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Abstract— This paper provides an extension of the 1D Hilbert
Huang transform for the analysis of images using recent optimiza-
tion techniques. The proposed method consists of: 1) adaptively
decomposing an image into oscillating parts called intrinsic mode
functions (IMFs) using a mode decomposition procedure and
2) providing a local spectral analysis of the obtained IMFs in
order to get the local amplitudes, frequencies, and orientations.
For the decomposition step, we propose two robust 2D mode
decompositions based on nonsmooth convex optimization:
1) a genuine 2D approach, which constrains the local extrema
of the IMFs and 2) a pseudo-2D approach, which sepa-
rately constrains the extrema of lines, columns, and diagonals.
The spectral analysis step is an optimization strategy based
on Prony annihilation property and applied on small square
patches of the IMFs. The resulting 2D Prony–Huang transform
is validated on simulated and real data.

Index Terms— Empirical mode decomposition, spectral
analysis, convex optimization, nonstationary image analysis.

I. INTRODUCTION

AN IMPORTANT challenge in image processing is the
retrieval of the local frequencies, amplitudes, and ori-

entations of a nonstationary image. This subject presents
several interesting applications for, e.g., texture classifi-
cation [1], [2], fingerprint analysis [3], [4], ocean wave
characterization [5], [6]. To be specific, most of these images
can be expressed as a sum of a trend and one (or several)
amplitude modulation - frequency modulation (AM-FM) com-
ponent(s). It results that usual spectral analysis techniques
(designed for analyzing one AM-FM component [7]) lead to
poor performance when such a class of nonstationary images
have to be analyzed. In the context of 1D analysis, an efficient
strategy known as 1D–Hilbert Huang Transform (HHT) has
been proposed in [7]. The goal of this paper is to propose the
counterpart of the 1D–HHT for image analysis.
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The 1D–HHT is an empirical method for analysis
AM-FM signals and it favors adaptivity. The objective of
1D–HHT is to extract the instantaneous amplitudes and
frequencies from a signal built as a sum of a trend and
intrinsic mode functions (IMFs). We recall that an IMF is
loosely defined as a function oscillating around zero and
having symmetric oscillations. To achieve this goal, the
1D–HHT consists in a two-step procedure:

• a decomposition step, whose objective is to extract the
IMFs from the data,

• spectral analysis of each extracted IMF in order to
estimate the instantaneous amplitudes and frequencies of
each component.

Regarding the first step, an efficient decomposition procedure
known as empirical mode decomposition (EMD) has been
proposed in [7]. It aims at sequentially extracting the IMF
through a sifting process that is based on maxima (resp.
minima) cubic spline interpolation. The second step aims
at computing the analytic signal of each extracted IMF
in order to access the instantaneous amplitude and phase
(that leads to frequency) of each IMF. Consequently, the
2D counterpart of the 1D–HHT principle requires
(i) a bi-dimensional mode decomposition step providing
the 2D–IMFs and (ii) a 2D spectral analysis step allowing to
extract the instantaneous amplitude, frequency, and orientation
of each bi-dimensional IMF.

A generalization of the 1D–HHT for arbitrary space dimen-
sions has already been proposed in [8]. This method combines
a multidimensional extension of an EMD based on the compu-
tation of local means [9] and a multidimensional generalization
of analytic signal defined with the Riesz transform that is
called monogenic signal [10], [11]. However, this method,
as well as the other EMD based on a sifting procedure and
interpolation steps, lacks of robustness as will be discussed
further. Another 2D spectral analysis method whose goal is
close to a 2D–HHT is the Riesz-Laplace transform proposed
by Unser et al. [12]. It combines a 2D wavelet transform with
a monogenic analysis [10], [11]. The counterpart of using a
wavelet framework is the lack of adaptivity and consequently
this method is less suited than EMD for analyzing nonstation-
ary signals such as AM–FM signals. Moreover, both methods
use a monogenic analysis in 2D [12] or n-D [8] for the spectral
estimation step, which proved to be efficient for amplitude,
phase, and orientation estimation but not so efficient for
frequency estimation as it will be seen in Section IV.

The aim of this paper is to revisit each of both steps
using recent optimization techniques in order to highligh
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the importance of the combinaison of efficient methods for
decomposition and for spectral analysis.

The first contribution of this paper concerns a new
robust 2D mode decomposition procedure based on convex
optimization. Indeed, the existing 2D–EMD methods are based
on the sifting procedure whose main drawback is the lack
of a rigorous mathematical definition, and consequently of
convergence properties [13]–[19], while efficient 1D mode
decomposition procedures based on convex optimization have
been recently proposed in order to get stronger mathematical
guarantees [20]–[22]. For instance, [22] proposed a mathemat-
ical formalism for 1D–EMD based on a multicomponent prox-
imal algorithm that combines the principle of texture-geometry
decomposition [23]–[25] with some specific features of the
usual EMD: constraints on extrema in order to extract IMFs
oscillating around zero, sequential formulation of the usual
EMD, or IMFs quasi-orthogonality. This method appears to
have better performance (in terms of extraction or convergence
guarantees) than the other convex optimization procedures as
discussed in [22]. For this reason, we propose to extend this
method to a 2D mode decomposition formalism.

Our second contribution concerns an alternative
approach to monogenic analysis, based on annihilation
property [26]–[29]. This property, which was highlighted in
Prony work in the eighteenth century [27], is particularly
interesting for estimating sinusoids. This annihilation
technique has been adapted to the finite rate of innovation
problems in [30]. When noise is involved in the data, the
procedure is modified in order to incorporate a low rank
constraint. This method is known as the Cadzow algorithm
[30], [31]. An improved version of Cadzow algorithm has been
proposed in [32] and then extended for 2D spectral analysis
in [33], in order to estimate the modulation parameters in
structured illumination microscopy images. In this paper, the
objective is to adapt this 2D spectrum analysis technique
in order to estimate the local amplitude, frequency, and
orientation of an AM–FM image.

Finally, by combining the proposed variational
bi-dimensional EMD with the spectral estimation based
on the annihilation property, we propose an efficient adaptive
2D spectral analysis that we call 2D Prony–Huang Transform
(PHT), whose performances are evaluated on simulated and
real data.

Section II is focused on the proposed 2D–EMD, while
Section III describes the optimization procedure improv-
ing the spectral analysis step. The experimental results and
comparisons with the state-of-the art methods are presented
in Section IV.

Notations: We denote by y = (y[n,m])1≤n≤N1,1≤m≤N2 ∈
R

N1×N2 the matrix expression of an image whose size is N1 ×
N2, the n-th row of the image y is denoted y[n, ·] ∈ R

N2 , and
y = (y[n])1≤n≤N ∈ R

N is the vector expression of y, such that
N = N1 × N2. Let H denote a real Hilbert space. �0(H) mod-
els the set of convex, lower semi-continuous, proper functions
from H to ] − ∞,+∞]. A proper function is a function that
is not equal to +∞ everywhere on its domain. The proximity
operator associated to a function ϕ ∈ �0(H) is defined, for
every u ∈ H, as proxϕu = arg minv∈H ϕ(v)+ 1

2‖u − v‖2.

Algorithm 1 2D–EMD [14]

II. VARIATIONAL 2D–EMD
A. Classical 2D–EMD

We consider an image x ∈ R
N1×N2 built as a sum of

bidimensional IMFs (d(k))1≤k≤K , and a trend a(K ) ∈ R
N1×N2 ,

i.e.,

x = a(K ) +
K∑

k=1

d(k). (1)

The 2D–EMD methods [13]–[19] aim at sequentially
extracting the IMFs (d(k))1≤k≤K from the data x. The usual
decomposition process is summarized in Algorithm 1.

One can easily remark that this mode decomposition pro-
cedure splits up the trend a(k−1) into a component having
IMF properties, denoted d(k), and a residual component,
denoted a(k). This decomposition is based on the sifting
process (Steps 1)-6) of the algorithm) that consists in iterating
the mean envelope removal to t[i]. The idea behind the sifting
process is to remove the slower parts of the signal, which are
contained in the mean envelopes, in order to extract an oscil-
lating component of zero mean envelope, the IMF d(k). Note
that in step 3), the computation of the mean envelope m[i] can
be obtained through several procedures. For instance, it may
denote the mean of the upper and lower envelopes obtained by
interpolating the maxima, resp. minima, of t[i] as proposed in
Linderhed image empirical mode decompostion (IEMD) [14]
or the work by Nunes et al. called bidimensional empirical
mode decompostion (BEMD) [15]. A faster method to compute
the envelopes, based on a Delaunay triangulation of the
extrema, is proposed in [16]. Another fast solution based
on triangulation is presented in [17], its main difference is
that it does not compute envelopes but it directly computes
the mean surface from the characteristic points of the image
(maxima, minima, and saddle points). In [18] the authors
propose to estimate the upper and lower envelopes through a
convex optimization procedure in order to avoid over/under
shooting problems. Finally, in [34], a tensor-product based
method is provided to build the envelopes: interpolation is
done separately on rows and columns of the image. Some of
these methods are consequently faster and may lead to better
performance but they are all based on the sifting principle,
which does not have convergence guarantees.

B. Proposed 2D–EMD

As mentioned above, the main limitation of the existing
2D–EMD approaches is the sifting process. In order to avoid
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this limitation while keeping the spirit of EMD, we propose
to preserve the idea of extracting the trend and the IMF of
order k from the trend of order k −1 but we replace the sifting
procedure (Steps 1)-6)) by the resolution of a variational
approach. The proposed criterion is the following, for every
k ∈ {1, . . . , K },
(a(k), d(k)) ∈ Argmin

a∈RN ,d∈RN
φk(a)+ ψk(d)+ ϕk(a, d; a(k−1))

(2)

where φk ∈ �0(R
N ) and ψk ∈ �0(R

N ) impose respectively
the trend and IMF behaviors to the components a(k) and d(k),
while ϕk(·, ·; a(k−1)) ∈ �0(R

N × R
N ) aims at modeling

that a(k−1) is close to a(k) + d(k).
As proposed in [22] for 1D–EMD, the coupling term is

chosen quadratic:

(∀(a, d) ∈ R
N × R

N ) ϕk(a, d; a(k−1)) = ‖a + d − a(k−1)‖2.

(3)

Such a coupling term makes the method robust to sampling
artifacts [22].

The smoothness of the trend a(k) is obtained by imposing a
constraint on its isotropic total variation. Formally, such a
constraint leads to the following choice of φk , for every
a ∈ R

N1×N2 ,

ρ(k)
N1∑

n=1

N2∑

m=1

√
|a[n − 1,m]−a[n,m]|2+|a[n,m − 1]−a[n,m]|2

(4)

with a regularization parameter ρ(k) > 0.
At this stage, one can notice the similarities with the texture-

geometry decomposition strategies [23]–[25] when K = 1.
For this class of methods the function ψk is chosen to
model oscillating signals, for example it can be a �1-norm
(TV-�1) [23], or the G-norm that is associated to the Banach
space of signals with large oscillations (TV-G) [24], [25], [35].
The texture-geometry decomposition has been designed for
extracting a texture from a piece-wise constant image.
However, the texture extracted with such a procedure may
correspond to any oscillatory behavior and thus can be com-
posed of a sum of two (or more) oscillatory components.
For this reason we propose to integrate the IMF proper-
ties in the function ψk in order to impose a extraction
procedure closer to the EMD, which means being able to
extract each oscillatory component separately. To achieve this
goal, we extend the 1D solution proposed in [22] to the bi-
dimensional problem. We describe two solutions that are the
genuine 2D (G2D) approach, based on 2D local extrema, and
the pseudo 2D (P2D) approach, where lines, columns, and
diagonals extrema are separately constrained (see [13] for a
comparison between G2D and P2D approaches in the usual
sifting-based EMD procedure).

1) G2D Approach: For every k ∈ {1, . . . , K }, we identify
the Pk extrema of a(k−1) whose locations are denoted by
i (k)[�] ∈ {1, . . . , N1}×{1, . . . , N2}. For every � ∈ {1, . . . , Pk}
such that i (k)[�] denotes a maxima (resp. a minima), we
denote (i (k)1 [�], i (k)2 [�], i (k)3 [�]) the locations of the three closest

minima (resp. maxima) in the sense of Euclidean distance.
We want to impose that d(i (k)[�]) is approximatively symmet-
ric with respect to its mirror-point that would be on the minima
(resp. maxima) envelope. This condition can be obtained by
imposing a constraint on the extrema of d:
∣∣∣∣ d

[
i (k)[�]]

+α
(k)
1 [�]d[

i (k)1 [�]] + α
(k)
2 [�]d[

i (k)2 [�]] + α
(k)
3 [�]d[

i (k)3 [�]]

α
(k)
1 [�] + α

(k)
2 [�] + α

(k)
3 [�]

∣∣∣∣, (5)

where
(
α
(k)
j [�])1≤ j≤3 are computed so that i (k)[�] is the

barycenter of the locations
(
i (k)j [�])1≤ j≤3 weighted by the

(
α
(k)
j [�])1≤ j≤3. This penalization can be globally rewritten as:

(∀d ∈ R
N ) ψk(d) = ν(k)‖M(k)

G2Dd‖1, (6)

where M(k)
G2D ∈ R

Pk×N is a sparse matrix modelling the con-
straint imposed on d , i.e., Eq. (5) can be written |M(k)

G2D[�, ·]d|,
where M(k)

G2D[�, ·] denotes the �-th row of M(k)
G2D . More

precisely, each row � of M(k)
G2D is sparse and contains 4 non-

zero values: 1,

α
(k)
1 [�]

α
(k)
1 [�] + α

(k)
2 [�] + α

(k)
3 [�]

,
α
(k)
2 [�]

α
(k)
1 [�] + α

(k)
2 [�] + α

(k)
3 [�]

and

α
(k)
3 [�]

α
(k)
1 [�] + α

(k)
2 [�] + α

(k)
3 [�]

,

at locations i (k)[�], i (k)1 [�], i (k)2 [�] and i (k)3 [�] respectively.
The main difficulty to implement this strategy lies in the

detection of extrema locations. Several strategies have been
proposed in the literature, for instance in [14] a pixel is con-
sidered as a local extremum if its value is maximum/minimum
in a 3 × 3 neighborhood. On the other hand, there are
directional strategies that designate a pixel as a maximum
(resp. minimum) when its value is greater (resp. lower) than
the two closest pixels in any of the 4 principal directions of
the image (horizontal, vertical, diagonal, and anti-diagonal).
This method makes easier the extraction of oriented textures,
that is the reason why we have retained this approach in the
present paper. The problem of this second approach lies in the
handling of saddle points, which are minima in one direction
and maxima in another direction. In this work, we choose not
to take these points into account.

2) P2D Approach: This solution constrains extrema of
each line, column, diagonal and anti-diagonal rather than
dealing with local 2D extrema. The proposed strategy is
described for the constraint applied on the n-th row. We denote(
n, i (k)[�])1≤�≤Pk,n

the locations of local maxima/minima in

the n-th row of a(k−1). The condition that imposes a zero
mean envelope is
∣∣∣∣ d[n, i (k)[�]]

+α
(k)
1 [�]d[n, i (k)[�− 1]] + α

(k)
2 [�]d[n, i (k)[�+ 1]]

α
(k)
1 [�] + α

(k)
2 [�]

∣∣∣∣, (7)
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where (α(k)1 [�], α(k)2 [�]) are computed so that i (k)[�] is the
barycenter of the locations (i (k)[�− 1], i (k)[� + 1]) weighted
by the (α(k)1 [�], α(k)2 [�]). The extrema-based constraint can be
written for each row n ∈ {1, . . . , N1}, |R(k)n d[n, ·]�|, where
R(k)n ∈ R

Pk,n×N2 denotes the linear combination of some
elements of the n-th row d[n, ·] creating a constraint of a zero
mean envelope for the component d(k).

Considering the whole image, the constraint can be written
‖R(k)d‖1 where R(k) = diag(R(k)1 , . . . ,R(k)

N1
) is a block diago-

nal matrix, which is highly sparse. We apply the same type of
constraint to the columns (C(k)), the diagonals (D(k)), and the
anti-diagonals (A(k)) of the image, leading to the penalization:

(∀d ∈ R
N ) ψk(d) =

4∑

l=1

ν
(k)
l ‖M(k)

l d‖1 (8)

where M(k)
1 = R(k), M(k)

2 = C(k), M(k)
3 = D(k), M(k)

4 = A(k)

denote matrices in R
N×N . In this paper, we used the same

regularization parameters for the four directions, i.e., for every
l ∈ {1, . . . , 4}, ν(k)l ≡ ν(k). The main reason of this restriction
is to provide a fair comparaison with the G2D approach, which
uses a single parameter. Moreover, in variational approaches,
the question of tuning the parameters is still an open question.
Even if interesting solution have been recently provided in the
context of image restoration [36]–[39], it is often preferable
to have few parameters to tune.

C. Algorithm

For both proposed solutions (G2D–EMD or P2D–EMD),
the resulting criteria are convex, non-smooth, and involve
sparse (but non-circulant) matrices. Therefore, according to
the recent literature in convex optimization, we propose to
adapt the primal-dual splitting algorithm proposed in [40]
for solving (2). Other efficient primal-dual proximal algo-
rithms such as the one proposed in [41]–[43] could have
been employed. In this paper, we will not discuss and
compare the performance of these algorithms in order to
focus on the performance of the decomposition procedure.
However, in our simulation, the algorithm proposed in [36]
appears slightly faster in term of convergence of the iterates.
The iterations are specified in Algorithm 2 for G2D–EMD,
and in Algorithm 3 for P2D–EMD. The difficulties result-
ing from this minimization problem is first to deal with
the Hilbert space R

N × R
N [42], to specify the closed

form expression of the proximity operators associated to the
�1-norm and to the �2,1-norm, and to compute the norm of the
involved matrices in order to design an efficient algorithm from
the computational point of view and to insure convergence.
However, for further details on these computations, one could
refer to [44]. In order to lighten the notations, we rewrite
the total variation penalization as φk = ρ(k)‖L · ‖2,1, with
L = [L�

H L�
V ]� where LH ∈ R

N×N and LV ∈ R
N×N

denote the matrices associated to the horizontal and vertical
finite differences. For the P2D–EMD algorithm, we denote
M(k)

P2D = diag(M(k)
1 ,M(k)

2 ,M(k)
3 ,M(k)

4 ). Parameters σ and τ
are chosen so as to ensure the convergence of the algorithm,
see [40] for further details. As the optimization problem is

Algorithm 2 G2D–EMD Algorithm

Algorithm 3 P2D–EMD Algorithm

convex, the initialization of variables a[0], d [0], y[0]
0 and y[0]

1
does not impact the solution. For the sake of simplicity we
initialize them to zero.

III. SPECTRAL ANALYSIS

The previous section was dedicated to methods to
extract 2D IMFs. In this section, we now focus on
the estimation of the instantaneous frequency, amplitude,
and orientation of each IMF. After a short review
of monogenic analysis, usually employed for analysing
2D IMFs [8], we propose a new 2D spectral analysis method
based on Prony annihilation property.

A. 2D Spectral Estimation Based on Monogenic Signal

We first recall that for a given real-valued 1D signal d ∈ R
N ,

the associated analytic signal da ∈ C
N , which by definition

involves the signal itself and its Hilbert transform, can also
be written under a polar form involving instantaneous phase
χ ∈ R

N and amplitude α ∈ R
N such as:

da = d + jH(d) = αe jχ , (9)

1It has been proved in [40] that the condition on τ and σ to ensure the
weak convergence of the algorithm is τ < 1/(σβ + 2).
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where H(d) is the Hilbert transform of d , which consists
in a convolution by an all pass filter h characterized by its
transfer function Hω = − jω/|ω|. These two formulations
make easy the computation of the instantaneous amplitude and
the instantaneous phase as the absolute value of the analytic
signal and its argument.

The monogenic analysis is a 2D extension of spectral
analysis based on the analytic signal. It is based on the Riesz
transform, a natural 2D extension of the Hilbert transform [11].
The Riesz transform of a 2D signal d can be expressed
as dr = (d1,d2) = (h1 ∗ y,h2 ∗ y), where the filters
(hl)1≤l≤2 are characterized by their 2D transfer functions
(Hl)ω = − jωl/‖ω‖ with ω = (ω1, ω2). Based on the Riesz
transform, the monogenic signal is the counterpart in 2D
of the analytic signal defined as a three-component signal
dm = (d,d1,d2) [11]. Similarly to the analytic signal, the
monogenic signal enables to compute easily the local ampli-
tude, phase, and orientation at each pixel through the relations,
for every (n,m) ∈ {1, . . . , N1} × {1, . . . , N2},

α[n,m] =
√(

d[n,m])2 + (
d1[n,m])2 + (

d2[n,m])2

χ [n,m] = arctan

(
√(

d1[n,m])2 + (
d2[n,m])2

d[n,m]
)

θ [n,m] = arctan(d2[n,m]/d1[n,m]). (10)

The local frequency η[n,m] is then obtained by differentiating
the local phase χ [n,m] along the direction given by the
orientation θ [n,m], see [12] for further details.

The estimation of the orientation proposed in (10) lacks of
robustness because it does not take into account the orientation
of neighboring pixels. Unser et al. [12] derived an improved
estimation based on a minimization procedure including a
smoothness neighborhood constraint. It consists in estimat-
ing the local orientation which maximizes the directional
Hilbert transform over a local neighborhood. To sum up,
this optimization problem can be written as the maximization
of a quadratic form, which leads to an eigenvalue problem
on a matrix of size 2 × 2. The eigenvector corresponding
to the largest eigenvalue gives the local orientation θ[n,m]
inside the neighborhood, while the difference between the
two eigenvalues, normalized to lie in the range [0, 1], gives
a coherency index λ[n,m]. The coherency index models the
degree of directionality of the local neighborhood and gives
a general reliability index of the estimation: a high coherency
index (close to 1) means that pixels into the neighborhood have
a similar orientation, while a low coherency index means that
there is no privileged orientation into the neighborhood, which
means the robust orientation estimation is not reliable.

B. 2D Spectral Analysis Based on the
Annihilation Property

The monogenic analysis is efficient for the analysis of
instantaneous amplitudes and orientations but unfortunately
fails for the frequency estimation, as we will see in Section IV.
In this section, we propose an alternative method, based on
the annihilation property of a discrete cosine function. While
several papers deal with this problem in 1D [30], [32], [45], the

bi-dimensional cosine estimation is still challenging. Recently,
in the context of structured illumination microscopy, an effi-
cient 2D spectral estimation strategy has been proposed in
order to estimate the global modulation parameters [33]. While
in structured illumination microscopy the modulation is uni-
form through the image, in the present context the modulation
may vary from a location to another. For this reason, we
propose to adapt the spectral strategy proposed in [33] in order
to locally estimate the amplitudes, phases, and orientations of
the IMFs. There exists several other spectral analysis meth-
ods such as MUSIC [46], ESPRIT [47], MODE [48], [49],
WSF [50], which are based on the splitting of the autocor-
relation matrix of data into a signal and a noise subspaces.
MODE and WSF are widely used in sensor array estimation,
they are fast, optimal for large sample data and efficient to
separate highly correlated sources. However, these methods
are statistically optimal for large sample data. Indeed, these
methods are based on an estimate of the data autocorrelation
matrix, which needs a large set of samples to be consistent.
In this work, we perform local spectral estimation on small
patches and therefore we need a method that is particularly
efficient for dealing with the limited information.

1) An IMF is Locally a Cosine Function: For every
k ∈ {1, . . . , K }, we divide the k-th estimated IMF d(k)

into square patches of size N̄ (k) , i.e.,
(

∀(n̄, m̄) ∈ {
1, . . . ,

⌊ N1

N̄ (k)

⌋} × {
1, . . . ,

⌊ N2

N̄ (k)

⌋})
,

p(k)n̄,m̄ = (d(k)[n,m])
(n,m)∈N (k)

n̄,m̄
(11)

where

N (k)
n̄,m̄ = {(n,m) ∈ {(n̄ − 1)N̄ (k) + 1, . . . , n̄ N̄ (k)}

× {(m̄ − 1)N̄ (k) + 1, . . . , m̄ N̄ (k)}} (12)

and we locally model it by a discrete cosine function that is,
for every (n′,m′) ∈ {1, . . . , N̄ (k)} × {1, . . . , N̄ (k)},
p(k)n̄,m̄ [n′,m′] ≈ α

(k)
n̄,m̄ cos

(
2πξ

(k)
n̄,m̄n′ + 2πζ

(k)
n̄,m̄m′ + υ

(k)
n̄,m̄

)
(13)

where α
(k)
n̄,m̄ models the local amplitude for the patch (n̄, m̄)

of the k-th IMF, while ξ
(k)
n̄,m̄ and ζ

(k)
n̄,m̄ are respectively the

local frequencies toward lines and columns. Then, the local
frequency and orientation are respectively given by:

η
(k)
n̄,m̄ =

√
(ξ
(k)
n̄,m̄)

2 + (ζ
(k)
n̄,m̄)

2, (14)

and

θ
(k)
n̄,m̄ = arctan(ξ (k)n̄,m̄/ζ

(k)
n̄,m̄). (15)

The problem is then to estimate the parameters α(k), ξ (k),
ζ (k), υ(k) which best fit the data p(k).

2) Principle of Annihilation Property in 1D: For every
n′ ∈ {1, . . . , N̄ } with N̄ � 3, a 1D discrete cosine function
p[n′] = α cos(2πξn′ + υ) can be written as a sum of two
complex exponentials. Thus, according to the annihilation
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property [30], the sequence (p[n′])1≤n′≤N̄ admits an
annihilating filter f = ( f [k])0≤k≤2 which satisfies:

(∀n′ = {3, · · · , N̄ })
2∑

k=0

f [k]p[n′ − k] = 0, (16)

and has the following Z -transform:

F(z) = f [0] + f [1]z−1 + f [2]z−2 (17)

= f [0](1 − e− j2πξ z−1)(1 − e+ j2πξ z−1) (18)

that means f [0] = f [2] (i.e, f is symmetric) and f [1] =
− f [2](e j2πξ + e− j2πξ ). It is then straightforward to compute
α, ξ , and υ from the annihilating filter. Indeed, according to
Eq. (18), the roots of the polynomial F(z) are on the unit
complex circle and are e− j2πξ and e+ j2πξ , which leads to the
value of ξ . Then, by linear regression, we retrieve the complex
amplitude αe jυ . Consequently, the main difficulty consists in
estimating the annihilating filter f .

First, it can be shown easily that, if f = ( f [0], f [1], f [2])
is an annihilating filter of the cosine function p, any non trivial
filter f ′ = ( f ′[k])0≤k≤L , where 2 � L � N̄ − 3, is also an
annihilating filter of p if the roots of f are roots of f ′. The
inverse is true: if f ′ is a non trivial annihilating filter of p,
then the roots of f are roots of f ′. The annihilating equation
can then be rewritten as:

(∀n′ = {L + 1, · · · , N̄ })
L∑

k=0

f ′[k]p[n′ − k] = 0, (19)

or equivalently in the matrix form, TL(p) f ′ = 0, with

TL(p)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p[N̄ − L] · · · p[N̄ − 1] p[N̄]
p[N̄ − L − 1] · · · p[N̄ − 2] p[N̄ − 1]

...
...

...
p[1] · · · p[L] p[L + 1]

p[L + 1] · · · p[2] p[1]
...

...
...

p[N̄ ] · · · p[N̄ − L + 1] p[N̄ − L]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

where TL(p) ∈ R
2(N̄−L)×(L+1). The symmetrization of TL(p)

ensures the symmetry of the filter.
Second, according to [30], p is a sinusoid if and only if,

for any L, TL(p) has a rank of two. The simplest annihilating
filter h is obtained from T2(p) by considering its right singular
vector corresponding to the 3rd singular value which is zero
(due to L = 2 and that the rank of T2(p) is 2, the two others
singular values are non-zero).

This strategy cannot be applied directly on degraded data.
In [30] and [32], the authors propose an iterative strat-
egy to estimate the matrix T̂ = TL( p̂) of rank 2, where
p̂ denotes the denoised sinusoidal signal that is the closest
from p. Consequently, the denoising strategy consists in solv-
ing the following structured low-rank approximation (SLRA)
problem:

T̂ ∈ Argmin
T∈T

T∈R2

‖√P ◦ (T − TL(p)‖2
F , (21)

Algorithm 4 Spectral Estimation Algorithm

where P ∈ R
2(N̄−L)×(L+1) denotes a weighting matrix whose

entries are inversely equal to the number of times where the
entry models the same element, ◦ is the entrywise product,
‖ · ‖F is the Frobenius norm. T is the set of matrices
T = {(TL(c)) : c ∈ R

N }, and R2 is the set of matrices with a
maximal rank of 2. The problem can be solved with an iterative
primal-dual algorithm as proposed in [32]. L is chosen so that
TL(p) is as close to a square matrix as possible, in order to
improve the convergence speed of the algorithm.

3) Spectral Analysis of IMFs: The procedure described
previously has been extended for 2D spectral analysis in [33]
when the modulation is uniform through the whole image.
In our work, in the scope of providing an adaptive 2D spectral
analysis method designed for nonstationary images, we will
estimate amplitudes, frequencies and orientations locally. The
idea is then to apply the method proposed in [33] on the local
patches p(k)n̄,m̄ ∈ R

N̄ (k)×N̄ (k)
.

In the situation where the (k, n̄, m̄)-th patch p(k)n̄,m̄ is a strict

sinusoid, there exists two annihilating filters f (k)n̄,m̄ and g(k)n̄,m̄ ,
both symmetric and of size 3, which annihilate respectively
the rows and the columns of the patch. The roots of the

Z -transform of f (k)n̄,m̄ are e− j2πξ
(k)
n̄,m̄ and e+ j2πξ

(k)
n̄,m̄ , which leads

to ξ
(k)
n̄,m̄ as it is chosen positive. The same calculation with g(k)n̄,m̄

gives ±ζ
(k)
n̄,m̄[n̄, m̄], the sign of ζ

(k)
n̄,m̄ has to be disambiguated

in order to compute the orientation. Finally, a linear regression

gives us the complex amplitude α
(k)
n̄,m̄e jυ(k)n̄,m̄ and disambiguates

the sign of ζ
(k)
n̄,m̄ , see [32] for more details.

The IMFs extracted with the EMD procedures described
in Section II do not behave exactly like a local cosine.
Consequently, a SLRA based procedure is used in order to
achieve an efficient 2D-block spectral estimation. The problem
to solve is:

(Û
(k)
n̄,m̄, V̂

(k)
n̄,m̄) ∈ Argmin

(U,V)∈T (k)

U∈R2
V∈R2

‖√P ◦ (U − UL(k) (p
(k)
n̄,m̄)),√

P ◦ (V − VL(k) (p
(k)
n̄,m̄))‖2

F

(22)
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Fig. 1. Decomposition of the simulated data obtained with different methods. 1st row: Simulated data. 2nd row: Image Empirical Mode Decomposition [14],
3rd row: Total Variation based decomposition [23], 4th row: Gilles-Osher based decomposition [24], 5th row: G2D–EMD, 6th row: P2D–EMD. On 1st row,
from the left to the right the columns present x, x(1), x(2), x(3). From the left to the right the columns present d(1), d(2) and a(2).

where T (k) is the set T (k) = {(UL(k) (c),VL(k) (c)) : c ∈
R

N̄ (k)×N̄ (k) }, and UL(k) and VL(k) map respectively the lines and
columns of a patch of size N̄ (k)× N̄ (k) into a centro-symmetric

Toeplitz matrix of size 2N̄ (k)(N̄ (k) − L(k)) × (L(k) + 1).
See [33] for more details on the construction of UL(k) (p

(k)
n̄,m̄)

and VL(k) (p
(k)
n̄,m̄). The weighting matrix P of size



5240 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 2. Spectral analysis on the 1st mode using different methods. 1st row: Riesz-Laplace [12]. 2nd row: G2D–HHT (G2D–EMD + monogenic analysis).
3rd row: G2D–PHT (G2D–EMD + annihilation based spectral analysis). 4th row: P2D–HHT (P2D–EMD + monogenic analysis) [51]. 5th row: P2D–PHT
(P2D–EMD + annihilation based spectral analysis). From left to right: mode d(1), amplitude α(1), frequency η(1) and orientation θ (1).

2N̄ (k)(N̄ (k) − L(k)) × (L(k) + 1) is defined similarly as
for the original 1D SLRA.

4) Algorithm for Analysing IMFs: Similarly as in [33], the
SLRA problem is solved with a primal-dual algorithm, which
alternates between a gradient descent with respect to the
cost function (the squared Frobenius norm) with projections
PT (k) and PR2 to enforce the constraints. PT (k) is the
orthogonal projection of a pair of matrices (U,V) on T (k) that
consists in averaging the coefficients of U and V corresponding
to the same pixel of the image. PR2 is the orthogonal
projection on the set of matrices of rank at most 2, it is done
by SVD truncation, that consists to set to zero all singular

values except the two largest ones. The algorithm is described
in Algorithm 4.

5) Coherency Index: Inspired by [12], we introduce a new
coherency index, defined as λ̂ = {̂λ(k)n̄,m̄}k,n̄,m̄ ∈ [0; 1] in order
to provide a degree of quality of the spectral estimation. For
every (k, n̄, m̄), λ̂

(k)
n̄,m̄ is given by the sum of the two higher

singular values of p̂(k)n̄,m̄ , normalized to have an index between
0 and 1. λ̂, which is highly linked to the amplitude α̂, informs
us about the local oscillatory character of data: it is higher
on oscillating parts of the signal, and lower on non-oscillating
parts and parts containing only noise.
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Fig. 3. Spectral analysis on 2nd mode using different methods. 1st row: Riesz-Laplace [12]. 2nd row: G2D–HHT (G2D–EMD + monogenic analysis). 3rd row:
G2D–PHT (G2D–EMD + annihilation based spectral analysis). 4th row: P2D–HHT (P2D–EMD + monogenic analysis) [51]. 5th row: P2D–PHT (P2D–EMD +
annihilation based spectral analysis). From left to right: mode d(2), amplitude α(2), frequency η(2) and orientation θ(2).

6) Size of the Patches: The patch size N̄ (k) should be chosen
so that the IMF can be modeled as a sinusoidal function inside
a patch. This means that it should be small enough so that the
frequency and orientation can be considered constant inside a
patch, and large enough so that each patch contains at least
one period of oscillation.

IV. EXPERIMENTS
A. Simulations

The first experiment is on simulated data of size
N = 512 × 512, consisting in a sum of two local-
ized texture components x(1) and x(2) and a piecewise

constant background x(3). The background is formed with
two piecewise constant patches: one rectangular patch and
one ellipsoidal patch. The component x(1) (resp. x(2)) models
a modulated signal of central frequency η1 = 120/512
(resp. η2 = 60/512).

1) EMD: We compare our two variational EMD approaches
(G2D–EMD and P2D–EMD) with several state-of-the-art
decomposition methods that are (a) a classical 2D–EMD
method, image empirical mode decomposition (IEMD) [14],
which is a natural 2D extension of EMD based on 2D
interpolation of extrema using thin-plate spline,
(b) a texture-cartoon decomposition methods based on total



5242 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 4. P2D–EMD decomposition of wake image. 1st IMF: ρ(1) = 50, ν(1) = 50. 2nd IMF: ρ(2) = 20, ν(2) = 5. 3rd IMF: ρ(3) = 20, ν(3) = 1.

Fig. 5. Spectral analysis on 1st mode of wake image. 1st row: 1st scale of Riesz-Laplace wavelet transform. From left to right: mode d(1), amplitude
α(1), frequency η(1) and orientation θ (1). 2nd row: 1st IMF P2D–HHT. From left to right: mode d(1), amplitude α(1), frequency η(1) and orientation θ (1).
3rd row: 1st IMF P2D–PHT (N̄ (1) = 14). From left to right: denoised mode, amplitude α(1), frequency η(1) and orientation θ (1).

variation decomposition [23] and (c) the Gilles-Osher texture-
geometry decomposition [24], which is an iterative procedure
designed to solve the Meyer G-norm texture-cartoon decom-
position problem (similarly to the proposed solution, for both
texture-geometry decomposition, we denote ρ(k) the cartoon
regularization parameter and ν(k) the texture regularization
parameter).

In our experiments, the regularization parameters are
chosen as follows for G2D–EMD: ρ(1) = 0.02, ν(1) = 1000,
ρ(2) = 0.05, ν(2) = 1 while for P2D–EMD, we use ρ(1) = 0.3,
ν(1) = 0.3, ρ(2) = 1, ν(2) = 0.1. For Total Variation
decomposition method, we set ρ(1) = 70 and ρ(2) = 100.
For Gilles-Osher method, we set ρ(1) = 104, ν(1) = 103,
ρ(2) = 10, and ν(2) = 10. The results are displayed on
Fig. 1.

First of all, our method provides a good separation of
the different components. It has the expected behaviour of a

2D–EMD, especially the P2D–EMD method: the locally
fastest oscillating components are extracted at each step of
the decomposition, even if their frequencies are nonstationary.
The G2D–EMD approach also gives good results, but
the oscillating components are not so perfectly separated.
On contrary, the state-of-the-art IEMD does not manage to
separate at all the components x1 and x2. In comparison
with other approaches like texture-cartoon decomposition,
the proposed 2D–EMD approach provides more adaptivity
and a better management of nonstationary signals. The TV
based approach does not give a good separation of the three
oscillating components. Gilles-Osher solution is not suited
for nonstationary signals: some of the slower part of the
frequency modulated component x2 is on the 2nd mode,
while its faster part is localized on the first mode.

To estimate the computational time of each method,
we define a stopping criterion based on the norm of the dif-
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Fig. 6. Spectral analysis on 2nd mode of wake image. 1st row: 2nd scale of Riesz-Laplace wavelet transform. From left to right: mode d(2), amplitude
α(2), frequency η(2) and orientation θ (2). 2nd row: 3rd scale of Riesz-Laplace wavelet transform. From left to right: mode d(3), amplitude α(3), frequency
η(3) and orientation θ (3). 3rd row: 2nd IMF P2D–HHT. From left to right: mode d(2), amplitude α(2), frequency η(2) and orientation θ (2). 4th row: 2nd IMF
P2D–PHT (N̄ (2) = 21). From left to right: denoised mode, amplitude α(2), frequency η(2) and orientation θ (2).

ference between two successive iterates set to 10−6. The com-
plete decomposition into two modes needs around 3 minutes
with TV decomposition, around 6 minutes with Gilles-Osher
decomposition, and less than 15 minutes with P2D–EMD. The
decomposition using G2D–EMD is substantially longer and
takes too much time to reach the stopping criterion, so we
have stopped the algorithm after 104 iterations. Then, the full
decomposition with G2D–EMD takes a little less than 1 hour.
P2D–EMD takes a few more time than other state-of-the-
art methods, but it is compensated with the better separation
performance.

2) Spectral Analysis: We perform two types of spec-
tral analysis on the IMFs obtained by G2D–EMD and
P2D–EMD. The first approach, that we proposed in [51],
is based on a monogenic analysis. We refer to this approach as
G2D–HHT and P2D–HHT. On the other hand, the proposed
method based on Prony’s annihilation property is referred as
G2D–PHT and P2D–PHT. Results on simulations are shown
on Figs. 2 and 3. For the annihilation based method, we have
chosen N̄ (k) = 7 for both IMFs. A comparison with the

Riesz-Laplace transform analysis proposed in [12] is also
performed. For the three methods, frequency and orientation
maps are composed by the coherency index, in order to have
better visual results.

The EMD based procedure appears to be more adaptive
and better suited for nonstationary data than Riesz-Laplace
transform. Moreover, one should notice that the PHT based
spectral estimation gives smoother results and performs better
for higher order IMFs, especially for the frequency estimation.
Indeed, the denoising step of the Prony based estimation
achieves a better robustness with respect to errors linked to
the EMD decomposition step. The drawbacks of the proposed
annihilation based method are the loss of resolution and the
computational time.

B. Real Data

The second experiment is performed on a boat wake
image.2 Regarding the performance of P2D–HHT compared to

2http://www.123rf.com/photo_17188220_fast-boat-in-the-far-blue-sea.html
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Fig. 7. Spectral analysis on 3rd mode of wake image. 1st row: 4rd scale of Riesz-Laplace wavelet transform. From left to right: mode d(4), amplitude
α(4), frequency η(4) and orientation θ (4). 2nd row: 3rd IMF P2D–HHT. From left to right: mode d(3), amplitude α(3), frequency η(3) and orientation θ (3).
3rd row: 3rd IMF P2D–PHT (N̄ (3) = 31). From left to right: denoised mode, amplitude α(3), frequency η(3) and orientation θ (3).

G2D–HHT on simulated data, we have decided to focus on
this method in our experiments on real data. We compare the
results obtained with the proposed P2D–PHT method with
P2D–HHT and Riesz-Laplace wavelet transform. The results
obtained with the proposed P2D–EMD are shown in Fig. 4.
We have used the following optimal parameters: ρ(1) = 50,
ν(1) = 50, ρ(2) = 20, ν(2) = 5, ρ(3) = 20, ν(3) = 1.
The first IMF contains the fastest small waves. The second
IMF contains a slower wave as well as some salt-and-pepper
noise, while the third IMF contains the slowest waves. The
trend results in the illumination map. The spectral analysis is
performed for the three IMFs and the results are displayed
in Figs. 5, 6 and 7. For the P2D–PHT, the size of patches
has to be chosen so as to be adapted to the frequency of the
waves contained in each IMF: a single patch should contain
at least one complete period of the wave. Consequently,
we have chosen N̄ (1) = 14, N̄ (2) = 21 and N̄ (3) = 31. The
Riesz-Laplace transform provides good results but suffers from
redundancy between the different scales. For example, the
second and third wavelet scales contain the same component.
Moreover, the methods based on monogenic analysis
(Riesz-Laplace and P2D–HHT) give good results for the
orientation estimation but are less performant for frequency
estimation. Indeed, the orientation is obtained using a robust
neighborhood based estimation method, while the frequency
is computed pixel-by-pixel from the monogenic signal, which
makes the frequency estimation very sensitive to noise. The

proposed P2D–PHT method appears to be more robust and
consequently gives better results for the frequency estimation.
The main drawback of the P2D–PHT is the loss of resolution,
especially for the coarsest IMF which requires to deal with a
large size for patches.

C. Quantitative Evaluation of P2D–EMD

In order to evaluate quantitatively the performance of the
method, we performed several tests on synthetic images of
size 128 × 128:

• Experiment 1 consists in a nonstionary image constituted
of the sum of two AM-FM components. The mean
frequency of the first component is fc1 = 16/128, its
modulation frequency is fm1 = 4/128, and its orientation
θ1 = π/3. The second component is composed with two
AM-FM components placed on each half of the image: an
AM-FM component of high frequency on the left half of
the image ( fc2 = 32/128, fm2 = 8/128, θ2 = π/4) and
an AM-FM component of low frequency on the right half
of the image ( fc3 = 4/128, fm3 = 1/128, θ3 = π/4).

• Experiment 2 corresponds to a similar configuration as
first experiment with a different orientation for the first
component ( fc1 = 16/128, fm1 = 4/128, θ1 = −π/3,
fc2 = 32/128, fm2 = 8/128, θ2 = π/4, fc3 = 4/128,
fm3 = 1/128, θ3 = π/4).

• Experiment 3 corresponds to a similar configuration as
first experiment with higher frequencies ( fc1 = 32/128,
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Fig. 8. Comparison of results of IEMD, Gilles-Osher and P2D–EMD on image 1. Mean square error on d(1) (left) and a(1) (right) with respect to the
theoretical component as a function of ν(1) for different values of ρ(1) for the three methods: P2D–EMD (solid lines), Gilles-Osher (color dashed line), and
IEMD (black dashed line).

fm1 = 4/128, θ1 = π/3, fc2 = 64/128, fm2 = 8/128,
θ2 = π/4, fc3 = 8/128, fm3 = 1/128, θ3 = π/4).

• Experiment 4 combines the first experiment with an
ellipsooidal patch: every pixel outside the ellipsooidal
patch is set to zero.

The synthetic images are displayed in Fig. 9.
We provide two types of quantitative evaluation: the

robustness to the parameters ν(1) and ρ(1) in the decompo-
sition step and the performance of the proposed P2D-PHT
compared to P2D-HHT. Note that P2D–EMD leads to similar

performance than G2D-EMD but is much more faster. For
this reason, we have limited the evaluation of the performance
on P2D.

For each experiment, we evaluate the performance of the
proposed P2D–EMD method with respect to the parameters
ν(1) and ρ(1) in terms of mean square error on the estimated
d(1) and a(1) with respect to the theoretical components.
We compare them with two state-of-art methods: image
empirical mode decomposition [14] and a texture-geometry
decomposition [24]. The results are displayed in Fig. 8. We
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Fig. 9. Comparison of the performance in terms of frequency estimation between a monogenic analysis and the proposed Prony estimation procedure.

can observe that the proposed P2D-EMD leads to better
performance for a large range of parameters ν(1) and ρ(1).
P2D–EMD clearly outperforms quantitatively the state-of-
art methods. IEMD fails especially when the frequencies
are high like on Experiment 3 and when the data contains
piecewise continuous parts like the outside of the ellipse on

Experiment 4. Gilles-Osher method fails on the four images
due to its lack of adaptivity, it is not suited for extracting
oscillations of non stationary frequency.

In Fig. 9, we display the performance in terms of
frequency estimation for an estimation based on a monogenic
analysis and on the proposed Prony patch-based estimation.
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The MSE between the real frequencies and the estimated ones
is computed. We can observe that for all the experiments the
Prony patch-based procedure leads to improve performance.
We do not present the amplitude and orientation estimation
performance because both solutions are very close except for
the Experiment 4 for which the proposed method performs
better.

V. CONCLUSION

This paper presents a complete method for spectral analysis
of nonstationary images. This method is based on
a 2D variational mode decomposition combined with a
local spectral analysis method based on Prony annihilation
property of cosine functions. This method has been tested
on simulated and real data. For the decomposition step, our
variational 2D–EMD proved to be more adaptive than other
decomposition approaches like Riesz-Laplace wavelets and
texture-geometry methods, and more efficient than existing
2D–EMD methods in addition of having more robustness
and stronger convergence guarantees. Regarding the spectral
analysis step, Prony’s annihilation-based method proved
to be more efficient for frequency estimation and more
robust with respect to noise and decomposition errors than
monogenic analysis. The main drawback of the method is the
loss of resolution due to its patch based approach. Further
works should improve the resolution by introducing patch
overlapping.
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