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Abstract

We consider minimizing the sum of three convex functions, where the first one F is
smooth, the second one is nonsmooth and proximable and the third one is the composition
of a nonsmooth proximable function with a linear operator L. This template problem
has many applications, for instance, in image processing and machine learning. First,
we propose a new primal–dual algorithm, which we call PDDY, for this problem. It is
constructed by applying Davis–Yin splitting to a monotone inclusion in a primal–dual
product space, where the operators are monotone under a specific metric depending on
L. We show that three existing algorithms (the two forms of the Condat–Vũ algorithm
and the PD3O algorithm) have the same structure, so that PDDY is the fourth missing
link in this self-consistent class of primal–dual algorithms. This representation eases the
convergence analysis: it allows us to derive sublinear convergence rates in general, and
linear convergence results in presence of strong convexity. Moreover, within our broad and
flexible analysis framework, we propose new stochastic generalizations of the algorithms,
in which a variance-reduced random estimate of the gradient of F is used, instead of the
true gradient. Furthermore, we obtain, as a special case of PDDY, a linearly converging
algorithm for the minimization of a strongly convex function F under a linear constraint;
we discuss its important application to decentralized optimization.

1 Introduction

Many problems in statistics, machine learning or signal processing can be formulated as high-
dimensional convex optimization problems [3,12,56,59,68,69]. They typically involve a smooth
term F and a nonsmooth regularization term G, and F +G is often minimized using (a variant
of) Stochastic Gradient Descent (SGD) [47]. However, in many cases, G is not proximable; that
is, its proximity operator does not admit a closed-form expression. In particular, structured
regularization functions, like the total variation or its variants for images or graphs [10, 23, 24,
27,31,61,63], or the overlapping group lasso [3], are known to have computationally expensive
proximity operators. Also, when G is a sum of several regularizers, G is not proximable, even if
the individual regularizers are, in general [60]. Thus, in many situations, G is not proximable,
but it takes the form G = R +H ◦ L where R, H are proximable and L is a linear operator.
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Therefore, in this paper, we study the problem

Problem (1) : minimize
x∈X

(
F (x) +R(x) +H(Lx)

)
, (1)

where L : X → Y is a linear operator, X and Y are real Hilbert spaces (all spaces are supposed of
finite dimension), F : X → R is a convex function, R : X → R∪{+∞} and H : Y → R∪{+∞}
are proper, convex, lower semicontinuous functions; we refer to textbooks like [5,9] for standard
definitions of convex analysis. F is supposed to be ν-smooth, for some ν > 0; that is, it is
differentiable on X and its gradient ∇F is ν-Lipschitz continuous: ∥∇F (x) − ∇F (x′)∥ ≤
ν∥x− x′∥, for every (x, x′) ∈ X 2.

Our contributions are the following. We recast Problem (1) as finding a zero of the sum
of three operators, which are monotone in a primal–dual product space, under a particular
metric (Sect. 2). Then, we apply Davis–Yin splitting (DYS) [28], a generic method for this
type of monotone inclusions (Sect. 3). By doing so, we recover the existing PD3O [77] and two
forms of the Condat–Vũ [22,72] algorithms, but we also discover a new one, which we call the
Primal–Dual Davis–Yin (PDDY) algorithm (Sect. 4). In other words, we discover PDDY as the
fourth “missing link” in a group of primal–dual algorithms, which is self-consistent, in the sense
that by exchanging the roles of the primal and dual terms R+H ◦L and R∗ ◦ (−L∗) +H∗, or
by exchanging the roles of two monotone operators in the construction, we recover this or that
algorithm. Furthermore, the decomposition of the primal–dual monotone inclusion into three
terms allows us to use an important inequality regarding DYS for the analysis of the algorithms.
More precisely, we can apply Lemma 3.2, by instantiating the monotone operators and inner
product with the ones at hand. Thanks to this property, we can easily replace the gradient
∇F by a stochastic variance-reduced (VR) estimator, which can be much cheaper to evaluate
(Sect. 5). Thus, we derive the first VR stochastic algorithms to tackle Problem (1), to the best of
our knowledge. We also leverage the DYS representation of the algorithms to prove convergence
rates; our analysis covers the deterministic and stochastic cases in a unified way (Sect. 5).
Moreover, as a byproduct of our analysis, we discover the first linearly converging algorithm
for the minimization of a smooth strongly convex function, using its gradient, under a linear
constraint, without projections on it (Sect. 6). Its application to decentralized optimization
is discussed in Appendix C. Finally, numerical experiments illustrating the performance of
the algorithms are presented in Sect. 7. A part of the proofs is deferred to Appendix A and
additional linear convergence results are derived in Appendix B.

1.1 Related Work

Splitting algorithms: Algorithms allowing to solve nonsmooth optimization problem involv-
ing several proximable terms are called proximal splitting algorithms [6, 7, 19, 21, 25, 44, 57]. A
classical one is the Douglas–Rachford algorithm [32,51,62,70] (or, equivalently, the ADMM [8,
34,35]) to minimize the sum of two nonsmooth functions R+H. To minimize G = R+H◦L, the
Douglas–Rachford algorithm can be generalized to the Primal–Dual Hybrid Gradient (PDHG)
algorithm, a.k.a. Chambolle–Pock algorithm [11,55]. Behind its success is the ability to handle
the composite term H ◦ L using separate activation of L, its adjoint operator LT , and the
proximity operator of H. However, in many applications, the objective function involves a
smooth function F , for instance, a least-squares term or a sum of logistic losses composed with
inner products. To cover these applications, proximal splitting algorithms like the Combettes–
Pesquet [20], Condat–Vũ [22,72] and PD3O [77] algorithms have been proposed; they can solve
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the general Problem (1). These algorithms are primal–dual in nature; that is, they solve not
only the primal problem (1), but also the dual problem, in a joint way. Many other algorithms
exist to solve Problem (1), and we refer to [25] and [21] for an overview of primal–dual proxi-
mal splitting algorithms. We can also mention the class of projective splitting algorithms first
proposed in [33] and further developed in several papers [2,17,41–43]. They proceed by build-
ing a separating hyperplane between the current iterate and the solution and then projecting
the current iterate onto this hyperplane, to get closer to the solution. The projective splitting
algorithms with forward steps [42,43] are fully split and can solve Problem (1), as well.

Stochastic splitting algorithms: In machine learning applications, the gradient of F is
often much too expensive to evaluate and replaced by a cheaper stochastic estimate. We can
distinguish the two classes of standard stochastic gradients [36, 37, 47] and variance-reduced
(VR) stochastic gradients [29, 36, 38, 40, 74, 79]. VR stochastic gradients are estimators that
ensure convergence to an exact solution of the problem, like with deterministic algorithms;
that is, the variance of the stochastic errors they induce tends to zero. For some problems,
VR stochastic algorithms are significantly faster than their deterministic counterparts. By
contrast, with standard stochastic gradients and constant stepsizes, the algorithms typically do
not converge to a fixed point and continue to fluctuate in a neighborhood of the solution set;
this can be sufficient if the desired accuracy is low and speed is critical. When L = I, where
I denotes the identity, solving Problem (1) with standard and with VR stochastic gradients
was considered in [78] and in [58], respectively. In the general case L ̸= I of interest in this
paper, solving the problem with a standard stochastic gradient was considered in [80]. Thus,
our proposed method is the first to allow solving the general Problem (1) in a flexible way, with
calls to ∇F or to standard or VR stochastic estimates.

1.2 Mathematical Background

We introduce some notions and notations of convex analysis and operator theory, see [5, 9] for
more details. Let Z be a real Hilbert space. Let G : Z → R ∪ {+∞} be a convex function.
The domain of G is the convex set dom(G) = {z ∈ Z : G(z) ̸= +∞}, its subdifferential is
the set-valued operator ∂G : z ∈ Z 7→ {y ∈ Z : (∀z′ ∈ Z) G(z) + ⟨z′ − z, y⟩ ≤ G(z′)}, and
its conjugate function is G∗ : z 7→ supz′∈Z{⟨z, z′⟩ − G(z′)}. If G is differentiable at z ∈ Z,
∂G(z) = {∇G(z)}. We define the proximity operator of G as the operator proxG : z ∈ Z 7→
argminz′∈Z

{
G(z′) + 1

2∥z − z′∥2
}
. Finally, given any b ∈ Z, we define the convex indicator

function ιb : z 7→ {0 if z = b, +∞ otherwise}.
Let M : Z → 2Z be a set-valued operator. The inverse M−1 of M is defined by the relation

z′ ∈ M(z) ⇔ z ∈ M−1(z′). The set of zeros of M is zer(M) := {z ∈ Z, 0 ∈ M(z)}. M
is monotone if ⟨w − w′, z − z′⟩ ≥ 0 and strongly monotone if there exists µ > 0 such that
⟨w − w′, z − z′⟩ ≥ µ∥z − z′∥2, for every (x, x′) ∈ Z2, w ∈ M(z), w′ ∈ M(z′). M is maximally
monotone if its graph is not contained in the graph of another monotone operator. The resolvent
of M is JM := (I +M)−1. If G is proper, convex and lower semicontinuous, ∂G is maximally
monotone, J∂G = proxG, zer(∂G) = argminG and (∂G)−1 = ∂G∗.

A single-valued operator M on Z is ξ-cocoercive if ξ∥M(z)−M(z′)∥2 ≤ ⟨M(z)−M(z′), z−
z′⟩, for every (z, z′) ∈ Z2. The resolvent of a maximally monotone operator is 1-cocoercive and
∇G is 1/ν-cocoercive, for any ν-smooth function G.

The adjoint of a linear operator P is denoted by P ∗ and its operator norm by ∥P∥. P
is self-adjoint if P = P ∗. Let P : Z → Z be a self-adjoint linear operator. P is positive if
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⟨Pz, z⟩ ≥ 0, for every z ∈ Z, and strongly positive if, additionally, ⟨Pz, z⟩ = 0 implies z = 0.
In this latter case, the inner product induced by P is defined by ⟨z, z′⟩P := ⟨Pz, z′⟩ and the
norm induced by P by ∥z∥P := ⟨z, z⟩1/2P . We denote by ZP the real Hilbert space made from
the vector space Z endowed with ⟨·, ·⟩P .

2 Primal–Dual Formulation and Optimality Conditions

For Problem (1) to be well posed, we suppose that there exists x⋆ ∈ X , such that

0 ∈ ∇F (x⋆) + ∂R(x⋆) + L∗∂H(Lx⋆). (2)

Then, x⋆ is a solution to (1). For instance, a standard qualification constraint for this assump-
tion to hold is that 0 belongs to the relative interior of dom(H) − Ldom(R) [20]. Then, for
every x⋆ satisfying (2), there exists y⋆ ∈ ∂H(Lx⋆) such that 0 ∈ ∇F (x⋆) + ∂R(x⋆) + L∗y⋆;
equivalently, (x⋆, y⋆) is a zero of the set-valued operator M defined by

M : (x, y) ∈ X × Y 7→
(
∇F (x) + ∂R(x) + L∗y,−Lx+ ∂H∗(y)

)
. (3)

Conversely, for every (x⋆, y⋆) ∈ zer(M), x⋆ is a solution to (1) and y∗ is a solution to the dual
problem

minimize
y∈Y

(
(F +R)∗(−L∗y) +H∗(y)

)
, (4)

see Sect. 15.3 of [5]; moreover, there exist r⋆ ∈ ∂R(x⋆) and h⋆ ∈ ∂H∗(y⋆) such that, using
2-block vector notations in X × Y,[

0
0

]
=

[
∇F (x⋆) + r⋆ + L∗y⋆

−Lx⋆ + h⋆

]
. (5)

In the sequel, we let (x⋆, y⋆) ∈ zer(M) and r⋆, h⋆ be any elements such that Eqn. (5) holds.
A zero of M is also a saddle point of the convex–concave Lagrangian function, defined as

L (x, y) := F (x) +R(x)−H∗(y) + ⟨Lx, y⟩. (6)

For every x ∈ X and y ∈ Y, we define the Lagrangian gap at (x, y) as L (x, y⋆) − L (x⋆, y).
The following holds:

Lemma 2.1 (Lagrangian gap). For every x ∈ X and y ∈ Y, we have

L (x, y⋆)− L (x⋆, y) = DF (x, x
⋆) +DR(x, x

⋆) +DH∗(y, y⋆), (7)

where the Bregman divergence of the smooth function F between any two points x and x′ is
DF (x, x

′) := F (x) − F (x′) − ⟨∇F (x′), x − x′⟩, and DR(x, x
⋆) := R(x) − R(x⋆) − ⟨r⋆, x − x⋆⟩,

DH∗(y, y⋆) := H∗(y)−H∗(y⋆)− ⟨h⋆, y − y⋆⟩.

Proof. Using the optimality conditions (5), we have

DF (x, x
⋆) +DR(x, x

⋆) = (F +R)(x)− (F +R)(x⋆)− ⟨∇F (x⋆) + r⋆, x− x⋆⟩
= (F +R)(x)− (F +R)(x⋆) + ⟨L∗y⋆, x− x⋆⟩
= (F +R)(x)− (F +R)(x⋆) + ⟨y⋆, Lx⟩ − ⟨y⋆, Lx⋆⟩.
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We also have

DH∗(y, y⋆) = H∗(y)−H∗(y⋆)− ⟨Lx⋆, y − y⋆⟩
= H∗(y)−H∗(y⋆)− ⟨Lx⋆, y⟩+ ⟨y⋆, Lx⋆⟩.

Hence,

DF (x, x
⋆) +DR(x, x

⋆) +DH∗(y, y⋆)

= (F +R)(x)− (F +R)(x⋆) +H∗(y)−H∗(y⋆)− ⟨Lx⋆, y⟩+ ⟨y⋆, Lx⟩
= L (x, y⋆)− L (x⋆, y).

For every x ∈ X , y ∈ Y, Lemma 2.1 and the convexity of F,R,H∗ imply that L (x⋆, y) ≤
L (x⋆, y⋆) ≤ L (x, y⋆). So, the Lagrangian gap L (x, y⋆) − L (x⋆, y) is nonnegative, and it is
zero if x is a solution to Problem (1) and y is a solution to the dual problem (4). The converse
is not always true, generally speaking. But in realistic situations, this is the case, and under
mild assumptions, like strict convexity of the functions around x⋆ and y⋆, the Lagrangian gap
converging to zero is a valid measure of convergence to a solution.

The operator M defined in (3) can be shown to be maximally monotone. Moreover, we
have

M(x, y) =

[
∂R(x)

0

]
+

[
L∗y

−Lx + ∂H∗(y)

]
+

[
∇F (x)

0

]
(8)

=

[
0

∂H∗(y)

]
+

[
∂R(x) + L∗y
−Lx

]
+

[
∇F (x)

0

]
, (9)

and each term at the right hand side of (8) or (9) is maximally monotone, see Corollary 25.5
in [5].

3 Davis–Yin Splitting

Solving Problem (1) boils down to finding a zero (x⋆, y⋆) of the monotone operator M defined
in (3), which can be written as the sum of three monotone operators, like in (8) or (9). The
method proposed by Davis and Yin [28], which we call Davis–Yin splitting (DYS), is dedicated
to this problem; that is, find a zero of the sum of three monotone operators, one of which is
cocoercive.

Let Z be a real Hilbert space. Let Ã, B̃, C̃ be maximally monotone operators on Z. We
assume that C̃ is ξ-cocoercive, for some ξ > 0. The DYS algorithm, denoted by DYS(Ã, B̃, C̃)
and shown above, aims at finding an element in zer(Ã+ B̃+ C̃), supposed nonempty. The fixed
points of DYS(Ã, B̃, C̃) are the triplets (v⋆, z⋆, u⋆) ∈ Z3, such that

z⋆ = JγB̃(v
⋆), u⋆ = JγÃ

(
2z⋆ − v⋆ − γC̃(z⋆)

)
, u⋆ = z⋆. (10)

These fixed points are related to the zeros of Ã + B̃ + C̃ as follows, see Lemma 2.2 in [28]:
for every (v⋆, z⋆, u⋆) ∈ Z3 satisfying (10), z⋆ ∈ zer(Ã + B̃ + C̃). Conversely, for every z⋆ ∈
zer(Ã+ B̃ + C̃), there exists (v⋆, u⋆) ∈ Z2, such that (v⋆, z⋆, u⋆) satisfies (10). We have [28]:
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Davis–Yin Splitting alg.
DYS(Ã, B̃, C̃) [28]

1: Input: v0 ∈ Z, γ > 0
2: for k = 0, 1, 2, . . . do
3: zk = JγB̃(v

k)

4: uk+1 = JγÃ(2z
k − vk − γC̃(zk))

5: vk+1 = vk + uk+1 − zk

6: end for

LiCoSGD (new)

1: Input: x0 ∈ X , y0 ∈ Y, γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: wk = xk − γgk+1

4: yk+1 = yk + τL(wk − γL∗yk)− τb
5: xk+1 = wk − γL∗yk+1

6: end for

Note : the deterministic versions of the algorithms are obtained by setting gk+1 = ∇F (xk).

Stochastic PDDY alg. (new)

1: Input: p0 ∈ X , y0 ∈ Y, γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: yk+1=proxτH∗

(
yk + τL(pk − γL∗yk)

)
4: xk = pk − γL∗yk+1

5: sk+1 = proxγR
(
2xk − pk − γgk+1

)
6: pk+1 = pk + sk+1 − xk

7: end for

Stochastic PD3O alg. (new)

1: Input: p0 ∈ X , y0 ∈ Y, γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: xk = proxγR(p

k)

4: wk = 2xk − pk − γgk+1

5: yk+1=proxτH∗
(
yk + τL(wk − γL∗yk)

)
6: pk+1 = xk − γgk+1 − γL∗yk+1

7: end for

Lemma 3.1 (Convergence of the DYS algorithm). Suppose that γ ∈ (0, 2ξ). Then the sequences
(vk)k∈N, (zk)k∈N, (uk)k∈N generated by DYS(Ã, B̃, C̃) converge to some elements v⋆, z⋆, u⋆ in
Z, respectively. Moreover, (v⋆, z⋆, u⋆) satisfies (10) and u⋆ = z⋆ ∈ zer(Ã+ B̃ + C̃).

The following equality is at the heart of the convergence proofs:

Lemma 3.2 (Fundamental equality of the DYS algorithm). Let (vk, zk, uk) ∈ Z3 be the iterates
of the DYS algorithm, and (v⋆, z⋆, u⋆) ∈ Z3 be such that (10) holds. Then, for every k ≥ 0,
there exist bk ∈ B̃(zk), b⋆ ∈ B̃(z⋆), ak+1 ∈ Ã(uk+1) and a⋆ ∈ Ã(u⋆), such that

∥vk+1 − v⋆∥2 = ∥vk − v⋆∥2 − 2γ⟨bk − b⋆, zk − z⋆⟩ − 2γ⟨ak+1 − a⋆, uk+1 − u⋆⟩
− 2γ⟨C̃(zk)− C̃(z⋆), zk − z⋆⟩+ γ2∥C̃(zk)− C̃(z⋆)∥2 (11)

− γ2∥ak+1 + bk − a⋆ − b⋆∥2.

Proof. Since zk = JγB̃(v
k), zk ∈ vk − γB̃(zk) by definition of the resolvent. Therefore, there

exists bk ∈ B̃(zk), such that zk = vk − γbk. Similarly, uk+1 ∈ 2zk − vk − γC̃(zk)− γÃ(uk+1) =
vk − 2γbk − γC̃(zk)− γÃ(uk+1). Therefore, there exists ak+1 ∈ Ã(uk+1), such that

zk = vk − γbk

uk+1 = vk − 2γbk − γC̃(zk)− γak+1

vk+1 = vk + uk+1 − zk.

(12)

Moreover, vk+1 = vk−γbk−γC̃(zk)−γak+1. Similarly, there exist a⋆ ∈ Ã(u⋆) and b⋆ ∈ B̃(z⋆),
such that 

z⋆ = v⋆ − γb⋆

u⋆ = v⋆ − 2γb⋆ − γC̃(z⋆)− γa⋆

v⋆ = v⋆ + u⋆ − z⋆,

(13)
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and v⋆ = v⋆ − γb⋆ − γC̃(z⋆)− γa⋆. Therefore,

∥vk+1 − v⋆∥2 = ∥vk − v⋆∥2 − 2γ
〈
ak+1 + bk + C̃(zk)−

(
a⋆ + b⋆ + C̃(z⋆)

)
,

vk − v⋆
〉
+ γ2

∥∥ak+1 + bk + C̃(zk)−
(
a⋆ + b⋆ + C̃(z⋆)

)∥∥2.
By expanding the last squared norm and by using (12) and (13) in the inner product, we get

∥vk+1−v⋆∥2 = ∥vk − v⋆∥2 − 2γ⟨bk + C̃(zk)−
(
b⋆ + C̃(z⋆)

)
, zk − z⋆⟩

− 2γ⟨ak+1 − a⋆, uk+1 − u⋆⟩
− 2γ⟨bk + C̃(zk)−

(
b⋆ + C̃(z⋆)

)
, γbk − γb⋆⟩

− 2γ⟨ak+1 − a⋆, 2γbk + γC̃(zk) + γak+1 −
(
2γb⋆ + γC̃(z⋆) + γa⋆

)
⟩

+ γ2∥ak+1 + bk −
(
a⋆ + b⋆

)
∥2 + γ2∥C̃(zk)− C̃(z⋆)∥2

+ 2γ2⟨ak+1 + bk −
(
a⋆ + b⋆

)
, C̃(zk)− C̃(z⋆)⟩

= ∥vk − v⋆∥2 − 2γ⟨bk − b⋆, zk − z⋆⟩ − 2γ⟨ak+1 − a⋆, uk+1 − u⋆⟩
− 2γ⟨C̃(zk)− C̃(z⋆), zk − z⋆⟩+ γ2∥C̃(zk)− C̃(z⋆)∥2

− 2γ2∥bk − b⋆∥2 − 2γ2⟨ak+1 − a⋆, 2bk + ak+1 − 2b⋆ − a⋆⟩
+ γ2∥ak+1 + bk −

(
a⋆ + b⋆

)
∥2

After combining the last three terms into −γ2∥ak+1+bk−
(
a⋆+b⋆

)
∥2, we obtain the result.

4 A Class of Four Primal–Dual Optimization Algorithms

We now set Z := X × Y, where X and Y are the spaces defined in Sect. 2. To solve the
primal–dual problem (8) or (9), which consists in finding a zero of the sum A+B+C of three
operators in Z, of which C is cocoercive, a natural idea is to apply the Davis–Yin algorithm
DYS(A,B,C). But the resolvent of A or B is often intractable. In this section, we show
that preconditioning is the solution; that is, we exhibit a strongly positive linear operator
P , such that DYS(P−1A,P−1B,P−1C) is tractable. Since P−1A,P−1B,P−1C are monotone
operators in ZP , the algorithm will converge to a zero of P−1A+P−1B+P−1C, or, equivalently,
of A+B + C. Let us apply this idea in four different ways.

4.1 A New Primal–Dual Algorithm: The PDDY Algorithm

Let γ > 0 and τ > 0 be real parameters. We introduce the four operators on Z, using matrix-
vector notations:

A(x, y) =

[
L∗y

−Lx + ∂H∗(y)

]
, B(x, y) =

[
∂R(x)

0

]
, C(x, y) =

[
∇F (x)

0

]
,

P =

[
I 0
0 γ

τ I − γ2LL∗

]
. (14)

P is strongly positive if and only if γτ∥L∥2 < 1. Since A, B, C are maximally monotone in
Z, P−1A,P−1B,P−1C are maximally monotone in ZP . Moreover, P−1C is 1/ν-cocoercive in
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ZP . Importantly, we have:

P−1C : (x, y) 7→
(
∇F (x), 0

)
, JγP−1B : (x, y) 7→

(
proxγR(x), y

)
, (15)

JγP−1A : (x, y) 7→ (x′, y′), where
⌊

y′ = proxτH∗
(
y + τL(x− γL∗y)

)
x′ = x− γL∗y′.

The form of the last resolvent was shown in [55]; see also [25], where this resolvent appears
as one iteration of the Proximal Method of Multipliers. We plug these explicit steps into the
Davis–Yin algorithm DYS(P−1B,P−1A, P−1C) and we identify the variables as vk = (pk, qk),
zk = (xk, yk+1), uk = (sk, dk), for some variables (pk, xk, sk) ∈ X 3 and (qk, yk, dk) ∈ Y3. Thus,
we do the following substitutions:

• Using (15), the step zk = JγP−1A(v
k), is equivalent to⌊

yk+1 = proxτH∗
(
(I − τγLL∗)qk + τLpk

)
xk = pk − γL∗yk+1

• The step uk+1 = JγP−1B

(
2zk − vk − γP−1C(zk)

)
is equivalent to⌊

sk+1 = proxγR
(
2xk − pk − γ∇F (xk)

)
dk+1 = 2yk+1 − qk.

• Finally, the step vk+1 = vk + uk+1 − zk is equivalent to⌊
pk+1 = pk + sk+1 − xk

qk+1 = qk + dk+1 − yk+1.

We can replace qk by yk and discard dk, which is not needed. This yields the new Primal–
Dual Davis–Yin (PDDY) algorithm, shown above (with gk+1 = ∇F (xk)). Note that it can
be written with only one call to L and L∗ per iteration. Also, the PDDY Algorithm could be
overrelaxed [25], since this possibility exists for the Davis–Yin algorithm. We have:

Theorem 4.1 (Convergence of the PDDY Algorithm). Suppose that γ ∈ (0, 2/ν) and that
τγ∥L∥2 < 1. Then the sequences (xk)k∈N and (sk)k∈N generated by the PDDY Algorithm
converge to the same solution x⋆ to Problem (1), and the sequence (yk)k∈N converges to some
dual solution y⋆ of (4).

Proof. Under the assumptions of Theorem 4.1, P is strongly positive. Then the result follows
from Lemma 3.1 applied in ZP and from the analysis in Sect. 2.

4.2 The PD3O Algorithm

We consider the same notations as in the previous section. We switch the roles of A and B and
consider DYS(P−1A,P−1B,P−1C). Then, after some substitutions similar to the ones done
to construct the PDDY algorithm, we recover exactly the PD3O algorithm proposed in [77].
Although it is not derived this way, its interpretation as a primal–dual Davis–Yin algorithm is
mentioned by its author. Its convergence properties are the same as for the PDDY Algorithm,
as stated in Theorem 4.1.

In a recent work [55], the PD3O algorithm has been shown to be an instance of the Davis–
Yin algorithm, with a different reformulation, which does not involve duality. The authors of
the present paper developed this technique further, applied it to the PDDY algorithm as well,
and obtained convergence rates and accelerations for both algorithms [26].
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4.3 The Condat–Vũ Algorithm

Let γ > 0 and τ > 0 be real parameters. We want to study the decomposition (9) instead of
(8). For this, we define the operators

Ā(x, y) =

[
∂R(x) + L∗y
−Lx

]
, B̄(x, y) =

[
0

∂H∗(y)

]
, Q =

[
K 0
0 I

]
, (16)

where K := γ
τ I − γ2L∗L, and we define C like in (14). If γτ∥L∥2 < 1, K and Q are strongly

positive. In that case, since Ā, B̄, C are maximally monotone in Z = X × Y, Q−1Ā, Q−1B̄,
Q−1C are maximally monotone in ZQ. Moreover, we have:

Q−1C : (x, y) 7→
(
K−1∇F (x), 0

)
, JγQ−1B̄ : (x, y) 7→

(
x, proxγH∗(y)

)
, (17)

JγQ−1Ā : (x, y) 7→ (x′, y′), where
⌊

x′ = proxτR
(
(I − τγL∗L)x− τL∗y

)
y′ = y + γLx′.

If we plug these explicit steps into the Davis–Yin algorithm DYS(Q−1Ā, Q−1B̄,Q−1C)
or DYS(Q−1B̄,Q−1Ā,Q−1C), and after straightforward simplifications, we recover the two
forms of the Condat–Vũ algorithm [22,72]; that is, Algorithms 3.1 and 3.2 of [22], respectively,
see also in [25]. The Condat–Vũ algorithm has the form of a primal–dual forward–backward
algorithm [16, 25, 44]. We have just shown that it can be viewed as a primal–dual Davis–Yin
algorithm, with a different metric, as well. Furthermore, it is easy to show that Q−1C is ξ-
cocoercive, with ξ = (γτ − γ2∥L∥2)/ν. Hence, convergence follows from Lemma 3.1, under the
same condition on τ and γ as in Theorem 3.1 of [22], namely ν

2 < 1
τ − γ∥L∥2.

5 Stochastic Primal–Dual Algorithms

We now introduce stochastic versions of the PD3O and PDDY algorithms; we omit the analysis
of stochastic versions of the Condat–Vũ algorithm, which is the same, with added technicalities
due to cocoercivity with respect to the metric induced by Q in (16). Our approach has a
‘plug-and-play’ flavor: we show that we have all the ingredients to leverage the unified theory
of stochastic gradient estimators recently presented in [36].

In the stochastic versions of the algorithms, the gradient ∇F (xk) is replaced by a stochastic
gradient gk+1. That is, we consider a filtered probability space (Ω,F , (Fk)k∈N,P), an (Fk)-
adapted stochastic process (gk)k∈N, we denote by E the expectation and by Ek the conditional
expectation w.r.t. Fk. The following assumption is made on the process (gk)k∈N.

Assumption 1. There exist α, β, δ ≥ 0, ρ ∈ (0, 1] and a (Fk)k∈N-adapted stochastic process
denoted by (σk)k∈N, such that, for every k ∈ N, Ek(g

k+1) = ∇F (xk), Ek(∥gk+1−∇F (x⋆)∥2) ≤
2αDF (x

k, x⋆) + βσ2
k , and Ek(σ

2
k+1) ≤ (1− ρ)σ2

k + 2δDF (x
k, x⋆).

Assumption 1 is satisfied by several stochastic gradient estimators used in machine learning,
including some types of coordinate descent [73], variance reduction [38], and also compressed
gradients used to reduce the communication cost in distributed optimization [4,65,75], see Table
1 in [36]. Also, the full gradient estimator defined by gk+1 = ∇F (xk) satisfies Assumption 1
with α = ν, the smoothness constant of F , σk ≡ 0, ρ = 1, and δ = β = 0, see Theorem 2.1.5
in [54]. The loopless SVRG estimator [39,45] also satisfies Assumption 1:
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Proposition 5.1 (Loopless SVRG estimator). Assume that F is written as a sum F =
1
n

∑n
i=1 fi, for some n ≥ 1, where for every i ∈ {1, . . . , n}, fi : X → R is a νi-smooth convex

function. Let p ∈ (0, 1), and (Ω,F ,P) be a probability space. On (Ω,F ,P), consider:
• a sequence of i.i.d. random variables (θk)k∈N with Bernoulli distribution of parameter p,
• a sequence of i.i.d random variables (ζk)k∈N with uniform distribution over {1, . . . , n},
• the sigma-field Fk generated by (θk, ζk)0≤j≤k and a (Fk)-adapted stochastic process (xk)k∈N,
• a stochastic process (x̃k)k∈N defined by x̃k+1 = θk+1xk + (1− θk+1)x̃k,
• a stochastic process (gk)k∈N defined by gk+1 = ∇fζk+1(xk)−∇fζk+1(x̃k) +∇F (x̃k).

Then, the process (gk)k∈N satisfies Assumption 1 with α = 2maxi∈{1,...,n} νi, β = 2, ρ = p,
δ = αp/2, and σ2

k = 1
n

∑n
i=1 Ek∥∇fi(x̃

k)−∇fi(x
⋆)∥2.

Proof. The proof is the same as the proof of Lemma A.11 of [36], which is only stated for
(xk)k∈N generated by a specific algorithm, but remains true for any (Fk)-adapted stochastic
process (xk)k∈N.

We can now exhibit our main results. In a nutshell, P−1C(zk) is replaced by the random
realization P−1(gk+1, 0) and the last term of Eqn. (11), which is nonnegative, is handled using
Assumption 1.

5.1 The Stochastic PD3O Algorithm

The Stochastic PD3O Algorithm, shown above, has O(1/k) ergodic convergence in the general
case. A linear convergence result in the strongly convex setting is derived in Appendix B.

Theorem 5.1 (Convergence of the Stochastic PD3O Algorithm). Suppose that Assumption 1
holds. Let κ := β/ρ, γ, τ > 0 be such that γ ≤ 1/2(α+ κδ) and γτ∥L∥2 < 1. Set V 0 :=
∥v0 − v⋆∥2P + γ2κσ2

0, where v0 = (p0, y0). Then, for every k ∈ N,

E
(
L (x̄k, y⋆)− L (x⋆, ȳk+1)

)
≤ V 0

kγ
,

where x̄k = 1
k

∑k−1
j=0 x

j and ȳk+1 = 1
k

∑k
j=1 y

j.

Proof. Using Lemma A.1, the convexity of F , R, H∗, and Lemma 2.1,

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k

− 2γ(1− γ(α+ κδ))Ek

(
L (xk, d⋆)− L (x⋆, dk+1)

)
.

We have 1 − ρ + β/κ = 1, γ ≤ 1/2(α + κδ). Set V k := ∥vk − v⋆∥2P + κγ2σ2
k, for ev-

ery k ∈ N. Then EkV
k+1 ≤ V k − γEk

(
L (xk, d⋆)− L (x⋆, dk+1)

)
. Taking the expectation,

γE
(
L (xk, d⋆)− L (x⋆, dk+1)

)
≤ EV k − EV k+1. Iterating and using the nonnegativity of V k,

γ
∑k−1

j=0 E
(
L (xj , d⋆)− L (x⋆, dj+1)

)
≤ EV 0. Finally, note that dk+1 = yk+1 and d⋆ = y⋆. In-

deed, yk = qk and qk+1 = qk + dk+1 − yk = dk+1. We can conclude using the convex-concavity
of L .

In the deterministic case gk+1 = ∇F (xk), we recover the same rate as in [77, Theorem 2].

10



Remark 5.1 (Primal–Dual gap). Deriving a similar bound on the stronger primal–dual gap
(F +R+H ◦L)(x̄k)+

(
(F +R)∗ ◦(−L)+H∗)(ȳk) requires additional assumptions; for instance,

even for the Chambolle–Pock algorithm, which is the particular case of the PD3O, PPDY and
Condat–Vũ algorithms when F = 0, the best available result [13, Theorem 1] is not stronger
than Theorem 5.1

Remark 5.2 (Particular case of SGD). In the case where H = 0 and L = 0, the Stochastic
PD3O Algorithm boils down to proximal stochastic gradient descent (SGD) and Theorem 5.1
implies that E

(
(F +R)(x̄k)− (F +R)(x⋆)

)
≤ V 0/(γk). This O(1/k) ergodic convergence rate

unifies known results on SGD in the non-strongly-convex case, whenever the stochastic gradient
satisfies Assumption 1.

5.2 The Stochastic PDDY Algorithm

We now analyze the proposed Stochastic PDDY Algorithm, shown above. For it too, we have
O(1/k) ergodic convergence in the general case. A linear convergence result in the strongly
convex setting is derived in Appendix B.

Theorem 5.2 (Convergence of the Stochastic PDDY Algorithm). Suppose that Assumption 1
holds. Let κ := β/ρ, γ, τ > 0 be such that γ ≤ 1/2(α+ κδ) and γτ∥L∥2 < 1. Define V 0 :=
∥v0 − v⋆∥2P + γ2κσ2

0, where v0 = (p0, y0). Then, for every k ∈ N,

E
(
DF (x̄

k, x⋆) +DH∗(ȳk+1, y⋆) +DR(s̄
k+1, s⋆)

)
≤ V 0

kγ
,

where x̄k = 1
k

∑k−1
j=0 x

j, ȳk+1 = 1
k

∑k
j=1 y

j and s̄k+1 = 1
k

∑k
j=1 s

j.

Proof. Using Lemma A.2 and the convexity of F , R, H∗,

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k

− 2γ
(
1− γ(α+ κδ)

) (
DF (x

k, x⋆) +DH∗(yk, y⋆) + EkDR(s
k+1, s⋆)

)
.

Since 1− ρ+ β/κ = 1, γ ≤ 1/2(α+ κδ). Set V k := ∥vk − v⋆∥2P + κγ2σ2
k. Then

EkV
k+1 ≤ V k − γEk

(
DF (x

k, x⋆) +DH∗(yk, y⋆) +DR(s
k+1, s⋆)

)
.

Taking the expectation, γE
(
DF (x

k, x⋆) +DH∗(yk, y⋆) +DR(s
k+1, s⋆)

)
≤ EV k − EV k+1. Iter-

ating and using the nonnegativity of V k, γ
∑k−1

j=0 E
(
DF (x

k, x⋆)+ DH∗(yk, y⋆)+DR(s
k+1, s⋆)

)
≤

EV 0. We conclude using the convexity of the Bregman divergence in its first variable.

6 Linearly Constrained Smooth Optimization

In this section, we consider the problem

minimize
x∈X

F (x) s.t. Lx = b, (18)
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where L : X → Y is a linear operator, X and Y are real Hilbert spaces, F is a ν-smooth
convex function, for some ν > 0, and b ∈ ran(L), the range of L. This is a particular case
of Problem (1) with R = 0 and H = ιb. We suppose that a solution x⋆ exists, satisfying
Lx⋆ = b and 0 ∈ ∇F (x⋆)+L∗y⋆ for some y⋆ ∈ Y. The stochastic PD3O and PDDY algorithms
both revert to the same algorithm, shown above, which we call Linearly Constrained Stochastic
Gradient Descent (LiCoSGD). It is fully split: it does not make use of projections onto the
affine space {x ∈ X , Lx = b} and only makes calls to L and L∗. In the deterministic case
gk+1 = ∇F (xk), LiCoSGD reverts to an instance of the algorithm first proposed by Loris
and Verhoeven in [52] and rediscovered independently as the PDFP2O algorithm [15] and
the Proximal Alternating Predictor–Corrector (PAPC) algorithm [30]. Convergence of this
algorithm follows from Theorem 4.1, see other results in [25,26]. Thus, LiCoSGD is a stochastic
extension of this algorithm, for which Theorem 5.1 becomes:

Theorem 6.1 (Convergence of LiCoSGD). Suppose that Assumption 1 holds. Let κ := β/ρ,
γ, τ > 0 be such that γ ≤ 1/2(α+ κδ) and γτ∥L∥2 < 1. Set V 0 := ∥v0 − v⋆∥2P + γ2κσ2

0, where
v0 = (w0, y0). Then, for every k ∈ N,

E
(
F (x̄k)− F (x⋆) + ⟨Lx̄k − b, y⋆⟩

)
≤ V 0

kγ
, (19)

where x̄k = 1
k

∑k−1
j=0 x

j, x⋆ and y⋆ are some primal and dual solutions.

The convex function x 7→ F (x) − F (x⋆) + ⟨Lx − b, y⋆⟩ is nonnegative and its minimum
is zero, attained at x⋆. Under additional assumptions, like strict convexity around x⋆, this
function takes value zero only if F (x) = F (x⋆) and Lx = b, so that x is a solution.

We now state an important result: strong convexity of F is sufficient to get linear con-
vergence. We denote by ω(W ) the smallest positive eigenvalue of a positive self-adjoint linear
operator W . Then it is easy to show that for every y ∈ ran(L), ω(LL∗)∥y∥2 ≤ ∥L∗y∥2. Also,
ω(LL∗) = ω(L∗L).

Theorem 6.2 (Linear convergence of LiCoSGD with F strongly convex). Suppose that As-
sumption 1 holds, that F is µF -strongly convex, for some µF > 0, and that y0 ∈ ran(L). Let x⋆

be the unique solution of (18), y⋆ be the unique element of ran(L) such that ∇F (x⋆)+L∗y⋆ = 0.
Suppose that γ > 0 and τ > 0 are such that γτ∥L∥2 < 1 and γ ≤ 1/α+ κδ, for some κ > β/ρ.
Define, for every k ∈ N,

V k := ∥xk − x⋆∥2 + (1 + τγω(L∗L)) ∥yk − y⋆∥2γ,τ + κγ2Eσ2
k, (20)

and
r := max

(
1− γµF , 1− ρ+

β

κ
,

1

1 + τγω(L∗L)

)
< 1. (21)

Then, for every k ∈ N, EV k ≤ rkV 0.

Proof. Noting that y⋆ = d⋆ = q⋆ and applying Lemma A.1 with γ ≤ (α+ κδ),

Ek∥pk+1 − p⋆∥2 + Ek∥qk+1 − q⋆∥2γ,τ + κγ2Ekσ
2
k+1 ≤ ∥pk − p⋆∥2 + ∥qk − q⋆∥2γ,τ

− γµF ∥xk − x⋆∥2 + κγ2
(
1− ρ+

β

κ

)
σ2
k − γ2∥P−1A(uk+1)− P−1A(u⋆)∥2P .
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Since the component of P−1A(uk+1)− P−1A(u⋆) in X is L∗dk+1 − L∗d⋆, we have

Ek∥pk+1 − p⋆∥2 + Ek∥qk+1 − q⋆∥2γ,τ + κγ2Ekσ
2
k+1 ≤ ∥xk − x⋆∥2 + ∥qk − q⋆∥2γ,τ

− γµF ∥pk − p⋆∥2 + κγ2
(
1− ρ+

β

κ

)
σ2
k − γ2∥L∗dk+1 − L∗d⋆∥2.

Inspecting the iterations of the algorithm, one can see that d0 ∈ ran(L) implies dk+1 ∈ ran(L).
Since d⋆ ∈ ran(L), dk+1 − d⋆ ∈ ran(L). Therefore, ω(LL∗)∥dk+1 − d⋆∥2 ≤ ∥L∗dk+1 − L∗d⋆∥2.
Since qk+1 = dk+1 = yk+1 and xk = pk,

Ek∥xk+1 − x⋆∥2 + (1 + γτω(LL∗))Ek∥yk+1 − y⋆∥2γ,τ + κγ2Ekσ
2
k+1

≤ (1− γµF )∥xk − x⋆∥2 + ∥yk − y⋆∥2γ,τ + κγ2
(
1− ρ+

β

κ

)
σ2
k.

Thus, by setting V k as in (20) and r as in (21), we have EkV
k+1 ≤ rV k.

To the best of our knowledge, even in the deterministic case (with α = ν, ρ = 1, δ = β = 0,
κ = 1), this is a first time that a fully split algorithm using ∇F , L and L∗ is shown to converge
linearly to a solution of (18), whenever F is strongly convex. Also, the knowledge of µF is not
needed. We discuss the application of LiCoSGD to decentralized optimization in Appendix C.

7 Experiments

We present numerical experiments for the PDDY, PD3O and Condat–Vũ (CV) [22, Algorithm
3.1] algorithms. We observed that the performance of these algorithms is nearly identical, when
the same stepsizes are used; but the PDDY and PD3O algorithms have a larger range of stepsizes
than the CV algorithm, so that they are often faster after tuning. We used γτ∥L∥2 = 0.999,
which was always the best choice for these two algorithms. So, we do not provide direct
comparisons in the plots. Instead, we focus on how the choice of the stochastic gradient
estimator affects the convergence speed; we compare the true gradient, the standard stochastic
gradient estimator (SGD), the VR estimators SAGA [29] and SVRG [40, 74, 79]. We used
closed-form expressions for ν and tuned the stepsizes for all methods by running logarithmic
grid search with factor 1.5 over multiples of 1

ν . We used a batch size of 16 for better parallelism
in the stochastic estimators. For SGD, we used a small value of γ, such as 0.01

ν .

7.1 PCA-Lasso

In a recent work [71], the difficult PCA-based Lasso problem was considered: minx
1
2∥Wx −

a∥2 + λ∥x∥1 + λ1
∑m

i=1 ∥Lix∥, where W ∈ Rn×p, a ∈ Rn, λ, λ1 > 0 are given. We generated
10 matrices Li randomly with standard normal i.i.d. entries, each with 20 rows. W and y were
taken from the ‘mushrooms’ dataset in the libSVM base [14]. We chose λ = ν

10n and λ1 =
2ν
nm ,

where ν is needed to compensate for the fact that we do not normalize the objective. The
results are shown in Fig. 1. The advantage of using a VR stochastic gradient estimate is clear,
with SAGA and SVRG being very similar.
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Figure 1: Results for the PCA-Lasso experiment. Left: convergence w.r.t. the objective func-
tion; right: convergence in norm.
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Figure 2: Results for the MNIST experiment. Left: convergence w.r.t. the objective function;
right: convergence in norm.

7.2 MNIST with Overlapping Group Lasso

We consider the problem where F is the ℓ2-regularized logistic loss and a group Lasso penalty.
Given the data matrix W ∈ Rn×p and vector of labels a ∈ {0, 1}n, F (x) = 1

n

∑n
i=1 fi(x)+

λ
2∥x∥

2,
where fi(x) = −

(
ai log

(
h(w⊤

i x)
)
+ (1− ai) log

(
1− h(w⊤

i x)
))

, λ = 2ν
n , wi ∈ Rp is the i-th row

of W , and h : t → 1/(1 + e−t). The nonsmooth regularizer is given by λ1
∑m

j=1 ∥x∥Gj , where
λ1 = ν

5n , Gj ⊂ {1, . . . , p} is a given subset of coordinates and ∥x∥Gj is the ℓ2-norm of the
corresponding block of x. To apply splitting methods, we use L = (I⊤G1

, . . . , I⊤Gm
)⊤, where IGj

is the operator that takes x ∈ Rp and returns only the entries from block Gj . Then, we can
use H(y) = λ1

∑m
j=1 ∥y∥Gj , which is separable in y and, thus, proximable. We use the MNIST

dataset [48] of 70000 black and white 28× 28 images. For each pixel, we add a group of pixels
Gj adjacent to it, including the pixel itself. Since there are some border pixels, groups consist
of 3, 4 or 5 coordinates, and there are 784 penalty terms in total. The results are shown in
Fig. 2. Here SAGA is a bit better than SVRG.
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7.3 Fused Lasso

In the Fused Lasso problem, we are given a feature matrix W ∈ Rn×p and an output vector
a, which define the least-squares function F (x) = 1

2∥Wx − a∥2. It is regularized with λ
2∥x∥

2

and λ1∥Dx∥1, where λ = ν
n , λ1 = ν

10n and D ∈ R(p−1)×p has entries Di,i = 1, Di,i+1 = −1, for
i = 1, . . . , p − 1, and Dij = 0 otherwise. We used again the ‘mushrooms’ dataset. The plots
look very similar to the ones in Fig. 1, so we omit them.

8 Conclusion

We proposed a new primal–dual proximal splitting algorithm, the Primal–Dual Davis–Yin
(PDDY) algorithm, to minimize a sum of three functions, one of which is composed with a linear
operator. It is an alternative to the PD3O algorithm; they often perform similarly, but one or
the other may be preferable for the problem at hand, depending on the implementation details.
In particular, their memory requirements can be different. Furthermore, we proposed stochastic
variants of both algorithms, studied their convergence rates, and showed by experiments that
they can be much faster than their deterministic counterparts. We also showed that for linearly-
constrained minimization of a strongly convex function, an instance of the stochastic PDDY
algorithm, called LiCoSGD, converges linearly. We studied all algorithms within the unified
framework of a stochastic generalization of Davis–Yin splitting for monotone inclusions. Our
machinery opens the door to a promising class of new randomized proximal algorithms for
large-scale optimization.

Appendix

A Lemmas A.1 and A.2

We state Lemma A.1 and Lemma A.2, which are used in the proofs of Theorem 5.1 and
Theorem 5.2, respectively.

To simplify the notations, we use the following convention: when a set appears in an
equation while a single element is expected, e.g. ∂R(xk), this means that the equation holds
for some element in this nonempty set.

Lemma A.1. Assume that F is µF -strongly convex, for some µF ≥ 0, and that (gk)k∈N satisfies
Assumption 1. Then the iterates of the Stochastic PD3O Algorithm satisfy

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k

− 2γ(1− γ(α+ κδ))DF (x
k, x⋆)− γµF ∥xk − x⋆∥2 (22)

− 2γ⟨∂R(xk)− ∂R(x⋆), xk − x⋆⟩ − 2γEk⟨∂H∗(dk+1)− ∂H∗(d⋆), dk+1 − d⋆⟩

− γ2Ek

∥∥P−1A(uk+1) + P−1B(zk)−
(
P−1A(u⋆) + P−1B(z⋆)

) ∥∥2
P
.

Proof. Applying Lemma 3.2 for DYS(P−1A,P−1B,P−1C) using the norm induced by P , we

15



have

∥vk+1 − v⋆∥2P = ∥vk − v⋆∥2P − 2γ⟨P−1B(zk)− P−1B(z⋆), zk − z⋆⟩P
− 2γ⟨P−1C(zk)− P−1C(z⋆), zk − z⋆⟩P + γ2∥P−1C(zk)− P−1C(z⋆)∥2P
− 2γ⟨P−1A(uk+1)− P−1A(u⋆), uk+1 − u⋆⟩P
− γ2∥P−1A(uk+1) + P−1B(zk)−

(
P−1A(u⋆) + P−1B(z⋆)

)
∥2P

= ∥vk − v⋆∥2P − 2γ⟨B(zk)−B(z⋆), zk − z⋆⟩+ γ2∥P−1C(zk)− P−1C(z⋆)∥2P
− 2γ⟨C(zk)− C(z⋆), zk − z⋆⟩ − 2γ⟨A(uk+1)−A(u⋆), uk+1 − u⋆⟩
− γ2∥P−1A(uk+1) + P−1B(zk)−

(
P−1A(u⋆) + P−1B(z⋆)

)
∥2P .

Using A(uk+1) =
(
L∗dk+1,−Lsk+1 + ∂H∗(dk+1)

)
, B(zk) =

(
∂R(xk), 0

)
, C(zk) =

(
gk+1, 0

)
and

A(u⋆) =
(
L∗d⋆,−Ls⋆ + ∂H∗(d⋆)

)
, B(z⋆) =

(
∂R(x⋆), 0

)
, C(z⋆) =

(
∇F (x⋆), 0

)
, we have

∥vk+1 − v⋆∥2P = ∥vk − v⋆∥2P − 2γ⟨∂R(xk)− ∂R(x⋆), xk − x⋆⟩+ γ2∥gk+1 −∇F (x⋆)∥2

− 2γ⟨gk+1 −∇F (x⋆), xk − x⋆⟩ − 2γ⟨∂H∗(dk+1)− ∂H∗(d⋆), dk+1 − d⋆⟩
− γ2∥P−1A(uk+1) + P−1B(zk)−

(
P−1A(u⋆) + P−1B(z⋆)

)
∥2P .

Taking conditional expectation w.r.t. Fk and using Assumption 1,

Ek∥vk+1 − v⋆∥2P ≤ ∥vk − v⋆∥2P − 2γ⟨∂R(xk)− ∂R(x⋆), xk − x⋆⟩
− 2γ⟨∇F (xk)−∇F (x⋆), xk − x⋆⟩

− 2γEk⟨∂H∗(dk+1)− ∂H∗(d⋆), dk+1 − d⋆⟩+ γ2
(
2αDF (x

k, x⋆) + βσ2
k

)
− γ2Ek∥P−1A(uk+1) + P−1B(zk)−

(
P−1A(u⋆) + P−1B(z⋆)

)
∥2P .

Using strong convexity of F ,

Ek∥vk+1 − v⋆∥2P ≤ ∥vk − v⋆∥2P − γµF ∥xk − x⋆∥2 − 2γDF (x
k, x⋆)

+ γ2
(
2αDF (x

k, x⋆) + βσ2
k

)
− 2γ⟨∂R(xk)− ∂R(x⋆), xk − x⋆⟩

− 2γEk⟨∂H∗(dk+1)− ∂H∗(d⋆), dk+1 − d⋆⟩
− γ2Ek∥P−1A(uk+1) + P−1B(zk)−

(
P−1A(u⋆) + P−1B(z⋆)

)
∥2P .

Using Assumption 1,

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k − γµF ∥xk − x⋆∥2

− 2γ(1− γ(α+ κδ))DF (x
k, x⋆)− 2γ⟨∂R(xk)− ∂R(x⋆), xk − x⋆⟩

− 2γEk⟨∂H∗(dk+1)− ∂H∗(d⋆), dk+1 − d⋆⟩

− γ2Ek

∥∥P−1A(uk+1) + P−1B(zk)−
(
P−1A(u⋆) + P−1B(z⋆)

) ∥∥2
P
.
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Lemma A.2. Suppose that (gk)k∈N satisfies Assumption 1. Then the iterates of the Stochastic
PDDY Algorithm satisfy

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k

− 2γ(1− γ(α+ κδ))DF (x
k, x⋆)− 2γ⟨∂H∗(yk)− ∂H∗(y⋆), yk − y⋆⟩

− 2γEk⟨∂R(sk+1)− ∂R(s⋆), sk+1 − s⋆⟩.

Proof. Applying Lemma 3.2 for DYS(P−1B,P−1A,P−1C) using the norm induced by P , we
have

∥vk+1 − v⋆∥2P = ∥vk − v⋆∥2P − 2γ⟨P−1A(zk)− P−1A(z⋆), zk − z⋆⟩P
− 2γ⟨P−1C(zk)− P−1C(z⋆), zk − z⋆⟩P + γ2∥P−1C(zk)− P−1C(z⋆)∥2P
− 2γ⟨P−1B(uk+1)− P−1B(u⋆), uk+1 − u⋆⟩P
− γ2∥P−1B(uk+1) + P−1A(zk)−

(
P−1B(u⋆) + P−1A(z⋆)

)
∥2P

= ∥vk − v⋆∥2P − 2γ⟨A(zk)−A(z⋆), zk − z⋆⟩ − 2γ⟨C(zk)− C(z⋆), zk − z⋆⟩
− 2γ⟨B(uk+1)−B(u⋆), uk+1 − u⋆⟩+ γ2∥P−1C(zk)− P−1C(z⋆)∥2P
− γ2∥P−1B(uk+1) + P−1A(zk)−

(
P−1B(u⋆) + P−1A(z⋆)

)
∥2P .

Using A(zk) =
(
L∗yk,−Lxk + ∂H∗(yk)

)
, B(uk+1) =

(
∂R(sk+1), 0

)
, C(zk) =

(
gk+1, 0

)
and

A(z⋆) =
(
L∗y⋆,−Lx⋆ + ∂H∗(y⋆)

)
, B(u⋆) =

(
∂R(s⋆), 0

)
, C(z⋆) =

(
∇F (x⋆), 0

)
, we have,

∥vk+1 − v⋆∥2P ≤ ∥vk − v⋆∥2P − 2γ⟨∂H∗(yk)− ∂H∗(y⋆), yk − y⋆⟩+ γ2∥gk+1 −∇F (x⋆)∥2

− 2γ⟨gk+1 −∇F (x⋆), xk − x⋆⟩ − 2γ⟨∂R(sk+1)− ∂R(s⋆), sk+1 − s⋆⟩.

Applying the conditional expectation w.r.t. Fk and using Assumption 1,

Ek∥vk+1 − v⋆∥2P ≤ ∥vk − v⋆∥2P − 2γ⟨∂H∗(yk)− ∂H∗(y⋆), yk − y⋆⟩

− 2γ⟨∇F (xk)−∇F (x⋆), xk − x⋆⟩+ γ2
(
2αDF (x

k, x⋆) + βσ2
k

)
− 2γEk⟨∂R(sk+1)− ∂R(s⋆), sk+1 − s⋆⟩.

Using the convexity of F ,

Ek∥vk+1 − v⋆∥2P ≤ ∥vk − v⋆∥2P − 2γ⟨∂H∗(yk)− ∂H∗(y⋆), yk − y⋆⟩ − 2γDF (x
k, x⋆)

− 2γEk⟨∂R(sk+1)− ∂R(s⋆), sk+1 − s⋆⟩+ γ2
(
2αDF (x

k, x⋆) + βσ2
k

)
.

Using Assumption 1,

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k

− 2γ(1− γ(α+ κδ))DF (x
k, x⋆)− 2γ⟨∂H∗(yk)− ∂H∗(y⋆), yk − y⋆⟩

− 2γEk⟨∂R(sk+1)− ∂R(s⋆), sk+1 − s⋆⟩.
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B Linear Convergence Results

In this section, we provide linear convergence results for the stochastic PD3O and the stochas-
tic PDDY algorithms, in addition to Theorem 6.2. For an operator splitting method like
DYS(Ã, B̃, C̃) to converge linearly, it is necessary that Ã + B̃ + C̃ is strongly monotone. But
this is not sufficient, and in general, to converge linearly, DYS(Ã, B̃, C̃) requires the stronger as-
sumption that Ã or B̃ or C̃ is strongly monotone, and in addition that Ã or B̃ is cocoercive [28].
The PDDY algorithm is equivalent to DYS(P−1B,P−1A,P−1C) and the PD3O algorithm is
equivalent to DYS(P−1A,P−1B,P−1C), see Sect. 4. However, P−1A, P−1B and P−1C are
not strongly monotone. In spite of this, we will prove linear convergence of the (stochastic)
PDDY and PD3O algorithms.

Thus, for both algorithms, we will make the assumption that P−1A + P−1B + P−1C is
strongly monotone. This is equivalent to assuming that M = A+B+C is strongly monotone;
that is, that F + R is strongly convex and H is smooth. For instance, the Chambolle–Pock
algorithm [11, 13], which is a particular case of the PD3O and the PDDY algorithms, requires
R strongly convex and H smooth to converge linearly, in general. In fact, for primal–dual
algorithms to converge linearly on Problem (1), for any L, it seems unavoidable that F + R
is strongly convex and that the dual term H∗ is strongly convex too, because the algorithm
needs to be contractive in both the primal and the dual spaces. This means that H must be
smooth. We can remark that if H is smooth, it is tempting to use its gradient instead of its
proximity operator. We can then use the proximal gradient algorithm to solve Problem (1)
with ∇(F +H ◦ L)(x) = ∇F (x) + L∗∇H(Lx). However, in practice, it is often faster to use
the proximity operator instead of the gradient, see a recent analysis of this topic in [18].

For the PD3O algorithm, we will add a cocoercivity assumption, as suggested by the general
linear convergence theory of DYS. More precisely, we will assume that R is smooth, so that
P−1B is cocoercive. Our result on the PD3O is therefore an extension of [77, Theorem 3] to
the stochastic setting. For the PDDY algorithm, this assumption is not needed to prove linear
convergence, which is an advantage over the PD3O algorithm.

We denote by ∥ · ∥γ,τ the norm induced by γ
τ I − γ2LL∗ on Y.

Theorem B.1 (Linear convergence of the Stochastic PD3O Algorithm). Suppose that Assump-
tion 1 holds. Suppose that H is 1/µH∗-smooth, for some µH∗ > 0, F is µF -strongly convex, for
some µF ≥ 0, and R is µR-strongly convex, for some µR ≥ 0, with µ := µF + 2µR > 0. Also,
suppose that R is λ-smooth, for some λ > 0. Suppose that the parameters γ > 0 and τ > 0
satisfy γ ≤ 1/(α+ κδ), for some κ > β/ρ, and γτ∥L∥2 < 1. Define, for every k ∈ N,

V k := ∥pk − p⋆∥2 + (1 + 2τµH∗) ∥yk − y⋆∥2γ,τ + κγ2σ2
k, (23)

and
r := max

(
1− γµ

(1 + γλ)2
,

(
1− ρ+

β

κ

)
,

1

1 + 2τµH∗

)
. (24)

Then, for every k ∈ N, EV k ≤ rkV 0.

Proof. We first use Lemma A.1 along with the strong convexity of R,H∗. Note that yk = qk
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and therefore qk+1 = qk + dk+1 − qk = dk+1. We have

Ek∥pk+1 − p⋆∥2 + Ek∥qk+1 − q⋆∥2γ,τ + 2γµH∗Ek∥qk+1 − q⋆∥2 + κγ2Ekσ
2
k+1

≤ ∥pk − p⋆∥2 + ∥qk − q⋆∥2γ,τ − γµ∥xk − x⋆∥2 + κγ2
(
1− ρ+

β

κ

)
σ2
k

− 2γ(1− γ(α+ κδ))DF (x
k, x⋆).

Noting that for every q ∈ Y, ∥q∥2γ,τ = γ
τ ∥q∥

2 − γ2∥L∗q∥2 ≤ γ
τ ∥q∥

2, and taking γ ≤ 1/(α+ κδ),
we have

Ek∥pk+1 − p⋆∥2 + (1 + 2τµH∗)Ek∥qk+1 − q⋆∥2γ,τ + κγ2Ekσ
2
k+1

≤ ∥pk − p⋆∥2 + ∥qk − q⋆∥2γ,τ − γµ∥xk − x⋆∥2 + κγ2
(
1− ρ+

β

κ

)
σ2
k.

Finally, since R is λ-smooth, ∥pk − p⋆∥2 ≤ (1 + 2γλ + γ2λ2)∥xk − x⋆∥2. Indeed, in this case,
applying Lemma 3.2 with Ã = 0, C̃ = 0 and B̃ = ∇R, we obtain that if xk = proxγR(p

k) and
x⋆ = proxγR(p

⋆), then

∥xk − x⋆∥2 = ∥pk − p⋆∥2 − 2γ⟨∇R(xk)−∇R(x⋆), xk − x⋆⟩ − γ2∥∇R(xk)−∇R(x⋆)∥2

≥ ∥pk − p⋆∥2 − 2γλ∥xk − x⋆∥2 − γ2λ2∥xk − x⋆∥2.

Hence,

Ek∥pk+1 − p⋆∥2 + (1 + 2τµH∗)Ek∥qk+1 − q⋆∥2γ,τ + κγ2Ekσ
2
k+1

≤ ∥pk − p⋆∥2 + ∥qk − q⋆∥2γ,τ −
γµ

(1 + γλ)2
∥pk − p⋆∥2 + κγ2

(
1− ρ+

β

κ

)
σ2
k.

Thus, by setting V k as in (23) and r as in (24), we have EkV
k+1 ≤ rV k.

Thus, under smoothness and strong convexity assumptions, Theorem B.1 implies linear
convergence of the dual variable yk to y⋆, with convergence rate given by r. Since ∥xk − x⋆∥ ≤
∥pk − p⋆∥, it also implies linear convergence of the variable xk to x⋆, with same rate.

If gk+1 = ∇F (xk), the Stochastic PD3O Algorithm reverts to the PD3O Algorithm and
Theorem B.1 provides a convergence rate similar to Theorem 3 in [77]. In this case, by taking
κ = 1, we obtain

r = max

(
1− γ

µF + 2µR

(1 + γλ)2
,

1

1 + 2τµH∗

)
,

whereas Theorem 3 in [77] provides the rate

max

(
1− γ

2(µF + µR)− γαµF

(1 + γλ)2
,

1

1 + 2τµH∗

)
(the reader might not recognize the rate given in Theorem 3 of [77] because of some typos in
Eqn. 39 of [77]).

Theorem B.2 (Linear convergence of the Stochastic PDDY Algorithm). Suppose that As-
sumption 1 holds. Also, suppose that H is 1/µH∗-smooth and R is µR-strongly convex, for some
µR > 0 and µH∗ > 0. Suppose that the parameters γ > 0 and τ > 0 satisfy γ ≤ 1/(α+ κδ), for
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some κ > β/ρ, γτ∥L∥2 < 1, and γ2 ≤ µH∗
∥L∥2µR

. Define η := 2
(
µH∗ − γ2∥L∥2µR

)
≥ 0 and, for

every k ∈ N,
V k := (1 + γµR)∥pk − p⋆∥2 + (1 + τη)∥yk − y⋆∥2γ,τ + κγ2σ2

k, (25)

and
r := max

(
1

1 + γµR
, 1− ρ+

β

κ
,

1

1 + τη

)
(26)

Then, for every k ∈ N, EV k ≤ rkV 0.

Proof. We first use Lemma A.2 along with the strong convexity of R and H∗. Note that
yk = qk+1. We have

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k

− 2γµH∗Ek∥qk+1 − q⋆∥2 − 2γµREk∥sk+1 − s⋆∥2.

Note that sk+1 = pk+1 − γL∗yk. Therefore, sk+1 − s⋆ = (pk+1 − p⋆) − γL∗(yk − y⋆). Using
Young’s inequality −∥a + b∥2 ≤ −1

2∥a∥
2 + ∥b∥2, we have −Ek∥sk+1 − s⋆∥2 ≤ −1

2Ek∥pk+1 −
p⋆∥2 + γ2∥L∥2Ek∥qk+1 − q⋆∥2. Hence, using τ∥q∥2γ,τ ≤ γ∥q∥2,

Ek∥vk+1 − v⋆∥2P + κγ2Ekσ
2
k+1 ≤ ∥vk − v⋆∥2P + κγ2

(
1− ρ+

β

κ

)
σ2
k

− 2γ
(
µH∗ − γ2∥L∥2µR

)
Ek∥qk+1 − q⋆∥2

− γµREk∥pk+1 − p⋆∥2

≤ ∥vk − v⋆∥2P + κγ2
(
1− ρ+

β

κ

)
σ2
k

− 2τEk∥qk+1 − q⋆∥2γ,τ
(
µH∗ − γ2∥L∥2µR

)
− γµREk∥pk+1 − p⋆∥2.

Set η := 2
(
µH∗ − γ2∥L∥2µR

)
≥ 0. Then

(1 + γµR)Ek∥pk+1 − p⋆∥2 + (1 + τη)Ek∥qk+1 − q⋆∥2γ,τ + κγ2Ekσ
2
k+1

≤ ∥vk − v⋆∥2P + κγ2
(
1− ρ+

β

κ

)
σ2
k.

Thus, by setting V k as in (25) and r as in (26), we have EkV
k+1 ≤ rV k.

C PriLiCoSGD and Application to Decentralized Optimization

In decentralized optimization, a network of computing agents aims at jointly minimizing
an objective function by performing local computations and exchanging information along the
edges [1, 46, 66, 67]. It is a particular case of linearly-constrained optimization, as detailed
below.

First, let us set W := L∗L and c := L∗b. Replacing the variable yk by the variable ak := L∗yk

in LiCoSGD, we can write the algorithm using W and c instead of L, L∗ and b, with primal
variables in X only. This yields the new algorithm PriLiCoSGD, shown above, to minimize
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PriLiCoSGD (new)

1: Input: x0 ∈ X , a0 ∈ ran(W ), γ > 0,
τ > 0

2: for k = 0, 1, 2, . . . do
3: tk+1 = xk − γgk+1

4: ak+1 = ak + τW (tk+1 − γak)− τc
5: xk+1 = tk+1 − γak+1

6: end for

DESTROY (new)

1: Input: x0i ∈ X and a0i ∈ X , ∀i ∈ V , such
that

∑
i∈V a0i = 0, γ > 0, τ > 0

2: for k = 0, 1, 2, . . . do
3: for all i ∈ V in parallel do
4: tk+1

i = xki − γgk+1
i

5: ak+1
i = (1− τγŴi,i)a

k
i + τŴi,it

k+1
i

6: + τ
∑

j ̸=i:{i,j}∈V Ŵi,j(t
k+1
j − γakj )

7: xk+1
i = tk+1

i − γak+1
i .

8: end for
9: end for

F (x) subject to Wx = c. The convergence results for LiCoSGD apply to PriLiCoSGD, with
(ak)k∈N converging to a⋆ = −∇F (x⋆).

We can apply PriLiCoSGD to decentralized optimization as follows. Consider a connected
undirected graph G = (V,E), where V = {1, . . . , N} is the set of nodes and E the set of edges.
Consider a family (fi)i∈V of µ-strongly convex and ν-smooth functions fi, for some µ ≥ 0 and
ν > 0. The problem is:

min
x∈X

∑
i∈V

fi(x). (27)

Consider a gossip matrix of the graph G; that is, a N × N symmetric positive semidefinite
matrix Ŵ = (Ŵi,j)i,j∈V , such that ker(Ŵ ) = span([1 · · · 1]T) and Ŵi,j ̸= 0 if and only if
i = j or {i, j} ∈ E is an edge of the graph. Ŵ can be the Laplacian matrix of G, for instance.
Set W := Ŵ ⊗ I, where ⊗ is the Kronecker product; then decentralized communication in
the network G is modeled by an application of the positive self-adjoint linear operator W on
X V . Moreover, W (x1, . . . , xN ) = 0 if and only if x1 = . . . = xN . Therefore, Problem (27) is
equivalent to the lifted problem

min
x̃∈XV

F (x̃) such that Wx̃ = 0, (28)

where for every x̃ = (x1, . . . , xN ) ∈ X V , F (x̃) =
∑N

i=1 fi(xi). Let us apply PriLiCoSGD to
Problem (28); we obtain the Decentralized Stochastic Optimization Algorithm (DESTROY). It
generates the sequence (x̃k)k∈N, where x̃k = (xk1, . . . , x

k
N ) ∈ X V . The update of each xki consists

in evaluating gk+1
i , an estimate of ∇fi(x

k
i ) satisfying Assumption 1, and communication steps

involving xkj , for every neighbor j of i. For instance, the variance-reduced estimator gki can be
the loopless SVRG estimator seen in Proposition 5.1, when fi is itself a sum of functions, or a
compressed version of ∇fi [4, 50,65,75].

As an application of the convergence results for LiCoSGD, we obtain the following results
for DESTROY. Theorem 4.1 becomes:

Theorem C.1 (Convergence of DESTROY, deterministic case gk+1
i = ∇fi(x

k
i )). Suppose that

γ ∈ (0, 2/ν) and that τγ∥Ŵ∥ < 1. Then in DESTROY, each (xki )k∈N converges to the same
solution x⋆ to the problem (27) and each (aki )k∈N converges to a⋆i = −∇fi(x

⋆).
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Theorem 6.1 can be applied to the stochastic case, stating O(1/k) convergence of the
Lagrangian gap, by setting Y = X and L = L∗ = W 1/2. Similarly, Theorem 6.2 yields linear
convergence of DESTROY in the strongly convex case µ > 0, with L∗L replaced by W and
∥L∥2 replaced by ∥W∥ = ∥Ŵ∥. In particular, in the deterministic case, with γ = 1/ν and
τγ = ℵ/∥W∥ for some fixed ℵ ∈ (0, 1), ε-accuracy is reached after O

(
max

(
ν
µ ,

∥W∥
ω(W )

)
log

(
1
ε

))
iterations. This rate is better or equivalent to the one of recently proposed decentralized
algorithms, like EXTRA, DIGing, NIDS, NEXT, Harness, Exact Diffusion, see Table 1 of [76],
[49, Theorem 1] and [1]. With a stochastic gradient, the rate of our algorithm is also better
than [53, Equation 99].

In follow-up papers, the authors used Nesterov acceleration to propose accelerated versions
of DESTROY [46] and PriLiCoSGD [64].
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