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ABSTRACT
Spectral unmixing is a central problem in hyperspec-

tral imagery. It is usually assuming a linear mixture
model. Solving this inverse problem, however, can be
seriously impacted by a wrong estimation of the number
of endmembers, a bad estimation of the endmembers
themselves, the spectral variability of the endmembers
or the presence of nonlinearities. These problems can
result in a too large number of retained endmembers.
We propose to tackle this problem by introducing a new
formulation for robust linear unmixing enhancing spar-
sity. With a single tuning parameter the optimization
leads to a range of behaviors: from the standard linear
model (low sparsity) to a hard classification (maximal
sparsity : only one endmember is retained per pixel).
We solve the proposed new functional using a compu-
tationally efficient proximal primal dual method. The
experimental study, including both realistic simulated
data and real data demonstrates the versatility of the
proposed approach.

Index terms - Hyperspectral Imagery, Linear Unmix-
ing, Proximal Operators, Sparsity

1 INTRODUCTION
Hyperspectral imagery offers the possibility of pixel-
level analysis, by splitting the electromagnetic spectrum
in hundreds of narrow and contiguous spectral bands,
typically covering the visible, near-infrared and short-
wave infrared spectral domain [15]. The rich spectral
content of the data allows to infer physical properties
of the materials present in the scene. However, pixels
are rarely - if at all - made up of only one material.
On the contrary, a given pixel very often contains
several different materials and only the mixture of
these materials can be observed. Solving the inverse
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problem, i.e. estimating the pure materials present
in the image(the endmembers) and their respective
proportions in each pixel (the abundances) is referred
to as the unmixing problem [3]. In a first step, one must
find the number of endmembers to use [2], as well as
their spectral signature [13], [11]. In a second step,
one has to recover their abundances, for all pixels in
the image. This is usually performed by assuming a
linear mixture model (LMM), representing the observed
spectrum as a linear combination of the endmembers.
This is an ill-posed problem that will be solved by a
constrained optimization.

Shortcomings of this traditionnal approach include
the following issues: the sprectral variability of the
endmembers [5], [7], the noise corrupting the data,
the presence of potential nonlinearities ([6], [1], [9],
[10]) may result in a wrong estimation of the number of
endmembers and of their spectral signatures. Typically,
we may end up with an overestimation of the number
of endmembers. As a matter of fact, allowing for more
endmembers adds flexibility to the model and improves
the reconstruction of the observation. However, the pure
materials may not be physically present in the scene
[9], and the extracted ones may correspond to artifacts
rather than physically interpretable components.

In this paper we propose to tackle this problem by
enforcing an enhanced sparsity on the abundance maps
while preserving a good reconstruction. A previous
work aimed at adding robustness to the linear model [5] .
In this work, each pixel of the data is linearly explained,
but the set of endmembers used is location-dependent.
In other works, the endmembers are allowed to vary
according to some constraints [8] [14].

Our method also aims at providing robustness to the
LMM, in light of the difficulty of estimating the pure
materials in the scene. We propose a proof of concept
for a new functional for the inversion of linear unmixing
model, which includes enhanced sparsity scheme to
reduce the impact of the poorly estimated endmembers.
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The new functional is minimized using a fast proximal
splitting method.

The remaining sections of this paper are organized as
follows. Section 2 introduces the formulation of the ro-
bust unmixing problemand associated functional. It also
provides details on the implementation and the primal-
dual algorithm. Results on both synthetic and real world
datasets can be found in Section 3, with a critical dis-
cussion. Conclusions are drawn in section 4.

2 PROPOSED METHOD
2.1 Problem Formulation
A hyperspectral image Y with S bands and N pixels
in vectorized form, is represented by a matrix of size
S × N . Let D be a matrix of size S ×M whose columns
are the spectral signatures of the endmembers.
Linear unmixing consists in finding the matrix A of
size M × N of abundances: its element am,n is the
proportion of endmember number m assigned to pixel
number n.

We propose the following formulation for Robust Lin-
ear Unmixing (RLU):

minimizeA(1 − α) ‖ DA − Y ‖2 +α〈A,C〉 + R (A)

s.t . a•,n ∈ ∆M,∀n = 1, . . . , N
(1)

where ∆M is the simplex over RM , a•,n is the n-th col-
umn of A. R is a spatial regularization functional, e.g. a
vectorial form of the total variation applied to the abun-
dances A. Note that without the spatial regularization
term, the problem becomes separable: a quadratic min-
imization over the simplex can be carried out for every
pixel, independently. 〈·,·〉 is the usual Frobenius inner
product. The elements of C are :

cm,n =‖ d•,m − y•,n ‖
2 (2)

cm,n is a measure of how far, spectrally, the pixel yn
is from the endmember dm. Hence, 〈A,C〉 will tend to
binarize the output : if cm,n is large, the abundance of
dm in the reconstruction will decrease progressively to
0, depending on the value of α. Parameter α ∈ [0,1]
hence appears as a tuning parameter. Varying α leads to
a variety of results progressively ranging from the stan-
dard LMM (α = 0, low sparsity) to a hard classification
(α = 1, high level of sparsity: only one endmember is
selected for each pixel). The optimal solution lies be-
tween these two extreme situations (see section 3).

While the first term in (1), along the spatial regular-
ization, is the classical LMM, the second term can be
understood as the convex relaxation of a hard classifica-
tion. Indeed, hard classification aims at assigning only
one endmember at every pixel:

minimizeA ‖ DA − Y ‖2 +R (A)
s.t . a•,n ∈ BM,∀n = 1, . . . , N

(3)

where BM is the set of binary vectors of RM ; that
is, with only null elements, but one element equal to
one. Note that without the spatial regularization term,
the solution is trivial: pixel number n is represented by
one single endmember, the endmember d•,m (the m-th
column of D) which minimizes (2).
However, when the spatial regularization term is intro-
duced, the nonconvex problem (3) becomes NP-hard, so
one wants to replace it by a convex problem. It turns out
that considering the convex envelope of this problem
consists in replacing the constraint of binarity by the
constraint of belonging to the simplex. Consequently
the convex envelope of (3) is not the linear model, but
the following expression:

minimizeA〈A,C〉 + R (A)
s.t . a•,n ∈ ∆M,∀n = 1, . . . , N

(4)

using the previous definitions of 〈A,C〉 and C.
Indeed,

‖ DA − Y ‖2=
N∑
n=1

‖ Da•,n − y•,n ‖
2

=

N∑
n=1

‖ (
M∑

m=1

am,nd•,m) − y•,n ‖
2

(5)

and
〈A,C〉 =

N∑
n=1

M∑
m=1

am,n ‖ d•,m − y•,n ‖
2 (6)

and one can check that the cost functions in 5 and 6 are
equal if a•,n is binary for every n.
On the other hand, for a•,n in the simplex instead of

binary, the cost function in (5) takes a lower value than
the one in (6), which is penalizing: one wants the cost
function to take a large value for nonbinary abundance
vectors, so that when the cost function is minimized,
binary vectors are favored.

In order to solve the optimization problem (1), we
propose to use the primal-dual algorithm presented by
Condat in [4] and detailed in the following section.

2.2 Primal dual algorithm
Weprovide in this section some background information
for the optimization. Let H be a Hilbert space with its
inner product 〈·, ·〉 and norm ‖ · ‖= 〈·, ·〉1/2 . We de-
note by Γ0(H ) the set of proper, lower semicontinuous,
convex functions from H to R ∪ +∞. Let J belong to
Γ0(H ). Its domain is dom(J ) = s ∈ H : J (s) < +∞.
Its Fenchel-Rockafellar conjugate J ∗ ∈ Γ0(H ) is de-
fined by J ∗(s) = sups′∈H [〈s, s′〉 − J (s′)] and its prox-
imity operator by
proxJ (s) = argmins′∈H [J (s′) + 1

2 ‖ s − s′ ‖]. The
strong relative interior of a convex subset Ω of H is
denoted by sri(Ω).
Let X and Y be two Hilbert spaces. The method aims
at solving the following primal problem :
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Find x̂ ∈ argminx∈X [F (x) + G(x) + H (Lx)] (7)

where:
• F: X → R is convex, differentiable on X and its
gradient ∇F is β-Lipschitz continuous, for some
β ∈ [0,+∞[, that is :

‖ ∇F (x) − ∇F (x ′) ‖≤ β ‖ x − x ′ ‖,

∀(x, x ′) ∈ X2
(8)

• G ∈ Γ0(X) and H ∈ Γ0(Y) have proximity op-
erators which can be solved efficiently with high
precision (or have a closed-form representation).

• L : X → Y is a bounded linear operator with
adjoint L∗.

• The set of minimizers of (7) is supposed nonempty

The corresponding dual formulation of the primal
problem (7) is :

Find ŷ ∈ argminy∈Y [(F+G)∗(−L∗y)+H∗(y)] (9)

where (F + G)∗(−L∗y) is an infimal convolution.
Another formulation of problems (7) and (9) is to

combine them into the search of a saddle-point of the
Lagrangian:

Find( x̂, ŷ) ∈

argminx∈Xmaxy∈dom(H ∗) [F (x) + G(x) − H∗(y) + 〈Lx, y〉]
(10)

If the following holds:

0 ∈ sri
(
L(dom(G)) − dom(H))

)
(11)

The set of solutions to (9) is nonempty, and for every
primal solution x̂ to (7) and solution ŷ to (9), then (x̂, ŷ)
is a solution to (10). This also holds if :

1

τ
− σ ‖ L ‖2≥

β

2
(12)

where β is as defined in (8). Note that all of these
requirements are satisfied for our problem.

2.3 Implementation
The spatial regularization functional in (1), R (A) used
here was in the form of a total variation over the abun-
dances A, with a tuning coefficient λ. For the primal-
dual iterations, we set ρ = 0.9 ∀n ∈ N (see Algorithm
1). We calculate the 2-norm of the spatial gradient op-
erator L, and then set:

• τ = 10−2.5

• η = 0.49

• σ = ( 1τ −
β
η )/ ‖ L ‖22

so as to satisfy the conditions in [4]. We want to find the
solution to (1). Let:

F (A) = (1 − α) ‖ DA − Y ‖2 +α〈A,C〉 (13)

then

∇F (A) = (1 − α)(Y − AD)D′ + αC (14)

We minimize the following functional:
E(A) = F (A) + δ∆M (A) + λTV (A) (15)

for some parameter α ∈ [0,1].
where the spatial regularization corresponds to

R (A) in (1). δ∆M is the indicator function on the
M − simplex.The notation for δ∆M (A) in (15) is used
to make the expression lighter, it is actually evaluated
columnwise. We can then use the primal dual algorithm
to solve the saddle-point problem described in [4]. The
initialization doesn’t impact the output (since the prob-
lem is convex), therefore we set x0 = 0 and y0 = 0. The
maximum number of iterations is set to maxiter = 300,
and a convergence criterion is set as tolA = 5 × 10−4.

Algorithm 1 Primal-Dual iterations for hyperspectral
images
Iterate, for every 0 ≤ n ≤ 300
or while An+1 − An > tol:
1: Ãn+1 = proxτδ∆M (An − τ(∇F (An) + eF,n) −
τL∗Sn) + eδ∆M ,n)

2: S̃n+1 = proxσH∗ (Sn − σL(2Ãn+1 − An)) + eH,n)
3: (An+1, Sn+1) = ρ( Ãn + 1, S̃n + 1) + (1 − ρ)(An, Sn)

where the error terms eF,n ∈ X, eG,n ∈ X,
eH,n ∈ Y model the inexact computation of the opera-
tors ∇F, proxτG, proxσH∗ , respectively.

Convergence is reached within 150 iterations and
within 200s for large datasets (250x190x188), with av-
erage runtimes around 120-150s (MATLAB implemen-
tation).
For the Synthetic dataset, made up of 40,000 pixels and
162 bands (described in the next section), the runtime
was within a minute for 6 endmembers.

3 RESULTS
The algorithm was tested on several datasets, both syn-
thetic and real.

3.1 Synthetic Dataset
A synthetic dataset was created, using six endmembers.
First, the abundance maps were generated as a mixture
of Gaussians, each map containing 1 pure pixel, for five
of the endmembers. The sum-to-one constraint over
the abundances holds for these 5 endmembers. The
sixth endmember was added in a second step, with an
abundance ranging from 0 to 0.1. This additionnal end-
member mimics common situations where the unmixing
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algorithm overfits the data and considers non-existing
endmembers to optimize the reconstruction. Such end-
members usually come with small abundances. The
abundances and endmembers were then mixed, with-
out normalization (see figure 1). The ground truth for
the figure is displayed in figure 1a. All the results are
provided with λ = 10−2.

(a) Ground truth.

(b) α = 0.

(c) α = 0.1.

(d) α = 0.2.

Figure 1: Recovered abundance maps for different val-
ues of α. Synthetic dataset with no normalization. The
values range from 0 (blue) to 1 (yellow).

As α increases the abundances of the 6th endmem-
ber quickly drops to zero, which is the desired outcome.
Naturally, as α increases, the error on the other abun-
dances - corresponding to the “true” endmembers - also
increases. Overall, there is a non-zero value of α which
minimizes the Root-Mean-Squared-Error (RMSE) com-
puted on the abundances:

RMSE =
√

(
N∑
k=1

(A(k) − Atrue (k))2

N
) (16)

where A is the recovered abundance, Atrue corresponds
to the abundance of the ground truth andN is the number
of pixels.
These results demonstrate the interest of the model

(the optimal value does not correspond to any of the
two extreme situations previously described). At this
stage, determining the optimal value of α automatically
is still an open problem, to be solved in future work.
However, this paper provides the theoretical foundation
of the method, and demonstrates the proof of concept.
Parameter α can be tuned manually using a simple grid
search. In our experiments, we found that setting the
value of α is not critical, with a reasonable range of val-

ues leading to the optimal solution. We cannot present
these extensive tests due to space limitations.

3.2 Real Dataset
The algorithm was also tested on real data, we present
here a frame from a gas plume hyperspectral video se-
quence. The unmixing was performed with 5 endmem-
bers, which is a reasonable value, as seen in [12],[16].
The results are shown for λ = 10−2 (Figure 2). The
endmembers are obtained using VCA.
Out of the 5 endmembers present in the scene, the end-
member corresponding to the gas plume is the most
impacted by the different values of α. The plume is dif-
fuse and semi-transparent, and therefore the background
endmembers (the mountains, ground and sky) all influ-
ence the unmixing of plume pixels. As was noted in
[10], [12], [16] these are causes of nonlinearities. The
horizontal trail observed is due to noise and corresponds
to the mountain/sky interface. We can see that this error
progressively disappears as α increases. However, the
“hole” in themiddle of the plume actually corresponds to
gas that isn’t as dense as its surroundings, but there still
is gas present ([12]). As α increases, the hole becomes
more important, and therefore our error increases.

(a) α = 0.3

(b) α = 0.7

Figure 2: Abundances for the plume dataset with differ-
ent values of α and λ = 10−2.

4 CONCLUSION
In this paper, we introduced a simple yet effective robust
linear model and demonstrate its versatility. The theo-
retical foundation of the method and its solution using
primal-dual optimization are discussed. The proof of
concept is demonstrated by testing the method on both
synthetic and real world datasets. The importance of
errors in prior modeling, that are made when estimating
the nature and number of endmembers, is diminished in
the reconstruction, as are errors due to nonlinearities.
Thanks to a very fast implementation, this technique is
very competitivewith respect to the regular linearmodel.
Future work will have to provide theoretical bounds for
the selection of the optimal value of α.
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