numerical experiments.

Notation. Vectors, e.g., \bfitz = (z0, . . . , zN - 1), and matrices have component indexes start-
ing at zero. The Hilbert space of complex matrices of size M \times N is denoted by\scrM M,N . The
entry in the (k1+1)th row and (k2+1)th column of a matrix M is referred to by M[k1, k2] or
Mk1,k2 . Due to required multiple subscripts, we often adopt the MATLAB notation M[k1, :]
(resp., M[:, k2]) for referring to the (k1 + 1)th row (resp., (k2 + 1)th column) of the matrix
M. To extract a submatrix, we also use the notation M[p1 : q1, p2 : q2]. The nuclear norm of
the matrix M, denoted by \| M\| \ast =

\sum 
i \sigma i(M), is the sum of its singular values \sigma i(M). The

operation M \otimes N denotes the Kronecker product between an m \times n matrix M and a p \times q
matrix N, whose result is the mp\times nq matrix

M\otimes N =

\left(   M0,0N \cdot \cdot \cdot M0,n - 1N
...

. . .
...

Mm - 1,0N \cdot \cdot \cdot Mm - 1,n - 1N

\right)   .(2)

The ground truths for distributions or matrices to recover are denoted by a sharp, \cdot \sharp ,
while the estimated variables are denoted by a tilde, \~\cdot . Continuous (resp., discrete) 1-D
Fourier transform of functions or distributions (resp., vectors) is denoted by a hat, \widehat \cdot . For 2-D
functions, distributions, or matrices, the notation \widehat f always refers to the horizontal Fourier
transform of f , while the 2-D Fourier transform is denoted by \scrF f . When it is necessary to
distinguish them, the horizontal and vertical Fourier transform are denoted by \scrF 1f and \scrF 2f ,
respectively. The Radon transform of a function f is denoted by \scrR f . The projection operator
onto a set C is denoted by PC and the proximity operator of a closed proper convex function
f : \BbbR N \rightarrow \BbbR \cup \{ +\infty \} (see [3, 8, 22, 61]) is defined by

proxf (\bfitx ) = argmin
\bfity 

\biggl( 
f(\bfity ) +

1

2
\| \bfitx  - \bfity \| 22

\biggr) 
.(3)

2. An image model of blurred lines. Our aim is to restore lines from an observed image
y = b\sharp + \bfitepsilon , which is made of a blurred image b\sharp containing lines and corrupted by some noise
\bfitepsilon , and then to estimate the parameters---angle, offset, amplitude---of the lines. In this section,
we formulate what we precisely mean by an image containing lines. In short, b\sharp is a sum of
perfect lines which have been blurred and then sampled. Both processes are detailed in the
following.

2.1. The ideal continuous model and the objectives. We place ourselves in the quotient
space \BbbP = \BbbR /(W\BbbZ )\times \BbbR , corresponding to the 2-D plane with horizontalW -periodicity, for some
integerW \geqslant 1. To simplify the notation, we suppose thatW is odd and we setM = (W - 1)/2.
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Figure 1. (a) Parameters (\theta , \eta ) characterizing the position of a line in the 2-D plane, (b) the matrix
convention we use to display the image obtained by sampling with unit step the blurred line b\sharp = x\sharp \ast \phi , and (c)
the resulting discrete image \bfb \sharp [n1, n2] = (x\sharp \ast \phi )(n1, n2).

A perfect line, with angle \theta \in ( - \pi /2, \pi /2] with respect to the vertical axis, amplitude
\alpha > 0, and offset \eta \in \BbbR from the origin on the horizontal axis, can be defined as a tempered
distribution, which maps a function \psi in the Schwartz class \scrS (\BbbR 2) to its integral along the
geometric line L = \{ (t1, t2) \in \BbbP : (t1 - \eta ) cos \theta +t2 sin \theta = 0\} , that is, to \alpha 

\int 
L \psi (t1, t2) dt1 dt2.

Thus, by a slight abuse of notation, we can write the perfect line as

(t1, t2) \in \BbbP \mapsto \rightarrow \alpha \delta 
\bigl( 
(t1  - \eta ) cos \theta + t2 sin \theta 

\bigr) 
,

where \delta is the (1-D) Dirac distribution. For more details about multidimensional distributions
over curves or surfaces, we refer the interested reader to [44, 59].

We define the distribution x\sharp , which is a sum of K different such perfect lines, for some
integer K \geqslant 1, as

x\sharp : (t1, t2) \in \BbbP \mapsto \rightarrow 
K\sum 
k=1

\alpha k\delta 
\bigl( 
(t1  - \eta k) cos \theta k + t2 sin \theta k

\bigr) 
.(4)

Figure 1(a) illustrates the line parameters and Figure 1(b) the convention we use for repre-
senting images.

Hypothesis 1. At this time, we suppose that the lines are rather vertical; that is, for every
k = 1, . . . ,K, \theta k \in ( - \pi /4, \pi /4].

This hypothesis is made because the rows and columns of the image will be processed
differently. We will proceeed in the Fourier domain by applying the discrete 1-D Fourier
transform on every row of the image; we insist on the fact that we do not consider the usual
2-D Fourier transform. This setting may appear restrictive, but we show in subsection 4.3
that, in fact, we are able to deal with the general case.

2.2. A blur model for an exact sampling process. The observed image b\sharp of size W \times H
in Figure 1(c) is obtained by convolution of the distribution x\sharp with a blur function \phi , followed
by sampling with unit step:

b\sharp [n1, n2] = (x\sharp \ast \phi )(n1, n2) \forall n1 = 0, . . . ,W  - 1, n2 = 0, . . . ,H  - 1 .(5)
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The point spread function (PSF) \phi is assumed to be separable; that is, it can be written
\phi (t1, t2) = \varphi 1(t1)\varphi 2(t2). So, the function b\sharp = x\sharp \ast \phi can be obtained by a first horizontal
convolution with \varphi 1 and then a second vertical convolution with \varphi 2. We can show (see
Appendix A) that we get the function

b\sharp = x\sharp \ast \phi : (t1, t2) \in \BbbP \mapsto \rightarrow 
K\sum 
k=1

\alpha k\psi k

\bigl( 
(t1  - \eta k) cos \theta k + t2 sin \theta k

\bigr) 
,(6)

where

\psi k =

\biggl( 
1

cos \theta k
\varphi 1

\Bigl( \cdot 
cos \theta k

\Bigr) \biggr) 
\ast 
\biggl( 

1

sin \theta k
\varphi 2

\Bigl( \cdot 
sin \theta k

\Bigr) \biggr) 
,(7)

if \theta k \not = 0 and \psi k = \varphi 1 otherwise.

Remark 1. We can notice that (6) can also be interpreted as follows: every line has un-
dergone a 1-D convolution with \psi k in the direction transverse to it. We can also notice that
if \varphi 1 and \varphi 2 are Gaussian functions and have same variance \kappa 2, it follows from (7) that \psi k

has variance \kappa 2
\bigl( 
cos2 \theta + sin2 \theta 

\bigr) 
= \kappa 2 as well.

Assumptions. We assume that \varphi 1 and \varphi 2 have the following properties:
(i) \varphi 1 \in L1(0,W ) is W -periodic, bounded, such that 1

W

\int W
0 \varphi 1(t1) dt1 = 1 and bandlim-

ited; that is, its Fourier coefficients

cm(\varphi 1) =
1

W

\int W

0
\varphi 1(t1)e

 - \mathrm{j}2\pi mt1/W dt1

are zero for every m \in \BbbZ with | m| \geqslant (W + 1)/2 =M + 1. Then, the discrete filter\bigl( 
\bfitg [n] = \varphi 1(n)

\bigr) 
n\in \BbbZ (8)

has discrete Fourier coefficients

\widehat \bfitg [m] =
1

W

W - 1\sum 
n=0

\bfitg [n]e - \mathrm{j} 2\pi mn
W = cm(\varphi 1) .

(ii) \varphi 2 \in L1(\BbbR ) is such that
\int 
\BbbR \varphi 2(t2) dt2 = 1 and bandlimited so that the discrete filter\bigl( 

\bfith [n] = \varphi 2(n)
\bigr) 
n\in \BbbZ (9)

has compact support of length 2S + 1, for some S \in \BbbN ; that is,

\bfith [n] = 0 if | n| \geqslant S + 1 .

An example of three blurred lines is depicted in Figure 2(a). We insist on the fact that no
discrete approximation is made during the sampling process leading from the continuous to
the discrete formulation, due to assumptions (i) and (ii) and Hypothesis 1. These important
guarantees, for the purpose of superresolution, are detailed in Appendix A.
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Figure 2. (a) The image \bfb \sharp of three blurred lines and (b) the Radon transform of \bfb \sharp .

Remark 2. These assumptions are convenient and reasonable. Indeed, in practice, we
can always approximate a PSF by a bandlimited function. That said, we also propose in
Appendix A a weaker version of assumption (ii), denoted by (ii\prime ), which relaxes the bandlimited
restriction. Regarding the periodicity in assumption (i), this hypothesis can be circumvented
by considering an acquisition process yielding a twice-larger image, in order to ``periodize""
the observed image.

2.3. Toward an inverse problem in the Fourier domain. Let us further characterize the
blurred image b\sharp in Fourier domain, i.e., its 1-D discrete Fourier transform (DFT) on its first
component (in the horizontal direction) denoted by \widehat b\sharp . To achieve this, let us also denote by \widehat x\sharp 

the discrete image obtained by sampling \widehat x\sharp = \scrF 1x
\sharp , which is the horizontal Fourier transform,

in the sense of distributions, of the ideal model x\sharp (4) made up of 1-D Dirac distributions.
Therefore, \widehat x\sharp is composed of a sampled sum of exponentials:

\widehat x\sharp [m,n2] =

K\sum 
k=1

\alpha k

cos \theta k
e \mathrm{j}2\pi (n2 \mathrm{t}\mathrm{a}\mathrm{n} \theta k - \eta k)

m
W ,(10)

m =  - M, . . . ,M, n2 =  - S, . . . ,H  - 1 + S .

Remark 3. \widehat x\sharp is such that \widehat x\sharp [ - m,n2] = \widehat x\sharp [m,n2]
\ast , where \cdot \ast denotes the complex conju-

gation, so we can only deal with the right part \widehat x\sharp [0 : M, : ] and we can note that the row
corresponding to m = 0 is real and equal to

\sum K
k=1

\alpha k
\mathrm{c}\mathrm{o}\mathrm{s} \theta k

. We consider in the following the

Fourier image \widehat x\sharp [m,n2] of size (M + 1) \times HS , with HS = H + 2S, due to the addition of S
pixels beyond the boundaries, allowing the convolution with filter \bfith determined hereafter.

Our goal will be to reconstruct \widehat x\sharp from \widehat b\sharp ; that is, from its observations through a known
degradation operator A, which we characterize in the following proposition.
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Proposition 1. Let A be the operator which \forall m = 0, . . . ,M multiplies each row vector\widehat x\sharp [m, :] of \widehat x\sharp by the corresponding Fourier coefficient \widehat \bfitg [m] and convolves it with the filter
\bfith = (h - S , . . . , h0, . . . , hS). Then, we have the relation

A\widehat x\sharp = \widehat b\sharp ,(11)

which can be alternatively rewrite on each row m = 0, . . . ,M as

\widehat \bfitg [m](\widehat x\sharp [m, :] \ast \bfith ) = \widehat b\sharp [m, :] .(12)

Proof. See the proof in Appendix B.

Remark 4. From a matrix point of view, the operator A corresponds to a left and right
matrix multiplication with the matrices \widehat G of size (M + 1)\times (M + 1) and the transpose of \v H
of size H \times HS defined by

\widehat G = diag(\widehat g0, . . . , \widehat gM ), \v H =

\left(       
h - S \cdot \cdot \cdot hS 0 0 \cdot \cdot \cdot 0
0 h - S \cdot \cdot \cdot hS 0 \cdot \cdot \cdot 0
... \cdot \cdot \cdot . . .

. . .
. . . \cdot \cdot \cdot 

...
0 \cdot \cdot \cdot 0 h - S \cdot \cdot \cdot hS 0
0 \cdot \cdot \cdot 0 0 h - S \cdot \cdot \cdot hS

\right)       ,(13)

that is,

A\widehat x\sharp = \widehat G\widehat x\sharp \v HT .(14)

Finally, the image b\sharp of the blurred lines is corrupted by noise, so that we observe the
degraded image

y = b\sharp + \bfitepsilon , \bfitepsilon \sim \scrN (0, \zeta ) ,(15)

with \zeta the noise level. Thus, the problem consists from (15) and (11) in recovering \widehat x from \widehat y,
which takes the form of an ill-posed linear inverse problem. Then, we will need to express a
convex optimization problem, under constraints exploiting the sparse structure of the signal
we are looking for, namely, that it is a combination of lines. The superresolution process
consists of recovering the high-frequency content (lost because of the blur operator) from the
degraded image y, which can be viewed as a spectral extrapolation process. Then, we aim at
recovering the parameters (\theta k, \eta k, \alpha k) of these lines, as a postprocess, after the reconstruction.
This procedure will be decomposed as follows:

1. First, solve a convex optimization problem of the form

Minimize \| \widehat y  - A\widehat x\| , under the constraint that \widehat x is made of lines,(16)

that is, to go to the bottom line of the diagram in Figure 15 from y to \widehat x\sharp .
2. Second, perform a Prony-like method on \widehat x\sharp in order to estimate the K parameters

(\theta k, \eta k, \alpha k).
These two steps are summarized in Figure 3. Note that this work also covers the case

where a mask is applied; that is, it can encompass inpainting problems. In the next section, we
present the framework of atomic norm, from which the optimization problem will be derived.
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Figure 3. The two steps of the procedure: a convex optimization formulation for the reconstruction of the
lines (in orange) and a Prony-like method for the estimation of their parameters (in purple).

3. Superresolution detection of lines.

3.1. Atomic norm and semidefinite characterizations. Consider a complex signal \bfitz \in \BbbC N

represented as a K-sparse mixture of atoms from the set

\scrA =
\bigl\{ 
\bfita (\omega ) \in \BbbC N : \omega \in \Omega 

\bigr\} 
,

that is,

\bfitz =

K\sum 
k=1

ck\bfita (\omega k), ck \geqslant 0, \omega k \in \Omega .

We consider atoms \bfita (\omega ) \in \BbbC N that are continuously indexed in the dictionary \scrA by the
parameter \omega in a compact set \Omega . The atomic norm, first introduced in [19], is defined as

\| \bfitz \| \scrA = inf \{ t > 0 : \bfitz \in t conv(\scrA )\} ,

where conv(\scrA ) denotes the convex hull of a general atomic set A, enforcing sparsity. Chan-
drasekaran et al. [19] argue that the atomic norm is the best convex heuristic for underdeter-
mined, structured linear inverse problems, which generalizes the \ell 1 norm for sparse recovery
and the nuclear norm for low-rank matrix completion.
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= \alpha 1 + \alpha 2 + \alpha 3

= \alpha 1 + \alpha 2 + \alpha 3

Figure 4. Illustration with a signal made of a weighted combination of three lines (in gray). In the Fourier
domain, we have through the sampling process the same kind of combination, but with 2-D exponential atoms
\bfita 2\mathrm{D}(\theta k, \eta k). In both cases, the weights \alpha i are the amplitudes of the lines.

In our problem (4) the atoms are somehow lines, so one can considered in the Fourier
domain the dictionary \scrA 2\mathrm{D} indexed by the angle and the offset; that is, composed of the 2-D
exponential atoms of size W \times HS ,

a2\mathrm{D}(\theta k, \eta k) =
1

cos \theta k
e \mathrm{j}2\pi (n2 \mathrm{t}\mathrm{a}\mathrm{n} \theta k - \eta k)m/W ,

m =  - M, . . . ,M, n2 =  - S, . . . ,H  - 1 + S ,

as illustrated in Figure 4. The problem is that there is no closed-form expression for the
atomic norm in these 2-D dictionaries, to our knowledge. However, in the case of 1-D complex
exponentials, there is a way to compute the atomic norm via semidefinite programming. So,
we reformulate the problem using the simplified 1-D case. From now on, we consider the
dictionaries

\scrA =

\biggl\{ 
\bfita (f, \phi ) \in \BbbC | I| , f \in [0, 1], \phi \in [0, 2\pi )

\biggr\} 
,(17)

\scrA 0 =

\biggl\{ 
\bfita (f) \in \BbbC | I| , f \in [0, 1]

\biggr\} 
,(18)

in which the atoms are the vectors of components [\bfita (f, \phi )]i = e \mathrm{j}(2\pi fi+\phi ), i \in I, and [\bfita (f)]i =
[\bfita (f, 0)]i = e \mathrm{j}2\pi fi, i \in I. The atomic norm is written

\| \bfitz \| \scrA = inf
c\prime k\geqslant 0

f \prime 
k\in [0,1)

\phi \prime 
k\in [0,2\pi )

\Biggl\{ \sum 
k

c\prime k : \bfitz =
\sum 
k

c\prime k\bfita (f
\prime 
k, \phi 

\prime 
k)

\Biggr\} 
.(19)
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Theorem 2 (Caratheodory). A vector \bfitz = (z\ast N - 1, . . . , z
\ast 
1 , z0, z1, . . . , zN - 1) of length 2N - 1,

with z0 \in \BbbR , is a positive combination of K \leqslant N atoms \bfita (fk) if and only if TN (\bfitz +) \succcurlyeq 0 and is
of rank K, where \bfitz + = (z0, . . . , zN - 1) is of length N , TN : \BbbC N \rightarrow \scrT N is the Toeplitz operator

TN : \bfitz + = (z0, . . . , zN - 1) \mapsto \rightarrow 

\left(     
z0 z\ast 1 \cdot \cdot \cdot z\ast N - 1

z1 z0 \cdot \cdot \cdot z\ast N - 2
...

...
. . .

...
zN - 1 zN - 2 \cdot \cdot \cdot z0

\right)     ,(20)

with \scrT N the Hilbert subspace of\scrM N composed of Hermitian Toeplitz matrices, and \succcurlyeq 0 denotes
positive semidefiniteness. Moreover, this decomposition is unique if K < N .

Proof. See references [14, 15, 64, 82].

We are now in position to characterize the atomic norm.

Proposition 3. The atomic norm \| \bfitz \| \scrA can be characterized by the following semidefinite
program:

\| \bfitz \| \scrA = min
\bfitq \in \BbbC N ,q0\geqslant 0

\biggl\{ 
q0 : T

\prime 
N (\bfitz , \bfitq ) =

\biggl( 
TN (\bfitq ) \bfitz 
\bfitz \ast q0

\biggr) 
\succcurlyeq 0

\biggr\} 
,(21)

where q0 is the first component of vector \bfitq = (q0, . . . , qN - 1) \in \BbbR + \times \BbbC N - 1 and \bfitz \ast = \bfitz T.

Proof. This result is an improvement of [81, Proposition II.1] and the proof is given in
Appendix C.

Since the matrix T\prime 
N (\bfitz , \bfitq ) in (21) is Hermitian and positive semidefinite, its eigenvalues

(\lambda i)0\leqslant i\leqslant N are positive reals. So, q0 =
1

N+1tr(T
\prime 
N (\bfitz , \bfitq )) = 1

N+1

\sum N
i=0 \lambda i is real and positive.

3.2. Properties of the model \widehat x\sharp with respect to the atomic norm. In the Fourier
domain, the discrete image \widehat x\sharp given by (10) can be viewed as a sum of atoms: regarding the

columns \bfitl \sharp n2 of the matrix \widehat x\sharp , with I = \{ 0, . . . ,HS  - 1\} , we have

\bfitl \sharp n2
= \widehat x\sharp [:, n2] =

K\sum 
k=1

ck\bfita (fn2,k) ,(22)

and regarding the rows \bfitt \sharp m, with I = \{  - M, . . . ,M\} , we have

\bfitt \sharp m = \widehat x\sharp [m, :] =

K\sum 
k=1

ck\bfita (fm,k, \phi m,k)
T ,(23)

where

ck =
\alpha k

cos \theta k
, fn2,k =

n2 tan \theta k  - \eta k
W

,(24)

\phi m,k =  - 2\pi m\eta k
W

, fm,k =
m tan \theta k
W

,

dm,k = cke
\mathrm{j}\phi m,k , em,k = e \mathrm{j}\phi m,k .
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The vectors \bfitl \sharp n2 of size W = 2M + 1 are positive combinations of K atoms \bfita (fn2,k), with
K \leqslant M , since we can reasonably assume that the number of lines K is smaller than half the
number of pixels M . Thus, Theorem 2 ensures that the decomposition (22) is unique, hence,
following (19),

\| \bfitl \sharp n2
\| \scrA =

K\sum 
k=1

ck = \widehat x\sharp [0, n2] \forall n2 = 0, . . . ,HS  - 1 .(25)

By contrast, since the coefficients dm,k are complex, Theorem 2 no longer holds and we simply
have from Proposition 3

\| \bfitt \sharp m\| \scrA \leqslant 
K\sum 
k=1

ck \forall m =  - M, . . . ,M .(26)

Let us take a closer look at the case of one line, that is, K = 1, characterized by parameters
(\theta , \eta , \alpha ). We recall by (10) that \widehat x\sharp can be written as

\widehat x\sharp [m,n2] = c1e
\mathrm{j}2\pi ((f1 - f0)n2+f0)m, c1 =

\alpha 

cos \theta 
, f0 =  - 

\eta 

W
, f1 =

tan \theta  - \eta 
W

.

Let \bfitz = (z0, . . . , zN - 1) be a complex vector, whose elements zi are rearranged in a Toeplitz
matrix PK(\bfitz ) of size (N  - K)\times (K + 1) and rank K as follows:

PK(\bfitz ) =

\left(   zK \cdot \cdot \cdot z0
...

. . .
...

zN - 1 \cdot \cdot \cdot zN - K - 1

\right)   .

We get the following characterization of one line in the Fourier domain.

Proposition 4. An image \widehat x is of the form \widehat x[m,n] = c1e
\mathrm{j}2\pi ((f1 - f0)n+f0)m) if and only if the

columns \bfitl n and rows \bfitt m of \widehat x are such that TM (\bfitl n) is positive semidefinite and of rank one,
P1(\bfitt m) is of rank one, and \widehat x[0, n] = \widehat x[0, 0] \forall m and n.

Proof. See Appendix D.

Besides, with D = diag(c1, . . . , cK) and Vn2 =
\bigl[ 
\bfita (fn2,1) \cdot \cdot \cdot \bfita (fn2,K)

\bigr] 
, we can remark

that

TM (\bfitl \sharp n2
) =

K\sum 
k=1

ckTM (\bfita (fn2,k)) =
K\sum 
k=1

ck\bfita (fn2,k)\bfita (fn2,k)
\ast = Vn2DV\ast 

n2
,

where \cdot \ast denotes the Hermitian conjugate. Since the Toeplitz matrices TM (\bfita (fn2,k)) only

contain ones on their main diagonal, then 1
M tr(TM (\bfitl \sharp n2)) =

\sum K
k=1 ck. Moreover, the trace of

a positive semidefinite matrix is equal to its nuclear norm, hence

\| TM (\bfitl \sharp n2
)\| \ast = tr(TM (\bfitl \sharp n2

)) =M
K\sum 
k=1

ck =M\| \bfitl \sharp n2
\| \scrA .
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The nuclear norm of a matrix, which corresponds to the sum of its singular values, is
often used as a convex approximation of the rank of this matrix [71, 72]. Consequently, in the
following, we consider a convex relaxation of the line characterization given in Proposition 4,
in which the rank constraint on TM (\bfitl \sharp n2) is replaced by an atomic norm constraint on \| \bfitl \sharp n2\| \scrA .
Since the minimum value to achieve is c\sharp =

\sum K
k=1 ck and since the atomic norm lies on the

first row \widehat x[0, n2] = \widehat x[0, 0], we impose the constraint \widehat x[0, n2] = \widehat x[0, 0] \leqslant c\sharp . We do the same
for the rows.

Remark 5. We showed that if every row and column of the horizontal Fourier transform
of the image satisfy assumptions of the Proposition 4, then we have the horizontal Fourier
transform of an image containing one line. So, Proposition 4 supports our strategy of dealing
with the rows and columns of the image, to reformulate the 2-D problem as a combination
of 1-D problems. Proposition 4 shows that, in the case of one line, we do not lose anything
by this process; in other words, there is no image other than the image containing one line,
whose rows and columns have the prescribed form. This is an indication (not a proof) that
the upcoming semidefinite programming formulation (27)--(28) is tight: we will not promote
structures other than lines in the image. We could not derive a similar characterization for
K \geqslant 2 lines, which is a difficult task, but the philosophy remains: the aim is to minimize
atomic norms of rows and columns simultaneously, so that the solution will be composed of
sparse sums of exponentials in both directions. The convex optimization problem exploiting
this strategy is presented in the next section.

4. Minimization problem with atomic norm regularization. Given the operator
A : \scrX \rightarrow \scrY defined in (14) using the filters (8)--(9) and \widehat y the Fourier version of the degraded
image observed (15), we are looking for an image \widehat x \in \scrX which minimizes \| A\widehat x  - \widehat y\| \scrY for
the norm derived from the inner product (32) and whose rows and columns satisfy properties
(25) and (26). We fix a constant c \leqslant c\sharp . Consequently, the following optimization problem
provides an estimator of \widehat x\sharp defined in (10):

\~x \in argmin
(\widehat \bfx ,\bfq )\in \scrX \times \scrQ 

1

2
\| A\widehat x - \widehat y\| 2\scrY ,(27)

s.t.

\left\{             

\widehat x[0, n2] = \widehat x[0, 0] \leqslant c ,(28a)

q[m, 0] \leqslant c ,(28b)

TM+1(\widehat x[:, n2]) \succcurlyeq 0 ,(28c)

T\prime 
HS

(\widehat x[m, :],q[m, :]) \succcurlyeq 0 ,(28d)

\forall n2 = 0, . . . ,HS  - 1, \forall m = 1, . . . ,M ,

where the real Hilbert spaces (\scrX , \langle \cdot , \cdot \rangle \scrX ), (\scrY , \langle \cdot , \cdot \rangle \scrY ) and (\scrQ , \langle \cdot , \cdot \rangle \scrQ ) are respectively defined
by

\scrX =
\Bigl\{ \widehat x \in \BbbC (M+1)\times HS : Im(\widehat x[0, :]) = 0

\Bigr\} 
,(29)

endowed with the inner product

\langle \widehat x1, \widehat x2\rangle \scrX =

HS - 1\sum 
n2=0

\widehat x1[0, n2]\widehat x2[0, n2] + 2Re

\Biggl( 
M\sum 

m=1

HS - 1\sum 
n2=0

\widehat x1[m,n2]\widehat x2[m,n2]
\ast 

\Biggr) 
;(30)
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\scrY =
\Bigl\{ \widehat y \in \BbbC (M+1)\times H : Im(\widehat y[0, :]) = 0

\Bigr\} 
,(31)

which is equivalent to (29) for S = 0, endowed with the inner product

\langle \widehat y1, \widehat y2\rangle \scrY =
H - 1\sum 
n2=0

\widehat y1[0, n2]\widehat y2[0, n2] + 2Re

\Biggl( 
M\sum 

m=1

H - 1\sum 
n2=0

\widehat y1[m,n2]\widehat y2[m,n2]
\ast 

\Biggr) 
;(32)

\scrQ =
\Bigl\{ 
q \in \BbbC (M+1)\times HS : Im(q[:, 0]) = 0

\Bigr\} 
,(33)

endowed with the inner product

\langle q1,q2\rangle \scrQ =
M\sum 

m=0

q1[m, 0]q2[m, 0] + 2Re

\Biggl( 
HS - 1\sum 
n2=1

M\sum 
m=0

q1[m,n2]q2[m,n2]
\ast 

\Biggr) 
.(34)

Remark 6. Since we deal with rows and columns of \widehat x \in \scrX and rows of q \in \scrQ , we also
mention the real Hilbert spaces they belong to, which are respectively denoted by \scrX \bfitl \subset \BbbR \times \BbbC M ,
\scrX \bfitt \subset \BbbC HS , and \scrQ \bfitt \subset \BbbR \times \BbbC HS - 1, endowed with the following inner products:

\langle \bfitl 1, \bfitl 2\rangle \scrX \bfitl 
= \bfitl 1[0]\bfitl 2[0] + 2Re

\Biggl( 
M\sum 

m=1

\bfitl 1[m]\bfitl 2[m]\ast 

\Biggr) 
,(35)

\langle \bfitt 1, \bfitt 2\rangle \scrX \bfitt = 2Re

\Biggl( 
HS\sum 
n2=1

\bfitt 1[n2]\bfitt 2[n2]
\ast 

\Biggr) 
,(36)

\langle \bfitq 1, \bfitq 2\rangle \scrQ \bfitt = \bfitq 1[0]\bfitq 2[0] + 2Re

\Biggl( 
HS - 1\sum 
n2=1

\bfitq 1[n2]\bfitq 2[n2]
\ast 

\Biggr) 
.(37)

The operators TM+1 : \scrX \bfitl \rightarrow \scrT M+1 and T\prime 
HS

: \scrX \bfitt \times \scrQ \bfitt \rightarrow \scrT HS+1 are defined respectively
on columns and rows of \widehat x \in \scrX and q \in \scrQ , endowed respectively with the inner products (35)
and (36)--(37), to Hermitian Toeplitz matrices of dimension M + 1 and HS + 1, respectively,
whose spaces are denoted by \scrT M+1 and \scrT HS+1 endowed with the classical inner product on
complex matrices,

\langle M,N\rangle \scrM =
\sum 
i,j

M\ast 
ijNij ,(38)

and corresponding Frobenius norm

\| M\| \mathrm{F} =

\left(  \sum 
i,j

| Mij | 2
\right)  1/2

.(39)

The expressions of the operators TN and T\prime 
N are given respectively in (20) and (21).
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Remark 7. This optimization problem could be rewritten in a regularized form involving
a parameter \lambda to tune, which is not any better than the tuning parameter c, which has the
advantage of having a physical meaning, related to the line intensities. Moreover, we have a
simple estimator of c\sharp noticing that

\widehat b\sharp [0, n2] =
\Bigl( \widehat \bfitg [0]\widehat x\sharp [0, :] \ast \bfith 

\Bigr) 
[n2] =

\Biggl( \sum 
i

h[i]

\Biggr) \widehat \bfitg [0]c\sharp = c\sharp \forall n2 = 1, . . . ,H .

Then, since \widehat y[0, n2] = \widehat b\sharp [0, n2]+ \widehat \bfitepsilon with \BbbE (\widehat \bfitepsilon ) = 0, one can get an estimation of the parameter
c\sharp by averaging the first row:

c \equiv 1

H

H - 1\sum 
n2=0

\widehat y[0, n2] \approx c\sharp .
We keep this constrained formulation and write it in a more suitable way as follows. Let

\scrH = \scrX \times \scrQ be the Hilbert space in which the variable X = (\widehat x,q) lies, endowed with the
following inner product:

\langle (\widehat x1,q1), (\widehat x2,q2) \rangle \scrH = \langle \widehat x1, \widehat x2\rangle \scrX + \langle q1,q2\rangle \scrQ .(40)

Let us define L
(1)
m : \scrH \rightarrow \scrT HS+1 and L

(2)
n2 : \scrH \rightarrow \scrT M+1 by

L(1)
m (X) = T\prime 

HS
(\widehat x[m, :],q[m, :]) ,(41)

L(2)
n2

(X) = TM+1(\widehat x[:, n2]) .(42)

We denote by \iota C the indicator function of a convex set C, defined by

\iota C : x \mapsto \rightarrow 

\Biggl\{ 
0 ifx \in C ,

+\infty ifx /\in C .

We denote by \scrC the cone of positive semidefinite matrices and we introduce the set \scrB \subset \scrH 
corresponding to the boundary constraints:

\scrB =

\biggl\{ 
(\widehat x,q) \in \scrH : \widehat x[0, n2] = \widehat x[0, 0] \leqslant c, q[m, 0] \leqslant c

\biggr\} 
.(43)

Then the optimization problem (27) under constraints (28) can be rewritten as follows:

\~X = argmin
\bfX =(\widehat \bfx ,\bfq )\in \scrH 

\Biggl\{ 
1

2
\| A\widehat x - \widehat y\| 2\scrY + \iota \scrB (X) +

M\sum 
m=1

\iota \scrC (L
(1)
m (X)) +

HS - 1\sum 
n2=0

\iota \scrC (L
(2)
n2

(X))

\Biggr\} 
.(44)

We now propose two different algorithms to solve this convex optimization problem.
The first one in subsection 4.1 is more general and can be applied to the extended setting
(with no restriction on the line angles) and inpainting problems, presented in subsections 4.3
and 4.4, respectively, whereas the second cannot, since it is difficult to compute the prox-
imity operator associated to the data fidelity term. However, the second algorithm detailed
in subsection 4.2 happens to be faster and so will be used for most of the numerical experiments
shown in section 7.
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4.1. First algorithm design. The optimization problem (44) can be cast as a minimization
problem, involving smooth, proximable, and linear composite terms [23]:

\~X = argmin
\bfX \in \scrH 

\Biggl\{ 
F (X) +G(X) +

Q - 1\sum 
i=0

Hi(Li(X))

\Biggr\} 
(45)

with F (X) = 1
2\| A\widehat x  - \widehat y\| 2\scrY , X = (\widehat x,q), G = \iota \scrB , which is proximable, Q = M + HS linear

composite terms where Hi = \iota \scrC , Li = L
(2)
i when 0 \leqslant i \leqslant HS  - 1 and Li = L

(1)
i - HS+1 when

HS \leqslant i \leqslant HS + M  - 1. We define H\bfitx =
\sum Q - 1

i=0 Hixi, L
(1)(X) = (L

(1)
1 (X), . . . ,L

(1)
M (X)),

and L(2)(X) = (L
(2)
0 (X), . . . ,L

(2)
HS - 1(X)). L = (L(1),L(2)) is the linear operator such that the

composite terms can be written H \circ L, where \circ denotes composition. We define an inner
product on the range of L(1), L(2), and L, which are product spaces, as the sum of the inner
products defined on these spaces (similarly to (40)). We denote the corresponding norms by
\| \cdot \| (1), \| \cdot \| (2) and \| \cdot \| (1,2). We define the following operator norms:

\| A\| = sup\widehat \bfx \in \scrX 
\| A\widehat x\| \scrY 
\| \widehat x\| \scrX ,(46)

\| Li\| = sup
\bfX \in \scrH 

\| Li(X)\| \mathrm{F}
\| X\| \scrH 

,(47)

\bigm\| \bigm\| \bigm\| L(j)
\bigm\| \bigm\| \bigm\| = sup

\bfX \in \scrH 

\bigm\| \bigm\| L(j)(X)
\bigm\| \bigm\| 
(j)

\| X\| \scrH 
, j \in \{ 1, 2\} ,(48)

\| L\| = sup
\bfX \in \scrH 

\| L(X)\| (1,2)
\| X\| \scrH 

.(49)

We now establish some properties of these functions, operators, and norms.

Lemma 5. The norm (46) of the operator A defined in (14) is given by

\| A\| = \| \widehat \bfitg \| \infty \| \widehat \bfith \| \infty .(50)

Proof. If we denote by \widehat xk the (k + 1)th row of \widehat x, then by definition the operator A
maps the (k + 1)th row of \widehat x to \widehat \bfitg [k](\widehat xk \ast \bfith ). Let us calculate the norm of this operator. By
considering in Fourier the norm operator f \mapsto \rightarrow f \ast h we have the inequality

\| \widehat xk \ast \bfith \| 2 \leqslant \| \widehat \bfith \| \infty \| \widehat xk\| 2 .

Thus, with the norm derived from (30) we get

\| A\widehat x\| 2\scrY = | \widehat g0| 2\| \widehat x0 \ast \bfith \| 22 + 2| \widehat g1| 2\| \widehat x1 \ast \bfith \| 22 + \cdot \cdot \cdot + 2| \widehat gM | 2\| \widehat xM \ast \bfith \| 22(51)

\leqslant \| \widehat \bfitg \| 2\infty \| \widehat \bfith \| 2\infty (\| \widehat x0\| 22 + 2\| \widehat x1\| 22 + \cdot \cdot \cdot + 2\| \widehat xM\| 22)

\leqslant \| \widehat \bfitg \| 2\infty \| \widehat \bfith \| 2\infty \| \widehat x\| 2\scrX .

Since the filter \bfith is lowpass, the equality is attained for an image \widehat x whose rows are all
zero, except one which is constant (and nonzero), of index m0, where \widehat gm0 corresponds to the
maximum \| \widehat \bfitg \| \infty , which proves the result (50).
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Lemma 6. The adjoint operator of the operator A is denoted by A\ast and defined such that
\langle A\widehat x , \widehat z\rangle \scrY = \langle \widehat x , A\ast \widehat z\rangle \scrX . Its matrix expression is given by

A\ast \widehat z = \widehat G\ast \widehat z\v H .(52)

Proof. From the definition (14), we have the matrix product A\widehat x = \widehat G\widehat x\v HT. Then we use
the fact that for any matrix M, we have \langle M\widehat x1 , \widehat x2\rangle \scrM = \langle \widehat x1 , M

\ast \widehat x2\rangle \scrM and we remark that

\langle \widehat x1 , \widehat x2\rangle \scrX = \langle \widehat x1 , \widehat x2\rangle \scrM + \langle \widehat x1 , \widehat x2\rangle \ast \scrM  - \langle \widehat x1[0, :] , \widehat x2[0, :]\rangle \BbbR HS .

This yields the claimed result.

Then, we have the following proposition.

Proposition 7. For X = (\widehat x,q), the gradient of F (X) = 1
2\| A\widehat x - \widehat y\| 2\scrY is

\nabla F (X) = (A\ast (A\widehat x - \widehat y),0)T ,
which is Lipschitz-continuous with Lipschitz constant \beta = \| \widehat \bfitg \| 2\infty \| \widehat \bfith \| 2\infty .

Proof. See the proof in Appendix G.

We now give in the next proposition the adjoint operators of

TM+1 : (\scrX \bfitl , \langle \cdot , \cdot \rangle \scrX \bfitl 
)\rightarrow (\scrT M+1 , \langle \cdot , \cdot \rangle \scrM ) ,(53)

T\prime 
HS

: (\scrX \bfitt \times \scrQ \bfitt , \langle \cdot , \cdot \rangle \scrX \bfitt \times \scrQ \bfitt 
)\rightarrow (\scrT HS+1 , \langle \cdot , \cdot \rangle \scrM ) ,(54)

where the inner products are defined in (35), (36), (37), and (38).

Proposition 8. For M(1) \in \scrT HS+1 and M(2) \in \scrT M+1 the adjoint operators of (53) and (54)
applied to M(1) and M(2) give the vectors

\bfitz 2 = T\ast 
M+1M

(2) \in \BbbR \times \BbbC M ,

(\bfitz 1, \bfitq 1) = T
\prime \ast 
HS

M(1) \in \BbbC HS \times (\BbbR \times \BbbC HS - 1) ,

respectively, whose components are

\bfitz 2[k] =
M - k\sum 
l=0

M
(2)
l+k,l \forall k = 0, . . . ,M ,

\bfitz 1[k] = M
(1)
HS+1,k, \bfitq 1[k] =

HS - 1 - k\sum 
l=0

M
(1)
l+k,l + \delta kM

(1)
HS ,HS

\forall k = 0, . . . ,HS  - 1 .

Proof. See the proof in Appendix E.

Now we will provide an explicit upper bound for the operator norm \| L\| .
Proposition 9. The norm of the operator L = (L(1),L(2)), where

L(1)(X) = (L
(1)
1 (X), . . . ,L

(1)
M (X)) ,

L(2)(X) = (L
(2)
0 (X), . . . ,L

(2)
HS - 1(X)) ,
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with L
(1)
m and L

(2)
n2 defined in (41)--(42), satisfies

\| L\| 2 \leqslant \| L(1)\| 2 + \| L(2)\| 2 = \| T\prime 
HS
\| 2 + \| TM+1\| 2 = (HS + 1) + (M + 1) .

Proof. See the proof in Appendix F.

To solve the problem (44), we first propose Algorithm 1, which uses the primal-dual
method introduced in [65]. Following [23, Theorem 5.1], we know that the method converges
to a solution (\~X, \~\bfitxi 0, . . . , \~\bfitxi Q - 1) of the problem (45), provided the parameters \tau > 0 and \sigma > 0
in Algorithm 1 are such that

1

\tau 
 - \sigma \| L\| 2 > \beta 

2
.(55)

We then choose 0 < \tau < 2, \sigma = (HS +M + 2) - 2(1/\tau  - \beta /1.9) and \rho n \equiv \rho = 1.

Algorithm 1. Primal-dual splitting algorithm for (45).

Input: \widehat y 1-D FFT of the blurred and noisy data image y
Output: \~x solution of the optimization problem (27) under constraints (28)
1: Initialize primal and dual variables to zero X0 = 0 \bfitxi i,0 = 0 \forall i \in J1, QK
2: for n = 1 to Number of iterations do
3: Xn+1 = prox\tau G(Xn  - \tau \nabla F (Xn) - \tau 

\sum Q - 1
i=0 L\ast 

i \bfitxi i,n),
4: Xn+1 = \rho n \~Xn+1  - (1 - \rho n)Xn,
5: for i = 0 to Q - 1 do
6: \bfitxi i,n+1 = prox\sigma H\ast 

i
(\bfitxi i,n + \sigma Li(2Xn+1  - Xn)),

7: \bfitxi i,n+1 = \rho n\~\bfitxi i,n+1 + (1 - \rho n)\bfitxi i,n,
8: end for
9: end for

We detail below the other terms in lines 3 and 6 of Algorithm 1, involving the computation
of proximity operators and adjoint operators. For more details on convex analysis, monotone
operator theory, and proximal splitting methods, we refer the reader to [3, 8, 22, 61].

Set x0 = 1
HS

\sum HS - 1
n2=0 \widehat x[0, n2], and set G = \iota \scrB , with \scrB defined in (43). Then we have, for

every m,n2,

prox\tau G(\widehat x,q) =
\left\{     
\widehat x[0, n2] = x0 if x0 \leqslant c ,\widehat x[0, n2] = c otherwise ,

q[m, 0] = c if q[m, 0] > c .

Let P\scrC be the projection operator onto the cone of positive matrix \scrC ; by Moreau identity [3],

prox\sigma H\ast 
i
(M) = M - \sigma proxHi

\sigma 

\biggl( 
1

\sigma 
M

\biggr) 
= M - P\scrC (M) .

Finally, we need to compute, in line 3 of the algorithm, the adjoint operators L\ast 
i , where

the operators Li are defined in (41)--(42). The dual variables (\bfitxi i,n)i in Algorithm 1 refer
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to Hermitian Toeplitz matrices M
(1)
m \in \scrT HS+1 or M

(2)
n2 \in \scrT M+1. By definition, the adjoint

operators give the images (z
(1)
m ,q

(1)
m ) = L

(1)\ast 
m M

(1)
m and (z

(2)
n2 ,q

(2)
n2 ) = L

(2)\ast 
n2 M

(2)
n2 . According to

the definitions (41)--(42), for a primal variable X = (\widehat x,q) the operators L
(1)
m and L

(1)
n2 act

respectively on the (m + 1)th row of the images (\widehat x,q) and on the (n2 + 1)th column of the

image \widehat x only, so we can easily see, concerning the adjoint operators, that q
(2)
n2 = 0 and z

(2)
n2

(resp., z
(1)
m ,q

(1)
m ) is zero, except at the corresponding column index n2 (resp., row index m),

where

z(2)n2
[:, n2] = T\ast 

M+1M
(2)
n2

,(56)

(z(1)m [m, :],q(1)
m [m, :]) = T

\prime \ast 
HS

M(1)
m ,(57)

with the expression of the adjoint operators T\ast 
M+1 and T

\prime \ast 
HS

given in Proposition 8. Thus, the
operations on Xn = (\widehat xn,qn) before applying prox\tau G consist in a gradient descent step Xn  - 
\tau \nabla F (Xn), followed by an update of all its rows and columns due to the terms  - \tau 

\sum Q - 1
i=0 L\ast 

i \bfitxi i,n,
whose expressions are provided by (56) and (57).

4.2. Second algorithm design. We can note that in Algorithm 1, \tau must be smaller than
2/\beta , which is a limitation in terms of convergence speed. To overcome this issue, we sub-
sequently developed a second algorithm, similar to Algorithm 1, but with the data fidelity
term \| A\widehat x  - \widehat y\| \scrY activated through its proximity operator, instead of its gradient. We con-
sider solving the optimization problem by an overrelaxed version [23] of the Chambolle--Pock
algorithm [17],

X \star = argmin
\bfX \in \scrH 

\{ G(X) +H(L(X))\} ,(58)

with now G = 1
2\| A \cdot  - \widehat y\| 2\scrY which is proximable, H\bfitx =

\sum Q
i=0Hixi with Hi = \iota \scrC for i < Q,

where Li = L
(2)
i when 0 \leqslant i \leqslant HS  - 1, Li = L

(1)
i - HS+1 when HS \leqslant i \leqslant Q - 1 and HQ = \iota \scrB with

LQ = Id. So now, \| L\| 2 \leqslant HS +M + 3.
Let \tau > 0 and \sigma > 0 such that \tau \sigma \| L\| 2 = 1; then the primal-dual Algorithm 2, with F = 0

and weights \rho n \equiv \rho = 1.9, which is an overrelaxed version of the Chambolle--Pock algorithm,
converges to a solution (\~X, \~\bfitxi 0, . . . , \~\bfitxi Q - 1) of the problem (45) [23, Theorem 5.1].

Algorithm 2 requires computing prox\tau G. Since we have

\bfitp = prox\tau G(\widehat x)\leftrightarrow \widehat x - \bfitp = \nabla (\tau G)(\bfitp )(59)

\leftrightarrow \widehat x - \bfitp = \tau A\ast (A\bfitp  - \widehat y)
\leftrightarrow \widehat x+ \tau A\ast \widehat y = (I+ \tau A\ast A)\bfitp ,

the proximity operator has the following expression:

prox\tau G(\widehat x) = (I+ \tau A\ast A) - 1(\widehat x+ \tau A\ast \widehat y) ,
for which we propose below two ways of computing the inverse.
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Algorithm 2. Primal-dual splitting algorithm for (58).

Input: \widehat y 1-D FFT of the blurred and noisy data image y
Output: \~x solution of the optimization problem (27) under constraints (28)
1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: \~Xn+1 = prox\tau G(Xn  - \tau 

\sum Q - 1
i=0 L\ast 

i \bfitxi i,n),
4: Xn+1 = \rho n \~Xn+1  - (1 - \rho n)Xn

5: for i = 0 to Q - 1 do
6: \~\bfitxi i,n+1 = prox\sigma H\ast 

i
(\bfitxi i,n + \sigma Li(2Xn+1  - Xn)),

7: \bfitxi i,n+1 = \rho n\~\bfitxi i,n+1 + (1 - \rho n)\bfitxi i,n
8: end for
9: end for

We proved in Lemma 6 that A\ast \widehat y = \widehat G\ast \widehat y \v H and then

(I+ \tau A\ast A)\widehat x = \widehat x+P\widehat xQ, P = \tau G\ast G, Q = \v HT \v H .

The square matrices P and Q are of size p = M + 1 and q = HS . We have to solve (I +
\tau A\ast A)\widehat x = z, that is, \widehat x + P\widehat xQ = z. This kind of system can be solved by the mean of the
Kronecker product (2) as

\widehat x+P\widehat xQ = z \Leftarrow \Rightarrow (Ipq +Q\otimes PT)vec(\widehat x) = vec(z) ,

where vec(\widehat x) denotes the vectorization of the matrix \widehat x formed by stacking the columns of \widehat x
into a single column vector and Ipq+Q\otimes PT is a matrix of size pq\times pq which can be inverted,
giving access to vec(\widehat x) and then to \widehat x. Finally, the operator prox\tau G can be seen as a large
matrix-vector product.

Another option consists in operating on the rows \widehat xm of \widehat x, since the operator A acts on
them:

(I+ \tau A\ast A)\widehat x = z \Leftarrow \Rightarrow (I+ | \widehat \bfitg m| 2Q)\widehat xm = zm \forall m = 0, . . . ,M .

This time, the operator prox\tau G involves performingM+1 matrix-vector products of size q\times q,
which appears to be more efficient in practice.

4.3. Extended problem formulation. We now consider a data image b\sharp containing lines
with no angle restriction, which extends the previous case by relaxing the assumption made
in Hypothesis 1. We can decompose this image into the sum of two images b\sharp = b\sharp 

1+b\sharp 
2, with

b\sharp 
1 (resp., b\sharp 

2) containing vertical (resp., horizontal) lines, that is, with angles in ( - \pi /4, \pi /4]
(resp., outside this range). We can also define \widehat x\sharp 

1 of size (M + 1) \times HS and \widehat x\sharp 
2 of size

WS \times (P + 1) with WS = W + 2S and P = (H  - 1)/2 such as A\widehat x\sharp 
1 = \widehat b\sharp 

1 and \~A\widehat x\sharp 
2 = \widehat b\sharp 

2,
where \bfitg 2 = (0P - S ,\bfith ,0P - S) and \~A denotes the operator which multiplies each column vec-

tor \widehat x\sharp 
2[:, n2] by the corresponding Fourier coefficient \widehat \bfitg 2[n2] and convolves it with the filter \bfith ,

that is, \~A\widehat x2 = ( \widehat G2\widehat x2) \ast \bfith with \widehat G2 = diag(\widehat \bfitg 2[0], . . . , \widehat \bfitg 2[P ]). We finally define the Hermi-
tian symmetry operator S1 (resp., S2), which to each column \bfitv = (v0, v1, . . . , vM ) (resp.,
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row \bfitv = (v0, v1, . . . , vP )) associates the symmetric extension (v\ast M , . . . , v0, . . . , vM ) (resp.,
(v\ast P , . . . , v0, . . . , vP )). Let X1 = (\widehat x1,q1) and X2 = (\widehat x2,q2) be the optimization variables,
living in spaces \scrH 1 = \scrX 1 \times \scrQ 1 and \scrH 2 = \scrX 2 \times \scrQ 2. Let \scrH = \scrH 1 \times \scrH 2, \scrX = \scrX 1 \times \scrX 2, and
\scrQ = \scrQ 1 \times \scrQ 2. The data fidelity term is now

F (X1,X2) =
1

2
\| \scrF  - 1

1 S1A\widehat x1 + \scrF  - 1
2 S2

\~A\widehat x2  - y\| 2\mathrm{F}=
1

2
\| A\bfone \widehat x1 +A\bftwo \widehat x2  - y\| 2\mathrm{F}

with A\bfone = \scrF  - 1
1 S1A, A\bftwo = \scrF  - 1

2 S2
\~A, where \scrF 1 (resp., \scrF 2) is the Fourier transform with

respect to the columns (resp., rows) and \| \cdot \| \mathrm{F} is the Frobenius norm.

Proposition 10. The gradient of F is

\nabla F (X1,X2) =
1

2

\biggl( 
A\bfone 

\ast (A\bfone \widehat x1 +A\bftwo \widehat x2  - y)
A\bftwo 

\ast (A\bfone \widehat x1 +A\bftwo \widehat x2  - y)

\biggr) 
,(60)

which is Lipschitz-continuous of Lipschitz constant \beta = 1
\mathrm{m}\mathrm{i}\mathrm{n}(W,H) .

Proof. See the proof in Appendix H.

The image \widehat x\sharp 
1 keeps the same kind of constraints as in the Algorithm 1, which act similarly

on the image \widehat x\sharp 
2 in a rotated way; that is, we define

L(3)
m (X2) = TP+1(\widehat x2[m, :]) ,(61)

L(4)
n2

(X2) = T\prime 
WS

(fliplr(\widehat x2[:, n2]), fliplr(q2[:, n2])) ,(62)

where fliplr denotes a flip from left to right on each column of the matrix.
The boundary constraints on \widehat x1 and \widehat x2 are respectively given by

\scrB 1 =
\biggl\{ 
(\widehat x1,q1) \in \scrH 1 : \widehat x1[0, n2] = \widehat x1[0, 0] \leqslant c1, q1[m, 0] \leqslant c1

\biggr\} 
,(63)

\scrB 2 =
\biggl\{ 
(\widehat x2,q2) \in \scrH 2 : \widehat x2[m, 0] = \widehat x2[0, 0] \leqslant c2, q2[P, n2] \leqslant c2

\biggr\} 
.(64)

Likewise, the inner product on spaces \scrX 2 and \scrQ 2 are

\langle z1, z2\rangle \scrX 2 =

WS - 1\sum 
m=0

z1[m, 0]z2[m, 0] + 2Re

\Biggl( 
P\sum 

n2=1

WS - 1\sum 
m=0

z1[m,n2]z2[m,n2]
\ast 

\Biggr) 
,(65)

\langle z1, z2\rangle \scrQ 2 = 2Re

\Biggl( 
P\sum 

n2=0

WS - 1\sum 
m=0

z1[m,n2]z2[m,n2]
\ast 

\Biggr) 
,(66)

and so the adjoint of the operators remain the same.

Like before, we define L(3)(X2) = (L
(3)
0 (X2), . . . ,L

(3)
WS - 1(X2)), as well as L(4)(X2) =

(L
(4)
0 (X2), . . . ,L

(4)
P (X2)) and L = (L(1),L(2),L(3),L(4)). It is easy to show that

\| L\| 2 \leqslant \| L(\bfone )\| 2 + \| L(2)\| 2 + \| L(3)\| 2 + \| L(4)\| 2

\leqslant (HS + 1) + (M + 1) + (P + 1) + (WS + 1) .



A CONVEX SUPERRESOLUTION OF LINES IN IMAGES 231

Finally, we have

(\~X1, \~X2) = argmin
(\bfX 1,\bfX 2)\in \scrH 

\Biggl\{ 
1

2
\| A\bfone \widehat x1 +A\bftwo \widehat x2  - y\| 2\mathrm{F}(67)

+ \iota \scrB 1(X1) +
M\sum 

m=1

\iota \scrC (L
(1)
m (X1)) +

HS - 1\sum 
n2=0

\iota \scrC (L
(2)
n2

(X1))

+ \iota \scrB 2(X2) +

WS - 1\sum 
m=0

\iota \scrC (L
(3)
m (X2)) +

P\sum 
n2=1

\iota \scrC (L
(4)
n2

(X2))

\Biggr\} 
.

4.4. Inpainting problems. We now consider the case in which a binary mask is applied on
the data image, like in Figure 3. The corresponding linear operator, denoted by M, consists
in elementwise multiplication of the matrix b\sharp with a binary matrix, whose zero coefficients
are the indices of the pixels unavailable to observation. We have M\ast = M. The data fidelity
term becomes F (X) = 1

2\| M\scrF 
 - 1
1 S1A\widehat x - y\| 2\mathrm{F}, whose gradient can be expressed as previously,

with \beta = 1/W (since \| \scrF  - 1
1 \| = 1/W and \| M\| = 1). The constraints remain the same as in

(28) and the method is also easily transposable to the extended setting of subsection 4.3.
At this point, the first part of the process has been completed; that is, the image \widehat x\sharp has

been restored from the degraded image y. From this image, we can, for instance, reduce the
blur by applying other filters \bfitg r and \bfith r with smaller spread and visualize the resulting image
br, passing the solution \widehat x through this new blur operator Ar, that is, \widehat br = Ar\widehat x.

5. Recovering the line parameters by a Prony-like method. In this section, we present
the method that underlies the second step of this work (see Figure 3), namely, the estimation
of the line parameters, which is related to the spectral estimation field. We now focus on
estimating the parameters (\theta k, \alpha k, \eta k), which characterize the K lines, from the solution of
the minimization problem \~x (27), extended by Hermitian symmetry to m =  - M, . . . , - 1
beforehand. This requires the use of a classical spectral estimation method [77, 78].

5.1. Sketch of the 1-D Prony total least-squares method. The recovering procedure
hereafter, based on [70], is an extended method of the famous Prony method [67]. Let us
sketch this method, which is based on an annihilating property [5]. Let \bfitz = (z0, . . . , zN - 1) be
a complex vector, whose components are

zi =
K\sum 
k=1

dk

\Bigl( 
e \mathrm{j}2\pi fk

\Bigr) i
\forall i = 0, . . . , N  - 1(68)

with dk \in \BbbC , fk \in [ - 1/2, 1/2) the parameters to retrieve, and N \geqslant 2K + 1.
Letting \zeta k = e \mathrm{j}2\pi fk , we introduce the annihilating polynomial H(\zeta ) =

\prod K
l=1(\zeta  - \zeta l) =\sum K

l=0 hl\zeta 
K - l with h0 = 1. Then, we can note that \forall r = K, . . . , N  - 1,

K\sum 
l=0

hlzr - l =

K\sum 
l=0

hl

\Biggl( 
K\sum 
k=1

dk\zeta 
r - l
k

\Biggr) 
=

K\sum 
k=1

dk\zeta 
r - K
k

\Biggl( 
K\sum 
l=0

hl\zeta 
K - l
k

\Biggr) 
\underbrace{}  \underbrace{}  

H(\zeta k)=0

= 0 .(69)
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By rearranging the elements zi in a Toeplitz matrix PK(\bfitz ) of size (N  - K) \times (K + 1) and
rank K as

PK(\bfitz ) =

\left(   zK \cdot \cdot \cdot z0
...

. . .
...

zN - 1 \cdot \cdot \cdot zN - K - 1

\right)   ,(70)

(69) can be written with \bfith = (h0, . . . , hK) as

(\bfitz \ast \bfith )(r) = 0 \forall r = K, . . . , N  - 1\Leftarrow \Rightarrow PK\bfith = 0 .

Consequently, the method consists in finding a right singular vector \bfith = (h0, . . . , hK) of the
matrix PK(\bfitz ) associated to the singular value zero. From the SDV decomposition PK(\bfitz ) =
V1\Sigma V\ast 

2, it corresponds to the (K + 1)th column of V1, that is, \bfith = V1[:,K + 1]. Thus, the
roots of the polynomial H(\zeta ) =

\sum K
l=0 hl\zeta 

K - l are the searched complex values \zeta k = e \mathrm{j}2\pi fk and
then fk = arg(\zeta k)/(2\pi ).

Algorithm 3 below describes the procedure for estimating the frequencies:

Algorithm 3. Prony.

Input: \~\bfitz = (\~z0, . . . , \~zN - 1) \in \BbbC N a vector of form (68) possibly corrupted by noise, with
N \geqslant 2K + 1 and K the number of frequencies to retrieve.

Output: \{ \~fk\} Kk=1 the estimated frequencies.
1: Compute the SVD decomposition \~V1

\~\Sigma \~V\ast 
2 of the matrix PK(\~\bfitz ) (70)

2: Extract the (K + 1)th right singular vector \~\bfith = (\~h0, . . . , \~hK)T = \~V1[:,K + 1].
3: Compute \~fk = arg(\~\zeta k)/(2\pi ) with \{ \~\zeta k\} Kk=1 the roots of polynomial

\sum K
k=0

\~hk\zeta 
k.

Finally, the complex amplitudes can be retrieved as well, by writing (68) in matrix form
\bfitz = U\bfitd , where \bfitd = (d1, . . . , dK) and the matrix U of size N \times K is

U =
\bigl( 
\bfita (f1) \cdot \cdot \cdot \bfita (fK)

\bigr) 
=

\left(       
1 \cdot \cdot \cdot 1

e - \mathrm{j}2\pi f1 \cdot \cdot \cdot e - \mathrm{j}2\pi fK

e - \mathrm{j}4\pi f1 \cdot \cdot \cdot e - \mathrm{j}4\pi fK

...
...

...

e - \mathrm{j}2\pi (N - 1)f1 \cdot \cdot \cdot e - \mathrm{j}2\pi (N - 1)fK

\right)       ,(71)

and we recover the amplitudes by least-squares approximation:

\bfitd = (U\ast U) - 1U\ast \bfitz .(72)

5.2. Procedure of the line parameters estimation. We start with the angle parameters
estimation by applying a Prony-like method onto the rows \~\bfitt m of the output solution \~x, since
from (23) and (24) one has theoretically

\bfitt \sharp m = \widehat x\sharp [m, :] =
K\sum 
k=1

dm,k\bfita (fm,k)
T ,(73)
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whose frequencies to estimate are related to the angles by fm,k = \mathrm{t}\mathrm{a}\mathrm{n} \theta k
W m. The number of lines

can be found either by a dedicated method like the approximate Prony method (APM) [66] or
by evaluating the rank of the dual matrices TM+1(\~x[:, n2]) at the end of the algorithm, from
the decreasing profile of their eigenvalues. The output solution of the algorithm \~x, whose
stopping criteria is met when this one is sufficiently close to the exact solution

\bigm\| \bigm\| \~x - \widehat x\sharp 
\bigm\| \bigm\| \ll 1,

then retains some noise. In the noiseless case, the Prony method is always able to recover the
frequencies with infinite precision if the number of samples N is greater than 2K. But in our
case, the estimate \~fm,k is affected by some uncertainty \epsilon m,k, that is, \~fm,k = fm,k + \epsilon m,k, due
to the instability of root finding in the presence of noise. Then, we propose to estimate the
angle parameters by applying K linear regression to the data \{ \~fm,k\} 1\leqslant m\leqslant M since

\~fm,k =
tan \theta k
W

m+ \epsilon m,k ,

which leads to an estimation of the slope tan \theta k and then to the angle \theta k. The errors \epsilon m,k

committed by evaluating the frequencies fm,k have an amplitude which depends onm. Indeed,

for a small m, the frequencies fm,k = \mathrm{t}\mathrm{a}\mathrm{n} \theta k
W m, are close to each other and the Prony method

fails to accurately determine the frequencies. Consequently, it is preferable to start the linear
regression with the largest values m \geqslant m0, in order to space the frequencies on the unit circle.
We have to make sure that for large values of m, the two extremal frequencies, say, fm,1 \leqslant 0
and fm,K \geqslant 0, are not close to  - \pi and \pi , respectively, at the same time, as this would violate
the separation criteria. Then, the angles \~\theta k estimated from the K linear regressions are used
to form the matrices \~Um and to obtain the complex estimated amplitudes \~\bfitd m, by solving
least-squares linear systems (72).

Remark 8. In the preliminary version of this work [65], we proposed a simplistic method
consisting in averaging the estimates

\~\theta m,k = arctan(W \~fm,k/m) = arctan(Wfm,k/m+W\epsilon m,k/m) \approx \theta m,k +W\epsilon m,k/m ,

whose error is actually amplified by a factor W/m; this gives bad results, in particular for a
small m. Consequently, the mean \~\theta k = 1

M

\sum M
m=1

\~\theta m,k did not lead to a robust estimation of

the angles \~\theta k.

The previous estimation process of the frequencies \~fm,k and the angle estimation are
possible, as long as the sorting process of the frequencies \~fm,k is related to the corresponding
angles \theta 1 \leqslant \cdot \cdot \cdot \leqslant \theta k \leqslant \cdot \cdot \cdot \leqslant \theta K \forall m, which allows us to perform the linear regression with
respect to m. It would not be possible to do the same with \~fn2,k = (n2 tan \~\theta k  - \~\eta k)/W to
estimate the offsets \eta k, performing the Prony method on the columns, because the affine
relation does not preserve the order (one can find n and n\prime such that \~fn,k1 \leqslant \~fn,k2 and
\~fn\prime ,k1 \geqslant \~fn\prime ,k2).

The frequencies are not uniquely determined, as they belong to an interval of length
greater than one \~fn2,k \in [ - (HS + M)/W, (HS + M)/W ] and above all we would lose the
correspondence between the \~fn2,k and the previous estimated angles \~\theta k, which compromises
the estimation of the \eta k. Thus, the solution is to perform the Prony method on the estimated
vectors \~\bfite k = \{ \~em,k\} Mm\geqslant m0

, noticing from (24) that

dm,k/| dm,k| =
\Bigl( 
e - \mathrm{j}2\pi \eta k/W

\Bigr) m
,
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which leads to the frequency estimation of a single sampled exponential. This way, the corre-
spondence between the angles \~\theta k and the offsets \~\eta k is preserved.

Finally, regarding the amplitudes ck, taking the modulus of the \~dm,k's leads to inaccurate
estimates, since they are computed from the solution \~x and their amplitudes have been shrunk,
due to the choice of a parameter c < c\sharp to remove noise. Like often with variational methods,
this yields a bias toward zero and yields images with a loss of contrast; that is, the line
intensities are globally smaller. That is why we propose to perform a refitting step, to recover
the amplitudes in a better way. Given the estimated 2-D atoms 1

\mathrm{c}\mathrm{o}\mathrm{s} \~\theta k
a2\mathrm{D}(\~\theta k, \~\eta k), we evaluate

the amplitudes \~\alpha k by applying least-squares estimation to the noisy data \widehat y:
(\~\alpha 1, . . . , \~\alpha K) = argmin

\alpha 1,...,\alpha K

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
K\sum 
k=1

\alpha k
\~Ak  - \widehat y

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

, \~Ak =
1

cos \~\theta k
Aa2\mathrm{D}(\~\theta k, \~\eta k) .(74)

The procedure is summarized Algorithm 4 and is illustrated in Figure 5.

Algorithm 4. Extraction of line parameters.

Input: \~x solution of the optimization problem (27) under constraints (28)
Output: \{ \~\theta k\} Kk=1, \{ \~\eta k\} Kk=1, and \{ \~\alpha k\} Kk=1 the estimated parameters of the lines x\sharp .
1: Estimate K via APM or the rank of the matrices TM+1(\~x[:, n2]).
2: for m = 1 to M do
3: Extract the row \~\bfitt m = \~x[m, :].
4: Compute \{ \~fm,k\} Kk=1 \leftarrow Prony(\~\bfitt m,K) and sort the frequencies with respect to k.
5: end for
6: for k = 1 to K do
7: Perform a linear regression on \{ \~fm,k\} Mm\geqslant m0

to estimate tan \~\theta k and then \~\theta k.
8: end for
9: for m = 1 to M do

10: Form the matrix \~Um = (\bfita (tan \~\theta 1m/W ) \cdot \cdot \cdot \bfita (tan \~\theta Km/W )).
11: Compute the vector \~\bfitd m = ( \~dm,1, . . . , \~dm,K)T = (\~U\ast 

m
\~Um) - 1 \~U\ast 

m
\~\bfitt m.

12: Compute the normalized values \~em,k = \~dm,k/| \~dm,k| .
13: end for
14: for k = 1 to K do
15: Form the vector \~\bfite k = (\~em,k)

M
m\geqslant m0

.
16: Compute \~\eta k \leftarrow W \ast Prony(\~\bfite k, 1).
17: end for
18: Evaluate the amplitudes \{ \~\alpha k\} Kk=1 by solving the least-squares problem (74).

6. Other related works and further comments. Below we discuss other approaches to
estimate line parameters and discuss their effectiveness:
\bullet There exist sophisticated methods, called debiasing methods [12, 32, 33], which could

be considered to recover the line intensities \alpha k, instead of the least-squares method (74) used
here.
\bullet For recovering the offsets \eta k, we also could apply the Prony method on the middle line

(n2 = 0) of the image \~x, since from (22) we have
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Figure 5. Parameters extraction procedure illustrating the Algorithm 4.

\bfitl \sharp 0[m] =

K\sum 
k=1

cke
j2\pi \eta km/W(75)

and since the arguments of these exponentials are uniquely determined. Provided that the
latter frequencies are well separated, it would give a better estimation of the offsets \~\eta k, but
the correspondence with the angles \~\theta k would be lost, as mentioned previously. To reconnect
them, one could rely on the work of [66] (or equivalent [63]), noticing that

\widehat x\sharp [m,n2] =
K\sum 
k=1

\alpha k

cos \theta k
e\mathrm{j}2\pi (n2 \mathrm{t}\mathrm{a}\mathrm{n} \theta k - \eta k)

m
W =

K\sum 
k=1

\alpha k

cos \theta k
e
\mathrm{j}2\pi m

\Bigl\langle 
(n2
 - 1)(

\mathrm{t}\mathrm{a}\mathrm{n} \theta k/W

\eta k/W )
\Bigr\rangle 

are the samples (indexed bym) of the Fourier transform of
\sum K

k=1
\alpha k

\mathrm{c}\mathrm{o}\mathrm{s} \theta k
\delta (\mathrm{t}\mathrm{a}\mathrm{n} \theta k/W,\eta k/W ) (denoted

by h0) along radial lines indexed by n2, that is, h0(mn2,m) = \widehat x\sharp [m,n2]. One could exploit
this information to couple the right frequencies (tan \theta k/W, \eta k/W )k among all the possibilities
\{ (tan \theta k1/W, \eta k2/W ) : k1, k2 = 1, . . . ,K\} , using the estimated frequencies along the radial
lines h0(mn2,m), that is, using the Prony method along columns of \~x.

This procedure, called the sparse APM, requires the use of samples along lines h0(n, 0),
h0(0, n), h0(n, \alpha n+\beta ) for n \in \BbbZ N = [ - N,N ]\cap \BbbZ and \alpha , \beta \in \BbbZ , conveniently chosen. Therefore,
it first requires we separately estimate the frequencies along the horizontal axis h0(n, 0) and
the vertical axis h0(0, n), before coupling them through the lines h0(n, \alpha n + \beta ). We get

the frequencies \eta k/W along one axis, since from (75) we have h0(0,m) = \bfitl \sharp 0[m] = \widehat x\sharp [m, 0].
However, we do not directly have access to h0(n, 0) from \widehat x\sharp for estimating the tan \theta k/W . We
admittedly have these frequencies appearing on the first row \widehat x\sharp [1, :], but they are clustered
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and badly separated on this one. Consequently, it is better to use our procedure for estimating
the angles, which exploits the other rows for larger index m, in order to space the frequencies
before applying the Prony method; this is reminiscent of the strategies of decimation developed
in [2, 11, 29]. Moreover, our proposed method to estimate the offsets \eta k deals with the rows
and columns jointly and automatically preserves the correspondence, without having to restore
it a posteriori. This is less arbitrary than performing the Prony method on \bfitl \sharp 0 (75), which
requires well-separated frequencies on this column; this is a meaningless condition, since the
lines can intersect the x-axis.
\bullet The authors of [36] proposed a convex approach to the recovery of a superposition of

point sources from samples of its Fourier transform along radial lines. They also emphasize
the equivalence between working with the radial Fourier coefficients and working with its
Radon projections, according to the Fourier slice theorem. An important question is then
how many lines (or projections) and samples are needed to obtain an exact reconstruction.
The authors of [73] show that K points can theoretically be determined by the projection
onto K + 1 distinct lines through the origin. In [63], it was conjectured that under certain
additional assumptions, it is possible to choose only four lines passing through the origin to
guarantee a unique reconstruction, but this conjecture has been shown to be false in [34].
These authors cast the problem into a nonconvex optimization problem for which there are
guarantees for recovering the points, but this constrained optimization problem is NP-hard.
Finally, the authors of [36] give a total variation minimization formulation of the problem.
Like in [63], where the radial line of angle \theta is chosen to maximize the minimal distance
between two projections onto it, the authors show the crucial role of the minimal separation
distance \nu \mathrm{m}\mathrm{i}\mathrm{n}(\Delta \theta ) between the projected positions \Delta \theta = \{ \langle \theta , xk\rangle \} Kk=1. Thus, they proved that
for a set of radial measurements \Theta \in \BbbS 1 for which the global minimal separation distance is
\nu min = inf\theta \in \Theta \nu \mathrm{m}\mathrm{i}\mathrm{n}(\Delta \theta ), total variation minimization has a unique solution achieved by their
algorithm from three different radial lines of \Theta and a sampling set \BbbZ N with N \geqslant 2/\nu \mathrm{m}\mathrm{i}\mathrm{n}. These
results provide strong guarantees, but the framework is quite different from ours, especially
because the unit sampling step is constant on every radial line, while in our case the samples
are taken on points (mn2,m). Moreover, the frequencies along these lines can easily collide,
which contradicts the separation assumption on the projected positions. Finally, a common
point between our two-step superresolution recovery of lines and the references cited above is
that all these methods come down to 1-D settings, based on a sufficient separation property.
\bullet A final approach might be to apply the Radon transform to the noisy blurred lines y =

b\sharp + \bfitepsilon , which somehow transform blurred lines to blurred peaks, representing in Figure 2(b)
by 2-D point sources in the Radon domain. Then, we come down to a classical 2-D spikes
superresolution problem, with on the one hand a noise amount which is somehow reduced [57]
and on the other hand a minimal separation infk \not =l dist(\theta k, \theta l), which is better than the one
we have with the frequencies tan \theta k/W of \~x. However, the main drawback is that the Radon
transform is performed on the data image y of blurred and noisy lines, which is finite and
discrete, so that it produces some artifacts like ``Butterfly patterns"" (see Figure 2) [30, 48],
due to the finite length of lines. Moreover, they induce other discrete approximations due to
the projections on a grid [86]. These problems are avoided with our model and assumptions,
which yield an off-the-grid superresolution estimation of the parameters and outperform the
naive approaches using the Radon (or Hough) transform.
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7. Experimental results. The reconstruction procedure was implemented in MATLAB
code, available on the webpage of the first author. We consider an image of size W = H = 65,
containing three lines of parameters (\theta 1, \eta 1, \alpha 1)=( - \pi /5, 0, 255), (\theta 2, \eta 2, \alpha 2)=(\pi /16, - 15, 255),
and (\theta 3, \eta 3, \alpha 3) = (\pi /6, 10, 255). We consider the normalized filter \bfith approximating a Gaus-
sian function of standard deviation \kappa , that is, \varphi 2 : t \mapsto \rightarrow (2\pi \kappa 2) - 1/2 exp( - t2/(2\kappa 2)), on the
compact set [ - S, S] with S = \lceil 4\kappa \rceil  - 1, and the normalized filter \bfitg = (0M - S ,\bfith ,0M - S),
whose DFT is an interpolation of \widehat h, which approaches the continuous Fourier transform\widehat \varphi 2 : \nu \mapsto \rightarrow exp( - 2\pi 2\kappa 2\nu 2). Then, \| \widehat \bfitg \| \infty = \| \widehat \bfith \| \infty = 1. We use Algorithm 2 for solving the
optimization problem (44) and recovering the lines in the following experiments:
\bullet The first experiment consists in the reconstruction of the lines from \~x in the absence of

noise, (i) by applying the operator A on this solution, possibly with other kernels \bfitg r and \bfith r

and then taking the 1-D inverse Fourier transform, and (ii) by applying the Prony method
to recover the parameters of the lines, with the aim to display the lines by vectorial drawing.
We run the algorithm for 106 iterations. Results of relative errors for the solution \~x and
the estimated parameters are given in Figure 6 and Table 1, where \Delta \theta i/\theta i = | \theta i  - \~\theta i| /| \theta i| ,
\Delta \alpha i/\alpha i = | \alpha i  - \~\alpha i| /| \alpha i| , and \Delta \eta i = | \eta i  - \~\eta i| . Although the algorithm is slow to achieve high
accuracy, convergence is guaranteed and we observe empirically perfect reconstruction of x\sharp ,
when the lines are not too close to each other.
\bullet The purpose of the second experiment is to show the robustness of the method in the

presence of a strong noise level (Figure 7(a)). With c = c\sharp /3 and only 2.103 iterations, we are
able to completely remove the noise and to estimate the line parameters with an error of 10 - 2.
\bullet Finally, the third experiment, with 105 iterations, illustrates the efficiency of the method

even in the presence of a large blur (Figure 7(b)), yielding an error of 10 - 4. For both experi-
ments, the estimated images corresponding to steps (i) and (ii) are visually identical and are
displayed in Figures 7(c) and 7(d).

We emphasize that our algorithm has a much higher accuracy than what is achieved by
peak detection after the Hough or Radon transform. These methods are relevant for giving a
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Figure 6. Log-log plot of the relative errors \| \widehat \bfx  - \widehat \bfx \sharp \| \scrX 
\| \widehat \bfx \sharp \| \scrX 

and
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\| \widehat \bfy \| \scrY for the first experiment.
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Table 1
Errors on line parameters recovered by the proposed method.

Experiment 1 Experiment 2 Experiment 3

\Delta \theta /\theta (10 - 7, 3.10 - 6, 7.10 - 7) (10 - 2, 6.10 - 2, 9.10 - 2) (6.10 - 7, 9.10 - 5, 8.10 - 6)

\Delta \alpha /\alpha (10 - 7, 10 - 7, 10 - 7) (10 - 2, 9.10 - 2, 2.10 - 1) (4.10 - 5, 2.10 - 5, 2.10 - 5)

\Delta \eta (4.10 - 6, 7.10 - 6, 7.10 - 6) (5.10 - 2, 4.10 - 2, 3.10 - 2) (5.10 - 5, 10 - 4, 3.10 - 4)

(a) (b) (c) (d)

Figure 7. (a) An image \bfy = \bfb \sharp + \bfitepsilon of three lines x\sharp , blurred by a Gaussian kernel \phi with spread \kappa = 1
and corrupted by a strong noise \bfitepsilon \sim \scrN (0, \zeta ) with \zeta = 200, for the second experiment, (b) with a strong blur
(\kappa = 8) and no noise (\zeta = 0) for the third experiment, (c) the denoised image \~\bfb , and (d) a vectorial drawing
of the estimated lines of x\sharp by the Prony-like method.

coarse estimation of line parameters. They are robust to strong noise but completely fail with
a strong blur, which prevents peak detection (see Figure 8). Notice that even by decreasing
the discretization steps of the process, we rapidly reach a plateau, as illustrated by Figure 9.
This method is limited in accuracy by the pixel grid. By contrast, our superresolution method
makes it possible to achieve infinite precision for the line parameters.

7.1. Closing lines. For a reasonable amount of noise (\zeta = 20), the algorithm succeeds in
separating two close lines (\theta 1, \eta 1, \alpha 1) = ( - 0.73, - 1, 255) and (\theta 2, \eta 2, \alpha 2) = ( - 0.75, 1, 255) as il-
lustrated in Figure 10. The estimation of the parameters gives (\~\theta 1, \~\eta 1, \~\alpha 1)=( - 0.725, - 0.7, 237)
and (\~\theta 2, \~\eta 2, \~\alpha 2) = ( - 0.753, - 0.6, 251).

7.2. More lines and different amplitudes. A more complicated example is depicted
in Figure 11(a), containing seven well-separated lines whose parameters are enumerated in
Table 2, corrupted by some noise with variance \zeta = 20. We run the algorithm with c = 0.8c\sharp ,
\tau = 1, \sigma = (\tau (M + HS + 2)) - 1, and after only 2.103 iterations, we are able to denoise the
image as illustrated in Figure 11(b) and to estimate the line parameters, with the proposed
Prony procedure, as illustrated in Figure 11(d), with an error of 10 - 2, as reported in Table 3.

7.3. General case. We consider an image y = b\sharp + \bfitepsilon composed as four noisy blurred
lines (\kappa = 1 and \zeta = 20), two of them rather vertical (i.e., with angle in ( - \pi /4, \pi /4])), and
the other two rather horizontal. The extended algorithm presented in subsection 4.3 provides
after n = 6 \cdot 104 iterations the denoised images depicted in Figure 12. It acts as an angles
selector according to the horizontality and verticality: the rather vertical lines are gathered
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Figure 8. The Radon transform of the image \bfy for Experiments 1, 2, and 3. The true parameters of the
lines are in green.
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Figure 9. Change of accuracy with respect to the angle step of the MATLAB Radon transform.

(a) (b) (c) (d)

Figure 10. (a) An image \bfy = \bfb \sharp + \bfitepsilon of two closed lines x\sharp , blurred by a Gaussian kernel \phi with spread
\kappa = 1 and corrupted by noise \bfitepsilon \sim \scrN (0, 20), and (b) the denoised image \~\bfb , (c) the ground truth image \bfb \sharp , and
(d) a vectorial drawing of the estimated lines of x\sharp by the Prony-like method.
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(a) (b) (c) (d)

Figure 11. (a) An image \bfy = \bfb \sharp + \bfitepsilon of seven well-separated lines x\sharp , blurred by a Gaussian kernel \phi with
spread \kappa = 1 and corrupted by noise \bfitepsilon \sim \scrN (0, 20), and (b) the denoised image \~\bfb , (c) the ground truth image
\bfb \sharp , and (d) a vectorial drawing of the estimated lines of x\sharp by the Prony-like method.

Table 2
Angles, offsets, and amplitudes of the seven lines.

\theta k  - 0.75  - 0.5  - 0.25 10 - 3 0.3 0.55 0.75

\eta k 15 25 2 7  - 20  - 5  - 10

\alpha k 60 80 255 100 180 120 240

Table 3
Errors on line parameters recovered by the proposed method.

\Delta \theta 1.10 - 2 2.10 - 2 1.10 - 3 2.10 - 3 5.10 - 3 5.10 - 3 1.10 - 3

\Delta \eta 5.10 - 1 7.10 - 2 4.10 - 2 1.10 - 1 1.10 - 2 2.10 - 2 1.10 - 2

\Delta \alpha /\alpha 4.10 - 2 5.10 - 2 5.10 - 3 4.10 - 2 6.10 - 3 1.10 - 2 4.10 - 3

in the reconstructed image \~b1 (see Figure 12(b)) and the rather horizontal lines are gathered
in the reconstructed image \~b2 (see Figure 12(c)), so that b\sharp \approx \~b1 + \~b1, which validates the
procedure.

7.4. Inpainting. We consider occluded lines with a maskM as described in subsection 4.4.
In Figure 13, we occlude a portion of the blurred line (\kappa = 1) by applying a square mask M
in the middle. We run the optimization algorithm and visualize as in Figures 13(a) to 13(d),
that is, the evolution of the reconstruction after n = 2.103, n = 104, and n = 106 iterations.
We can see that the method is able to reconstruct the part of the line occluded thanks to
the information available outside the mask and to the optimization constraints related to the
line structure. In the same way, Figures 13(e) to 13(h) enable us to visualize the ``diffusion
process"" of the information within the occluded part in the Fourier domain. Finally, the
experiment is carried out for an image containing three occluded lines, either by a bigger
mask in Figure 14(a) or by a mask whose binary inputs were drawn randomly Figure 14(b).
In both cases the lines are successfully reconstructed as in Figure 14(c).

8. Conclusion. We proposed a new variational formulation for the problem of recovering
lines in degraded images, using the framework of atomic norm minimization. A primal-dual
splitting algorithm has been used to solve the convex optimization problem. We applied it
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(a) (b) (c)

Figure 12. (a) An image \bfy = \bfb \sharp + \bfitepsilon of four well-separated lines x\sharp , blurred by a Gaussian kernel \phi with
spread \kappa = 1 and corrupted by noise \bfitepsilon \sim \scrN (0, 20), two of them being rather vertical (angle in ( - \pi /4, \pi /4]) and
the other two rather horizontal, (b) the reconstructed image \~\bfb 1, and (c) the reconstructed image \~\bfb 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. (a) An image \bfy = \bfb \sharp + \bfitepsilon of one line x\sharp , blurred by a Gaussian kernel \phi with spread \kappa = 1, no
noise, and a small square mask \bfM , (b) reconstruction of \~\bfb by inpainting after 2 \cdot 103 iterations, (c) after 104

iterations, (d) at convergence, and (e)--(h) the corresponding reconstructions of \widehat \bfx in the Fourier domain over
iterations.

successfully to several image restoration problems, recovering line parameters by the Prony
method, and we showed the robustness of the method to strong blur and strong noise levels.
We stress the novelty of our approach, which is to estimate lines with parameters (angle,
offset, amplitude) living in a continuum, with perfect reconstruction in absence of noise,
without being limited by the discrete nature of the image, nor its finite size. This work can
be viewed as a proof of concept for superresolution line detection and invites us to revisit
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(a) (b) (c)

Figure 14. (a) An image \bfy = \bfb \sharp + \bfitepsilon of three line x\sharp , blurred by a Gaussian kernel \phi with spread \kappa = 1, no
noise, and a large square mask \bfM , (b) with a random mask, and (c) their reconstruction at convergence.

the Hough transform in a continuous way. Many theoretical questions remain open, like the
study of the separation conditions under which perfect reconstruction can be guaranteed.
The robustness of the method needs to be theoretically studied and would require a statistical
analysis; this is left for future work. From a practical point of view, parallel computing would
be welcome to speed up the proposed algorithm. We should also investigate the possibility
of relaxing the periodicity and bandlimitedness assumptions, possibly by solving a convex
feasibility program without any regularizers [38, 39]. At the time of finalizing this paper, we
became aware of the two other recent papers, [7] and [40]; we leave for future work the study
of their relationship to the setting considered here. In subsequent work, we plan to apply
the proposed approach to biomedical images containing curved structures, like tubulins, by
operating on small overlapping patches.

Appendix A. Characterization of the sampling process. Formally, we can write x\sharp \ast \phi =
(x\sharp \ast \phi 1) \ast \phi 2 with \phi 1(t1, t2) = \varphi 1(t1)\delta (t2) and \phi 2(t1, t2) = \delta (t1)\varphi 2(t2), where \varphi 1 and \varphi 2 are
L1 functions. So, after the first horizontal convolution, using the fact that \delta (at) = \delta (t)/| a| for
any a \not = 0, we obtain the function

u\sharp = x\sharp \ast \phi 1 : (t1, t2) \mapsto \rightarrow 
K\sum 
k=1

\alpha k

cos \theta k
\varphi 1

\Bigl( 
t1  - \eta k + t2 tan \theta k

\Bigr) 
.(76)

We can show that, after the second vertical convolution, we get the function b\sharp obtained
in (6). Figure 15 explains our notations in more details and illustrates the relation between all
continuous and discrete variables. In the following we consider a weaker version of Assumption
(ii) about \varphi 2.

Assumption (ii\prime ). \varphi 2 \in L1(\BbbR ) is such that
\int 
\BbbR \varphi 2(t2) dt2 = 1. Denoting sinc(t2) =

sin(\pi t2)/(\pi t2) the sinus cardinal with sinc(0) = 1, we make the assumption that the discrete
filter \bigl( 

\bfith [n] = (\varphi 2 \ast sinc)(n)
\bigr) 
n\in \BbbZ (77)

has compact support of length 2S + 1 for some S \in \BbbN , that is,

\bfith [n] = 0 if | n| \geqslant S + 1 .
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Figure 15. Relations between the variables.

Remark 9. Note that if \varphi 2 is bandlimited, we simply have \bfith [n] = \varphi 2(n), which reverts
back to assumption (ii).

Let us deduce from these assumptions some other properties satisfied by \varphi 1 and \varphi 2 and
their associated discrete filters \bfitg and \bfith . First, we have the following proposition.

Proposition 11 (Nyquist--Whittaker--Shannon). The function \varphi 1, which is periodic and ban-
dlimited, is determined by W degrees of freedom only. That is, with the coefficients \bfitg [n] =
\varphi 1(n), n = 0, . . . ,W  - 1, the function \varphi 1 is a linear combination of shifted Dirichlet kernels
DM (t) =

\sum M
m= - M e \mathrm{j}mt:

\varphi 1(t) =
1

W

W - 1\sum 
n=0

\bfitg [n]DM

\biggl( 
2\pi (t - nW )

W

\biggr) 
\forall t \in \BbbR .(78)

Proof. Let us start with the following classical theorem, in our notation.

Theorem 12 (Nyquist--Whittaker--Shannon). Let f be a T -periodic function and cm(f) = 0
for | m| \geqslant M + 1. Then f can be reconstructed from the regular sampling \{ f(ka), k =
0, 1, . . . , 2M\} , where a = T

2M+1 is the sampling rate, in this way,

f(x) =
1

2M + 1

2M\sum 
k=0

f(ka)DM

\biggl( 
2\pi 

T
(x - ka)

\biggr) 
,(79)

where DM is the Dirichlet kernel:

DM (x) =

M\sum 
m= - M

e \mathrm{j}mx =
sin
\bigl( 
(M + 1

2)x
\bigr) 

sin x
2

.(80)

Applying to \varphi 1 which is W -periodic and cm(\varphi 1) = 0 for | m| \geqslant M +1 with 2M +1 =W , then
a = 1 and the Nyquist theorem leads to
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\varphi 1(t) =
W - 1\sum 
n=0

\varphi 1(n)
sin\pi (t - n)

W sin
\Bigl( 
\pi (t - n)

W

\Bigr) .(81)

Consequently, we give this explicit formula \bfitg [n] = \varphi 1(n) and \widehat \bfitg [n] = cn - M (\varphi 1) for n =
0, 1, . . . , 2M . By the simple change of variable n\leftarrow n - M , one can also obtain

M\sum 
n= - M

\varphi 1(n)
sin\pi (t - n)

W sin
\Bigl( 
\pi (t - n)

W

\Bigr) .(82)

Then,

1

W

\int W

0
\varphi 1(t) dt =

1

W

M\sum 
n= - M

\bfitg [n] = 1 ,

that is, the filter \bfitg is normalized as well. Moreover\int W

0
\varphi 1(t)

2 dt =
M\sum 

n= - M

\bfitg [n]2 =
M\sum 

n= - M

\varphi 1(n)
2

and by the Parseval relation,\sum 
m\in \BbbZ 
| cm(\varphi 1)| 2 =

M\sum 
m= - M

| \widehat \bfitg [m]| 2 = 1

W

\int W

0
\varphi 1(t)

2 dt .

Now, we describe the sampling process leading from continuous to discrete formulation, based
on the following proposition.

Proposition 13. It is equivalent to perform the vertical convolution of u\sharp = x\sharp \ast \phi 1 with \varphi 2,
with \varphi 2\ast sinc, or with the Dirac comb \gamma : t2 \mapsto \rightarrow 

\sum S
n= - S \bfith [n]\delta (t2 - n), where \bfith [n] = (\varphi 2\ast sinc)(n).

Proof. Due to Hypothesis 1, the assumption \theta k \in ( - \pi /4, \pi /4] yields | tan \theta k| \leqslant 1 for every
k = 1, . . . ,K. So, the function u\sharp given in (76), as a function of t2 at fixed t1, is bandlimited:
for every t1 \in [0,W ), the Fourier transform \scrF 2u

\sharp : \omega 2 \mapsto \rightarrow 
\int 
\BbbR u

\sharp (t1, t2)e
 - \mathrm{j}2\pi \omega 2t2 dt2, which is a

distribution (sum of K Dirac combs), is zero for every | \omega 2| \geqslant 1/2. Indeed, we have

[\scrF 2u
\sharp ](\omega 2) =

K\sum 
k=1

\alpha k

sin \theta k
\widehat \varphi 1

\biggl( 
\omega 2

tan \theta k

\biggr) 
exp

\biggl( 
j2\pi \omega 2

t1  - \eta k
tan \theta k

\biggr) 
.

Since | tan \theta k| \leqslant 1, we have | \omega 2/ tan \theta k| \geqslant | \omega 2| . The support of \widehat \varphi 1 is included in [ - 1/2, 1/2]
(cm(\varphi 1) = 0 for | m| \geqslant M + 1 and M/W < 1/2), as well as the support of \scrF 2u

\sharp which is
necessarily included in the support of \widehat \varphi 1. Then, we have the equivalence \scrF 2u

\sharp = \scrF 2u
\sharp \cdot 

1[ - 1/2,1/2] \leftrightarrow u\sharp = u\sharp \ast sinc and furthermore u\sharp \ast \varphi 2 = u\sharp \ast (\varphi 2 \ast sinc). In the Fourier domain,

the function h = \varphi 2 \ast sinc is bandlimited, so [\scrF 2u
\sharp ]\widehat h = [\scrF 2u

\sharp ]\widehat h\mathrm{p}\mathrm{e}\mathrm{r}, where \widehat h\mathrm{p}\mathrm{e}\mathrm{r} corresponds to
the periodization of the spectrum of \widehat h with period 1, which amounts to saying that

u\sharp \ast h = u\sharp \ast 

\Biggl( \sum 
n

h[n]\delta (\cdot  - n)

\Biggr) 
.
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Remark 10. Assumption (ii\prime ) implies that the filter (\bfith [n])n should have compact support,
but we can note that the function h = \varphi 2 \ast sinc does not have compact support, since it
is bandlimited. This means that the continuous function h has to vanish at integer points
t = n for | n| > S. Given such a compact filter (\bfith [n])Sn= - S , the unique bandlimited function h
satisfying these conditions is obtained by the Shannon interpolation formula:

h(t) =
S\sum 

n= - S

\bfith [n] sinc(t - n) .

By uniqueness, we necessarily have \varphi 2 \ast sinc = h and we can notice that there always exists a
bandlimited solution \varphi 2 of this equation, which is simply \varphi 2 = h. In practice, we can always
approximate a PSF by a bandlimited function h, with 2S + 1 samples \bfith [n] of this PSF; that
is why we argued in assumption (ii) that the compact support assumption is not restrictive.

Now, to obtain the discrete image b\sharp of (5), let us first define u\sharp by sampling u = x\sharp \ast \phi 1
with unit step:

u\sharp [n1, n2] = (x\sharp \ast \phi 1)(n1, n2) \forall n1 = 0, . . . ,W  - 1, n2 =  - S, . . . ,H  - 1 + S .(83)

With the above assumptions and Proposition 13, we can express b\sharp from u\sharp using a discrete
vertical convolution with the filter \bfith :

b\sharp [n1, n2] =
S\sum 

p= - S

u\sharp [n1, n2  - p]\bfith [p] \forall n1 = 0, . . . ,W  - 1, n2 = 0, . . . ,H  - 1 .(84)

Altogether, we completely and exactly characterized the sampling process, which involves a
continuous blur \phi , using the two discrete and finite filters (\bfitg [n])W - 1

n=0 and (\bfith [n])Sn= - S .

Appendix B. Proof of Proposition 1. First, we consider the image \widehat u\sharp obtained by
applying the 1-D DFT on every column of u\sharp (see (83)):

\widehat u\sharp [m,n2] =
1

W

W - 1\sum 
n1=0

u\sharp [n1, n2]e
 - \mathrm{j} 2\pi m

W
n1(85)

\forall m =  - M, . . . ,M, n2 =  - S, . . . ,H  - 1 + S ,

which are the exact Fourier coefficients of the function t \mapsto \rightarrow (x\sharp \ast \phi 1)(t, n2), following assumption

(i). Hence, from (76) and \widehat u\sharp [m,n2] =
1
W

\int W
0 (x\sharp \ast \phi 1)(t, n2)e - \mathrm{j} 2\pi m

W
t dt, we obtain

\widehat u\sharp [m,n2] = \widehat \bfitg [m]\widehat x\sharp [m,n2] \forall m =  - M, . . . ,M, n2 =  - S, . . . ,H  - 1 + S .(86)

Now we apply a 1-D DFT on the first component of the discrete image b\sharp (see (84)), leading
to the elements\widehat b\sharp [m,n2] =

\Bigl( \widehat u\sharp [m, :] \ast \bfith 
\Bigr) 
[n2] \forall m =  - M, . . . ,M, n2 = 0, . . . ,H  - 1 .(87)

Following (86) and (87), as illustrated in Figure 15, we have

A\widehat x\sharp = \widehat b\sharp ,

which concludes the proof.
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Appendix C. Proof of Proposition 3. Let us introduce

SDP(\bfitz ) = inf
\bfitq \in \BbbC N ,q0\geqslant 0

\biggl\{ 
q0 : T

\prime 
N (\bfitz , \bfitq ) =

\biggl( 
TN (\bfitq ) \bfitz 
\bfitz \ast q0

\biggr) 
\succcurlyeq 0

\biggr\} 
.(88)

We want to prove that SDP(\bfitz ) = \| \bfitz \| \scrA and that the minimum in (88) is achieved.

\bullet Suppose that \bfitz =
\sum K

k=1 ck\bfita (fk, \phi k) with ck > 0. Let us define \bfitq =
\sum K

k=1 ck\bfita (fk) with

\bfitq = (q0, q1, . . . , qN - 1). Then q0 =
\sum K

k=1 ck. For i = 0, . . . , N  - 1, the atoms \bfita (fk) have
elements [\bfita (fk)]i = e \mathrm{j}2\pi fki, hence

TN (\bfita (fk)) =

\left(     
1 e - \mathrm{j}2\pi fk \cdot \cdot \cdot e - \mathrm{j}2\pi fk(N - 1)

e \mathrm{j}2\pi fk 1 \cdot \cdot \cdot e - \mathrm{j}2\pi fk(N - 2)

...
...

. . .
...

e \mathrm{j}2\pi fk(N - 1) e \mathrm{j}2\pi fk(N - 2) \cdot \cdot \cdot 1

\right)     

=

\left(     
1

e \mathrm{j}2\pi fk

...

e \mathrm{j}2\pi fk(N - 1)

\right)     \bigl( 1 e - \mathrm{j}2\pi fk \cdot \cdot \cdot e - \mathrm{j}2\pi fk(N - 1)
\bigr) 

= \bfita (fk)\bfita (fk)
\ast .

We deduce that

TN (\bfitq ) =
K\sum 
k=1

ckT(\bfita (fk))

=

K\sum 
k=1

ck\bfita (fk)\bfita (fk)
\ast 

=
K\sum 
k=1

ck\bfita (fk, \phi k)\bfita (fk, \phi k)
\ast .

Therefore, the matrix\biggl( 
TN (\bfitq ) \bfitz 
\bfitz \ast q0

\biggr) 
=

K\sum 
k=1

ck

\biggl( 
\bfita (fk, \phi k)

1

\biggr) \biggl( 
\bfita (fk, \phi k)

1

\biggr) \ast 

is positive semidefinite. Given q0 =
\sum K

k=1 ck, we get SDP(\bfitz ) \leqslant 
\sum K

k=1 ck. Since this holds for
any decomposition of \bfitz , we conclude that SDP(\bfitz ) \leqslant \| \bfitz \| \scrA .
\bullet Conversely, let \bfitq \in \BbbC N be a vector such that q0 \geqslant 0 and (\bfT N (\bfitq ) \bfitz 

\bfitz \ast q0
) \succcurlyeq 0. In particular

we have TN (\bfitq ) \succcurlyeq 0. We denote by r the rank of TN (\bfitq ). Theorem 2 ensures that TN (\bfitq ) \succcurlyeq 0
and is of rank r \leqslant N , if and only if there exists dk > 0 and distinct fk, such that

\bfitq =
r\sum 

k=1

dk\bfita (fk) ,(89)

q0 =

r\sum 
k=1

dk .(90)
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Let us set D = diag(d1, . . . , dr) and

V =
\bigl( 
\bfita (f1) \cdot \cdot \cdot \bfita (fr)

\bigr) 
=

\left(       
1 1 \cdot \cdot \cdot 1

e \mathrm{j}2\pi f1 e \mathrm{j}2\pi f2 \cdot \cdot \cdot e \mathrm{j}2\pi fr

e \mathrm{j}2\pi f12 e \mathrm{j}2\pi f22 \cdot \cdot \cdot e \mathrm{j}2\pi fr2

...
...

...
...

e \mathrm{j}2\pi f1(N - 1) e \mathrm{j}2\pi f2(N - 1) \cdot \cdot \cdot e \mathrm{j}2\pi fr(N - 1)

\right)       .

By linearity of the operator TN ,

TN (\bfitq ) =
r\sum 

k=1

dkTN (\bfita (fk))

=
r\sum 

k=1

dk\bfita (fk)\bfita (fk)
\ast 

= VDV\ast .

Since TN (\bfita (fk)) contains only ones on the diagonal, we have

1

N
tr(TN (\bfitq )) =

r\sum 
k=1

dk > 0 .

Besides, 1
N tr(TN (\bfitq )) = q0, therefore q0 > 0.

Let be M a general block matrix M = ( \bfA \bfB 
\bfB \ast \bfC ); the Schur complement gives

[ C \succ 0\Rightarrow M \succcurlyeq 0 ] =\Rightarrow [ A - BC - 1B\ast \succcurlyeq 0 ] .

We apply this lemma to M = (\bfT N (\bfitq ) \bfitz 
\bfitz \ast q0

) with A = TN (q), B = z, and C = q0. The left term
is satisfied by hypothesis, hence

TN (\bfitq ) - q - 1
0 \bfitz \bfitz \ast \succcurlyeq 0 \Leftarrow \Rightarrow VDV\ast  - q - 1

0 \bfitz \bfitz \ast \succcurlyeq 0 .

We define the square matrix Vr by extracting the r first rows and columns of V, which is a
Vandermonde matrix, whose determinant is

det(Vr) =
\prod 

1\leqslant k<l\leqslant r

(\bfita (fl) - \bfita (fk)) .

Since we assumed fk \not = fl, \forall k \not = l, Vr is invertible and rank(V) = r. Let us define
\bfitv : \BbbC r \rightarrow \BbbC N and \bfitv \ast : \BbbC N \rightarrow \BbbC r the linear operators corresponding to matrices V and V\ast .
We have rank(\bfitv \ast ) = rank(\bfitv ) = r. By the rank-nullity theorem,

dim(ker \bfitv \ast ) = N  - r .

Thus, there exists a vector \bfitp \in \BbbC N such that \bfitp \not = 0 and V\ast \bfitp = 0\leftrightarrow \bfitp \ast V = 0. Consequently,
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\bfitp \ast (VDV\ast  - q - 1
0 \bfitz \bfitz \ast )\bfitp \geqslant 0\leftrightarrow (\bfitp \ast V)D(V\ast \bfitp ) - q - 1

0 \bfitp \ast \bfitz \bfitz \ast \bfitp \geqslant 0

\leftrightarrow q - 1
0 \| \bfitp 

\ast \bfitz \| 22 \leqslant 0

\leftrightarrow \| \bfitp \ast \bfitz \| 22 = 0

\leftrightarrow \bfitp \ast \bfitz = 0

\leftrightarrow \bfitp \bot \bfitz .

Since \bfitp \in ker \bfitv \ast , then \bfitz \in (ker \bfitv \ast )\bot = Im \bfitv , so there exists a vector \bfitw \in \BbbC r such that
\bfitz = V\bfitw =

\sum r
k=1wk\bfita (fk), hence

VDV\ast  - q - 1
0 V\bfitw \bfitw \ast V\ast \succcurlyeq 0 .

Besides, Im \bfitv \ast \subset \BbbC r and dim(Im \bfitv \ast ) = rank(\bfitv \ast ) = r = dim(\BbbC r), thus Im \bfitv \ast = \BbbC r and
\bfitv \ast is surjective. Consequently, there exists a vector \bfitu \in \BbbC N such that V\ast \bfitu = sgn(\bfitw ) =
(w1/| w1| , . . . , wr/| wr| )T and

\bfitu \ast (VDV\ast  - q - 1
0 V\bfitw \bfitw \ast V\ast )\bfitu \geqslant 0\leftrightarrow (\bfitu \ast V)D(V\ast \bfitu ) - q - 1

0 (\bfitu \ast V)\bfitw \bfitw \ast (V\ast \bfitu ) \geqslant 0

\leftrightarrow sgn(\bfitw )\ast Dsgn(\bfitw ) - 1

q0
sgn(\bfitw )\ast \bfitw \bfitw \ast sgn(\bfitw ) \geqslant 0

\leftrightarrow 
r\sum 

k=1

dk

\bigm| \bigm| \bigm| \bigm| wk

| wk| 

\bigm| \bigm| \bigm| \bigm| 2  - q - 1
0

\Biggl( 
r\sum 

k=1

w\ast 
k

| wk| 
wk

\Biggr) 2

\geqslant 0

\leftrightarrow q20 \geqslant 

\Biggl( 
r\sum 

k=1

| wk| 

\Biggr) 2 \Biggl( 
since q0 =

r\sum 
k=1

dk

\Biggr) 

\leftrightarrow q0 \geqslant 
r\sum 

k=1

| wk| \geqslant \| \bfitz \| \scrA 

by definition of the atomic norm (19). Taking the infimum leads to SDP(\bfitz ) \geqslant \| \bfitz \| \scrA .

\bullet Finally, let us show that the infimum of the linear form \ell : \bfitq \mapsto \rightarrow q0 is achieved on the set

A(\bfitz ) =

\biggl\{ 
\bfitq \in \BbbR + \times \BbbC N - 1 : T\prime 

N (\bfitz , \bfitq ) =

\biggl( 
TN (\bfitq ) \bfitz 
\bfitz \ast q0

\biggr) 
\succcurlyeq 0

\biggr\} 
,

that is,

SDP(\bfitz ) = inf
\bfitq \in A(\bfitz )

\ell (\bfitq ) = min
\bfitq \in A(\bfitz )

\ell (\bfitq ) .(91)

(i) Let us notice that since \bfitq \in A(\bfitz ) implies TN (\bfitq ) \succcurlyeq 0, then

\ell (\bfitq ) = q0 =
1

N
tr(TN (\bfitq )) =

N - 1\sum 
i=0

\lambda i \geqslant 0 ,

with \lambda i the eigenvalues of TN (\bfitq ) which are positive reals.



A CONVEX SUPERRESOLUTION OF LINES IN IMAGES 249

(ii) First we show that A(\bfitz ) is nonempty, since \bfitq = (\| \bfitz \| 2, 0, . . . , 0)T \in A(\bfitz ). Indeed for a fixed
vector \bfitz = (z0, . . . , zN - 1) \in \BbbC N , \bfitv = (v0, . . . , vN ) \in \BbbC N+1, and \bfitv \prime = (v0, . . . , vN - 1) \in \BbbC N we
have for this \bfitq 

\bfitv \ast 
\biggl( 
TN (\bfitq ) \bfitz 
\bfitz \ast q0

\biggr) 
\bfitv = \| \bfitz \| 2\| \bfitv \| 22 + 2Re

\Biggl( 
vN

N - 1\sum 
i=0

ziv
\ast 
i

\Biggr) 
\geqslant \| \bfitz \| 2\| \bfitv \| 22  - 2| vN | | \langle \bfitz ,\bfitv \prime \rangle | 
\geqslant \| \bfitz \| 2\| \bfitv \| 22  - 2| vN | \| \bfitz \| 2\| \bfitv \prime \| 2
\geqslant \| \bfitz \| 2(\| \bfitv \prime \| 22  - 2| vN | \| \bfitv \prime \| 2 + | vN | 2)
\geqslant \| \bfitz \| 2(\| \bfitv \prime \| 2  - | vN | )2

\geqslant 0 .

Then \bfitq = (\| \bfitz \| 2, 0, . . . , 0)T \in A(\bfitz ) and q0 = \| \bfitz \| 2, which means that A(\bfitz ) is nonempty and
the set \{ \ell (\bfitq ) : \bfitq \in A(\bfitz )\} \subset \BbbR + is nonempty, so it admits a lower bound less than or equal to
\| \bfitz \| 2, hence

0 \leqslant SDP(\bfitz ) = inf
\bfitq \in A(\bfitz )

\ell (\bfitq ) \leqslant \| \bfitz \| 2 .

(iii) From (ii), we have
SDP(\bfitz ) = inf

\bfitq \in A(\bfitz )
\ell (\bfitq ) = inf

B(\bfitz )
\ell (\bfitq ) ,

where
B(\bfitz ) = \{ \bfitq \in A(\bfitz ), q0 \leqslant \| \bfitz \| 2\} \subset A(\bfitz ) .

Now, from (89) and (90) we can show that B(\bfitz ) is bounded since

\forall \bfitq \in A(\bfitz ), \| \bfitq \| 2 \leqslant 
r\sum 

k=1

dk \| \bfita (fk)\| 2 \leqslant 
\surd 
N

r\sum 
k=1

dk =
\surd 
Nq0 ,

hence
\forall \bfitq \in B(\bfitz ), \| \bfitq \| 2 \leqslant 

\surd 
Nq0 \leqslant 

\surd 
N\| \bfitz \| 2 .

Consequently,
B(\bfitz ) \subset B\| \cdot \| 2(0, \| \bfitz \| 2) .

(iv) Moreover, A(\bfitz ) = T\prime 
N (\bfitz , \cdot ) - 1(\scrC ) is a closed set since the cone of positive matrix \scrC is

closed and the mapping T\prime 
N (\bfitz , \cdot ) is linear, so it is continuous in finite dimension. Thus,

B(\bfitz ) = A(\bfitz ) \cap 
\bigl\{ 
\bfitq \in \BbbR + \times \BbbC N - 1 : q0 \leqslant \| \bfitz \| 2

\bigr\} 
is a closed set, as the intersection of two closed sets.
(v) From (iii) and (iv), we conclude that B(\bfitz ) is a compact set and that the function \ell , which
is linear and then continuous, achieves its minimum on B(\bfitz ) so on A(\bfitz ), which proves the
result (91).

Appendix D. Proof of Proposition 4. The proof of the direct implication is straightfor-
ward. Let us consider the converse one.
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By Theorem 2, since \forall n,TM (\bfitl n) \succcurlyeq 0 and is of rank one, then there exists \gamma n \geqslant 0 and
fn \in [0, 1[ such that

\bfitl n[m] = \gamma n exp(j2\pi fnm) .

Since we assume \forall n, \widehat x[0, n] = \widehat x[0, 0] = c1, then \bfitl n[0] = \bfitl 0[0] = c1, we have

\bfitl n[m] = c1 exp(j2\pi fnm) .(92)

Let m be fixed. The Prony matrix P1(\bfitt m) of size 2\times (N  - 1)

P1(\bfitt m) =

\left(   \bfitt m[1] \bfitt m[0]
...

...
\bfitt m[N  - 1] \bfitt m[N  - 2]

\right)   
is of rank one; consequently there exists \lambda m \in \BbbC such that

\bfitt m[n+ 1] = \lambda m\bfitt m[n] \forall 0 \leqslant n \leqslant N  - 2 .

Thus,

\bfitt m[n] = \lambda nm\bfitt m[0] \forall 0 \leqslant n \leqslant N  - 1 .

From (92) \bfitt m[0] = \bfitl 0[m] = c1 exp(j2\pi f0m), \bfitt m[1] = \bfitl 1[m] = c1 exp(j2\pi f1m), and then

\lambda m =
\bfitt m[1]

\bfitt m[0]
=
\ell 1[m]

\ell 0[m]
= exp(j2\pi (f1  - f0)m) .

Therefore, we have

\bfitt m[n] = \lambda nm\bfitt m[0]

= exp(j2\pi (f1  - f0)m)nc1 exp(j2\pi f0m)

= c1 exp[j2\pi ((f1  - f0)n+ f0)m] .

Appendix E. Proof of Proposition 8. For \bfitz = (z0, . . . , zN - 1) \in \BbbR \times \BbbC N - 1 and M \in 
\scrT N \subset \scrM N a Hermitian Toeplitz matrix of dimension N , we have

\langle TN (\bfitz ) , M\rangle \scrM =
\sum 

0\leqslant i,j\leqslant N - 1

[TN (\bfitz )]\ast ijMij

=
\sum 

0\leqslant i\leqslant j\leqslant N - 1

zj - iMij +
\sum 

0\leqslant j<i\leqslant N - 1

z\ast i - jMij

(\ast )
=

N - 1\sum 
k=0

N - 1 - k\sum 
l=0

zkMl,l+k +

N - 1\sum 
k=1

N - 1 - k\sum 
l=0

z\ast kMl+k,l

(\ast \ast )
= z0

\Biggl( 
N - 1\sum 
l=0

Ml,l

\Biggr) 
+ 2Re

\Biggl\{ 
N - 1\sum 
k=1

z\ast k

\Biggl( 
N - 1 - k\sum 

l=0

Ml+k,l

\Biggr) \Biggr\} 

with (\ast ) a change of variable k \leftarrow j  - i and (\ast \ast ) using that Ml,l+k = M\ast 
l+k,l.
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Then, by writing

T\prime 
N (\bfitz , \bfitq ) =

\left(     
0

TN (\bfitq )
...
0

0 \cdot \cdot \cdot 0 q0

\right)     +

\left(     
z0

0
...

zN - 1

z\ast 0 \cdot \cdot \cdot z\ast N - 1 0

\right)     
we obtain as well for M \in \scrT N+1\bigl\langle 

T\prime 
N (\bfitz , \bfitq ) , M

\bigr\rangle 
\scrM = 2Re

\Biggl\{ 
N - 1\sum 
k=0

z\ast kMN+1,k

\Biggr\} 

+ q0

\Biggl( 
N\sum 
l=0

Ml,l

\Biggr) 
+ 2Re

\Biggl\{ 
N - 1\sum 
k=1

q\ast k

\Biggl( 
N - 1 - k\sum 

l=0

Ml+k,l

\Biggr) \Biggr\} 
.

Consequently, the adjoint of the operator

TM+1 : (\scrX \bfitl , \langle \cdot , \cdot \rangle \scrX \bfitl 
)\rightarrow (\scrT M+1 , \langle \cdot , \cdot \rangle \scrM ) ,

with the inner product \langle \cdot , \cdot \rangle \scrX \bfitl 
defined in (35), when applied to a matrix M(2) \in \scrT M+1, yields

the vector
\bfitz 2 = T\ast 

M+1M
(2) \in \BbbR \times \BbbC M ,

whose components are

\bfitz 2[k] =
M - k\sum 
l=0

M
(2)
l+k,l \forall k = 0, . . . ,M .

Similarly, the adjoint of the operator

T\prime 
HS

: (\scrX \bfitt \times \scrQ \bfitt , \langle \cdot , \cdot \rangle \scrX \bfitt 
+ \langle \cdot , \cdot \rangle \scrQ \bfitt 

)\rightarrow (\scrT HS+1 , \langle \cdot , \cdot \rangle \scrM ) ,

with the inner products \langle \cdot , \cdot \rangle \scrX \bfitt 
and \langle \cdot , \cdot \rangle \scrQ \bfitt 

defined in (36)--(37), when applied to M(2) \in 
\scrT HS+1, yields the pair of vectors

(\bfitz 1, \bfitq 1) = T
\prime \ast 
HS

M(1) \in \BbbC HS \times (\BbbR \times \BbbC HS - 1) ,

whose components are

\bfitz 1[k] = M
(1)
HS+1,k, \bfitq 1[k] =

HS - 1 - k\sum 
l=0

M
(1)
l+k,l + \delta kM

(1)
HS ,HS

\forall k = 0, . . . ,HS  - 1 .

Appendix F. Proof of Proposition 9. First, let us determine the operator norm

\| TM+1\| 2 = sup\bfitz \in \scrX l

\| \bfT M+1(\bfitz )\| 2\mathrm{F}
\| \bfitz \| 2\scrX l

. By definition, we have \| \bfitz \| 2\scrX l
= z20 + 2 | z1| 2 + \cdot \cdot \cdot + 2 | zM | 2.

Moreover, we get

\| TM+1(\bfitz )\| 2\mathrm{F} = (M + 1)z20 + 2M | z1| 2 + 2(M  - 1) | z2| 2 + \cdot \cdot \cdot + 2 | zM | 2 \leqslant (M + 1) \| \bfitz \| 2\scrX l

with equality when \bfitz = (1, 0, . . . , 0), hence

\| TM+1\| 2 =M + 1 .(93)

Let us now decompose the operator T\prime 
HS

as follows:
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T\prime 
HS

(\bfitz , \bfitq ) =

\left(     
0

THS
(\bfitq )

...
0

0 \cdot \cdot \cdot 0 q0

\right)     
\underbrace{}  \underbrace{}  

\bfT 2(\bfitq )

.
+

\left(     
z0

0
...

zHS - 1

z\ast 0 \cdot \cdot \cdot z\ast HS - 1 0

\right)     
\underbrace{}  \underbrace{}  

\bfT 1(\bfitz )

We directly have \| T1(\bfitz )\| 2\mathrm{F} = \| \bfitz \| 2\scrX t
, that is, \| T1\| = 1. Besides, we have

\| T2(\bfitq )\| 2\mathrm{F} = (HS + 1)q20 + 2(HS  - 1) | q1| 2 + \cdot \cdot \cdot + 2 | qHS - 1| 2 \leqslant (HS + 1) \| \bfitq \| 2\scrQ t

with equality when \bfitq = (1, 0, . . . , 0), hence \| T2\| 2 = HS + 1.

Now, we have \bigm\| \bigm\| \bigm\| T\prime 
HS

(\bfitz , \bfitq )
\bigm\| \bigm\| \bigm\| 2
\mathrm{F}

\| (\bfitz , \bfitq )\| 2\scrX t\times \scrQ t

=
\| T1(\bfitz )\| 2\mathrm{F} + \| T2(\bfitq )\| 2\mathrm{F}
\| \bfitz \| 2\scrX t

+ \| \bfitq \| 2\scrQ t

\leqslant 
\| T1\| 2 \| \bfitz \| 2\scrX t

+ \| T2\| 2 \| \bfitq \| 2\scrQ t

\| \bfitz \| 2\scrX t
+ \| \bfitq \| 2\scrQ t

\leqslant \alpha \| T1\| 2 + (1 - \alpha ) \| T2\| 2

\leqslant max(\| T1\| 2 , \| T2\| 2) = \| T2\| 2

with \alpha =
\| \bfitq \| 2\scrQ t

\| \bfitz \| 2\scrX t
+\| \bfitq \| 2\scrQ t

and it is achieved when \bfitz = 0 and \bfitq = (1, 0, . . . , 0), hence\bigm\| \bigm\| T\prime 
HS

\bigm\| \bigm\| 2 = HS + 1 .

We are now able to derive the operator norms (48),\bigm\| \bigm\| \bigm\| L(1)(X)
\bigm\| \bigm\| \bigm\| 2
(1)

=
M\sum 

m=1

\bigm\| \bigm\| \bigm\| L(1)
m (X)

\bigm\| \bigm\| \bigm\| 2
\mathrm{F}

\leqslant 
\bigm\| \bigm\| T\prime 

HS

\bigm\| \bigm\| 2 M\sum 
m=1

\Bigl( 
\| \widehat x[m, :]\| 2\scrX t

+ \| q[m, :]\| 2\scrQ t

\Bigr) 
\leqslant 
\bigm\| \bigm\| T\prime 

HS

\bigm\| \bigm\| 2 \| X\| 2\scrH 
with equality when \widehat x = 0, q[0, :] = 0 and q[m, :] = (1, 0, . . . , 0) \forall m \in J1,MK.

Similarly, we have \bigm\| \bigm\| \bigm\| L(2)(X)
\bigm\| \bigm\| \bigm\| 2
(2)

=

HS - 1\sum 
n2=0

\bigm\| \bigm\| \bigm\| L(2)
n2

(X)
\bigm\| \bigm\| \bigm\| 2
\mathrm{F}

\leqslant \| TM+1\| 2
HS - 1\sum 
n2=0

\| \widehat x[:, n2]\| 2\scrX l

\leqslant \| TM+1\| 2 \| X\| 2\scrH 
with equality when q = 0 and \widehat x[:, n2] = (1, 0, . . . , 0) \forall n2 \in J0, HS  - 1K.
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We conclude that \bigm\| \bigm\| \bigm\| L(1)
\bigm\| \bigm\| \bigm\| 2
(1)

=
\bigm\| \bigm\| T\prime 

HS

\bigm\| \bigm\| 2 = HS + 1 ,\bigm\| \bigm\| \bigm\| L(2)
\bigm\| \bigm\| \bigm\| 2
(2)

= \| TM+1\| 2 =M + 1 .

Finally,

\| L(X)\| 2(1,2) =
\bigm\| \bigm\| \bigm\| L(1)(X)

\bigm\| \bigm\| \bigm\| 2
(1)

+
\bigm\| \bigm\| \bigm\| L(2)(X)

\bigm\| \bigm\| \bigm\| 2
(2)

\leqslant 

\biggl( \bigm\| \bigm\| \bigm\| L(1)
\bigm\| \bigm\| \bigm\| 2
(1)

+
\bigm\| \bigm\| \bigm\| L(2)

\bigm\| \bigm\| \bigm\| 2
(2)

\biggr) 
\| X\| 2\scrH .

Appendix G. Proof of Proposition 7. Let F1 and F2 be the mappings

F1 : \widehat x \in \scrX \mapsto \rightarrow 1

2
\| A\widehat x - \widehat y\| \scrY 2 \in \BbbR ,

F2 : X = (\widehat x,q) \in \scrH \mapsto \rightarrow \widehat x \in \scrX .

Then, F : \scrH \mapsto \rightarrow \BbbR is written F = F1 \circ F2 and its differential at X0 is

(dF )\bfX 0(X) = (dF1)F2(\bfX 0) \circ (dF2)\bfX 0(X) .

First, we have

F1(\widehat x+ h) =
1

2
\| A(\widehat x+ h) - \widehat y\| 2\scrY 

=
1

2
\| A\widehat x - \widehat y\| 2\scrY +

1

2
\langle A\widehat x - \widehat y,Ah\rangle \scrY +

1

2
\langle Ah,A\widehat x - \widehat y\rangle \scrY +

1

2
\| Ah\| 2\scrY 

= F1(\widehat x) + \langle A\widehat x - \widehat y,Ah\rangle \scrY + o(\| h\| \scrX )
= F1(\widehat x) + \langle A\ast (A\widehat x - \widehat y),h\rangle \scrX + o(\| h\| \scrX ) ,

that is,

(dF1)\widehat \bfx (h) = \langle A\ast (A\widehat x - \widehat y),h\rangle \scrX .

Moreover, F2 is linear so (dF2)\bfX 0(X) = F2(X), hence

(dF )\bfX 0(X) = \langle A\ast (A\widehat x0  - \widehat y), \widehat x\rangle \scrX =

\biggl\langle \biggl( 
A\ast (A\widehat x0  - \widehat y)

0

\biggr) 
,X

\biggr\rangle 
\scrH 
,

that is,

\nabla F (X0) =

\biggl( 
A\ast (A\widehat x0  - \widehat y)

0

\biggr) 
.

Consequently,

\| \nabla F (X) - \nabla F (X\prime )\| \scrH \leqslant \| A\ast A(\widehat x - \widehat x\prime )\| \scrX \leqslant \| A\ast A\| \| \widehat x - \widehat x\prime \| \scrX .

We get \beta = \| A\ast A\| = \| A\| 2 and Lemma 5 concludes the proof.
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Appendix H. Proof of Proposition 10. Let us compute the differential function of F :

F (X1 + h1,X2 + h2)

=
1

2
\langle A\bfone \widehat x1 +A\bftwo \widehat x2 +A\bfone h1 +A\bftwo h2  - y,A\bfone \widehat x1 +A\bftwo \widehat x2 +A\bfone h1 +A\bftwo h2  - y\rangle \scrM 

= F (X1,X2) +
1

2
\langle A\bfone h1,A\bfone \widehat x1 +A\bftwo \widehat x2  - y\rangle \scrM +

1

2
\langle A\bfone h1,A\bftwo h2\rangle \scrM +

1

2
\langle A\bfone h1,A\bfone h1\rangle \scrM 

+
1

2
\langle A\bftwo h2,A\bfone \widehat x1 +A\bftwo \widehat x2  - y\rangle \scrM +

1

2
\langle A\bftwo h2,A\bfone h1\rangle \scrM +

1

2
\langle A\bftwo h2,A\bftwo h2\rangle \scrM 

with

| \langle A\bfone h1,A\bftwo h2\rangle \scrM | \leqslant \| A\bfone \| \| A\bftwo \| \| h1\| \scrH 1\| h2\| \scrH 2 = o (\| (h1,h2)\| \scrH ) ,

so we deduce that

\nabla F (X1,X2) =
1

2

\biggl( 
A\bfone 

\ast (A\bfone \widehat x1 +A\bftwo \widehat x2  - y)
A\bftwo 

\ast (A\bfone \widehat x1 +A\bftwo \widehat x2  - y)

\biggr) 
.

The adjoint operators are \~A\ast \bfitz = ( \widehat G\ast 
2\bfitz ) \ast \=\bfith \prime , (\scrF  - 1

1 )\ast = 1
W \scrF 1 and (\scrF  - 1

2 )\ast = 1
H\scrF 2 and

S\ast 
1(v - M , . . . , v0, . . . , vM ) = (v0, . . . , vM ) and S\ast 

2(v - P , . . . , v0, . . . , vP ) = (v0, . . . , vP ).
Let us determine the Lipschitz constant of the gradient \nabla F :

\| \nabla F (X1,X2) - \nabla F (X\prime 
1,X

\prime 
2)\| 2\scrX =

1

4
\| A\bfone 

\ast (A\bfone (\widehat x1  - \widehat x\prime 
1) +A\bftwo (\widehat x2  - \widehat x\prime 

2))\| 2\scrX 1

+
1

4
\| A\bftwo 

\ast (A\bfone (\widehat x1  - \widehat x\prime 
1) +A\bftwo (\widehat x2  - \widehat x\prime 

2))\| 2\scrX 2
.

We are looking for a majoration of each term. We deal with the first C1, the second C2 being
obtained in the same way. Using the inequality (a+ b)2 \leqslant 2a2 + 2b2,

C1 \leqslant 
1

4
(\| A\bfone 

\ast A\bfone \| \| \widehat x1  - \widehat x\prime 
1\| \scrX 1 + \| A\bfone 

\ast A\bftwo \| \| \widehat x2  - \widehat x\prime 
2\| \scrX 2)

2

\leqslant 
1

2
\| A\bfone 

\ast A\bfone \| 2\| \widehat x1  - \widehat x\prime 
1\| 2\scrX 1

+
1

2
\| A\bfone 

\ast A\bftwo \| 2\| \widehat x2  - \widehat x\prime 
2\| 2\scrX 2

.

We have \| A\| = \| A\ast \| = 1, \| Si\widehat x1\| \mathrm{F} = \| \widehat xi\| \scrX , for i \in \{ 1, 2\} , that is, \| Si\| = 1 and \| \scrF  - 1
i \bfitv \| 22 =

1
N2 \| \bfitv \| 22; that is, \| \scrF  - 1

i \| = 1
N . Hence, \| A\bfone \| \leqslant 1

W , \| A\bfone 
\ast \| \leqslant 1, \| A\bftwo \| \leqslant 1

H , and \| A\bftwo \| \leqslant 1.
Consequently, we get

C1 \leqslant 
1

2W 2
\| \widehat x1  - \widehat x\prime 

1\| 2\scrX 1
+

1

2H2
\| \widehat x2  - \widehat x\prime 

2\| 2\scrX 2

and exactly the same majoration for C2. Thus, we have

\| \nabla F (X1,X2) - \nabla F (X\prime 
1,X

\prime 
2)\| 2\scrX \leqslant \beta 2(\| X1  - X\prime 

1\| 2\scrH 1
+ \| X2  - X\prime 

2\| 2\scrH 2
)

with

\beta =
1

min(W,H)
.
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