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A New Color Filter Array with Optimal Properties

for Noiseless and Noisy Color Image Acquisition
Laurent Condat, Member, IEEE

Abstract— Digital color cameras acquire color images by
means of a sensor on which a color filter array (CFA) is overlaid.
The Bayer CFA dominates the consumer market, but there has
been recently a renewed interest for the design of CFAs [2]–[6].
However, robustness to noise is often neglected in the design,
though it is crucial in practice. In this work, we present a
new 2 × 3-periodic CFA which provides, by construction, the
optimal tradeoff between robustness to aliasing, chrominance
noise and luminance noise. Moreover, a simple and efficient linear
demosaicking algorithm is described, which fully exploits the
spectral properties of the CFA. Practical experiments confirm the
superiority of our design, both in noiseless and noisy scenarios.

Index Terms— Color filter array (CFA), color imaging, de-
mosaicking, digital camera pipeline, spatio-spectral sampling,
luminance/chrominance basis, noise sensitivity.

I. INTRODUCTION

The growing popularity of digital photography demands

every attempt of improvement in terms of quality and speed

of the features provided in digital cameras. The heart of a

digital still or video camera is its sensor, a 2-D array of

photosites that measure the amount of light absorbed during

the exposure time. The color information is obtained by means

of a color filter array (CFA) overlaid on the sensor, such

that each photosite is covered by a color filter sensitive to

only a portion of the visible light spectrum [7], [8]. From the

mosaicked image acquired by the camera, some processing is

required to recover a full color image with three components

per pixel, carrying information in the red (R), green (G) and

blue (B) spectral bands to which the human visual system

(HVS) is sensitive. This reconstruction operation is called

demosaicking, see e.g. [7]–[10] and references therein.

The Bayer CFA, which consists in filters with the primary

colors R, G, B, as depicted in Fig. 1 (a), is the most popular

and dominates the consumer market. There is a vast literature

dealing with the best way to reduce aliasing artifacts during

the demosaicking process, but these artifacts are inherent to the

spectral characteristics of the Bayer CFA [11]. Kodak patented

new CFAs containing transparent (panchromatic) filters, in

addition to R, G, B filters [3], [12]. Other CFAs have been

proposed in the literature [4], [5], [13], [14]; some of these

are compared in [15]. However, all these CFAs have been

designed empirically and are not based on a thorough theory

for CFA design. A breakthrough in the field was made by
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Hirakawa et al., who proposed to design CFAs directly in

the Fourier domain, without constraints on the colors of the

filters in the spatial domain [2]. Based on previous work

characterizing the spectral properties of the Bayer CFA [11]

and showing that the mosaicked image actually consists in

the superposition of modulated signals encoding the color

information, they proposed to design a CFA so that these

signals tile the frequency plane with minimum overlap. This

paradigm is quite general, however it leaves open questions

about the choice of the many parameters of the model. Further

insights are provided in [6], [16], [17], where some degrees

of freedom in this spatio-spectral formulation of CFA design

are re-expressed as solutions of a constrained optimization

problem, so as to minimize the norm of the demosaicking

operator.

So far, emphasis in CFA design and demosaicking has

been put on the minimization of the aliasing artifacts due

to spectral overlap of the modulated color channels in the

mosaicked image. But with the always increasing resolution

of the sensors, aliasing has become a minor issue. In most

cases, the optical system is the limiting factor, so that the

scene which is sampled by the sensor is bandlimited and moiré

artifacts never appear. On the other side, in high-end digital

single-lens reflex cameras equipped with expensive and high-

quality lenses, an anti-aliasing filter is overlaid on the sensor

to get rid of aliasing issues, typically a layer of birefringent

material [10], [18], [19]. Still, robustness to aliasing is an

important criterion in CFA design, not so much because of

potential moiré artifacts, but because it determines the intrinsic

resolution of the imaging system.

Thus, we argue that robustness to noise is more important

than robustness to aliasing. High sensitivity properties allow,

when acquiring a given picture, to reduce the exposure time

(for less blur due to camera shake), to increase the aperture

(for increased depth-of-field, hence less out-of-focus blur), or

to use a lower ISO setting and a less destructive denoising

process. This is particularly important for photography in low

light level environments. Hence, there is a real need for new

CFAs with improved sensitivity, so that maximum energy of

the color scene is packed into the mosaicked image. However,

the sensitivity to noise is investigated in none of the previously

cited works on CFA design, although it determines the quality

of the whole imaging pipeline. In this work, we design a CFA

with optimal robustness to aliasing and noise.

The paper is organized as follows. In Section II, we charac-

terize the spatio-spectral properties of CFAs in an appropriate

luminance/chrominance basis. In Section III, we express our

design requirements and optimize the parameters to yield a

new CFA with optimal sensitivity properties and robustness to
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aliasing. In Section IV, we present a simple and efficient linear

demosaicking method, which fully exploits the specificities

of the proposed CFA. We show how to extend the approach

to optimally handle the presence of noise. In Section V, we

validate the superiority of the design by practical experiments

in noiseless and noisy situations.

II. SPECTRAL CHARACTERIZATION OF CFAS

In this article, boldface quantities denote vectors, e.g. k =
[k1, k2]

T ∈ Z
2 and 0 = [0, 0]T.

We define a CFA as a color image cfa = (cfa[k])k∈Z2 ,

where cfa[k] =
[
cfaR[k], cfaG[k], cfaB[k]

]T ∈ [0, 1]3 is the

color value in the canonical R, G, B basis, of the filter

centered at location k. For instance, a green filter has color

G = [0, 1, 0]T. The components of cfa[k] are constrained to

lie in [0, 1] for physical realizability, since they correspond to

opacity rates: the white color [1, 1, 1]T stands for a transparent

filter. The CFA is periodic with generating pattern of size

N1 × N2 if cfa[k1 + N1, k2] = cfa[k1, k2 + N2] = cfa[k]
for every k ∈ Z

2. We focus in this work on periodic CFAs;

thus, the design of CFAs having a random pattern, like in [5],

is beyond the scope of this paper. Also, we consider patterns

defined on the square lattice, but the principles developed

in this work could be extended to other geometries, e.g. an

hexagonal arrangement.

We define the color image im = (im[k])k∈Z2 as the ground

truth to be estimated by the demosaicking process. That is,

im[k] is the vector of the three R, G, B values that would

have been obtained by the photosite at the location k, if three

measurements had been performed using R, G, B filters in

front of the sensor. Consequently, the mosaicked image v =
(v[k])k∈Z2 is such that

v[k] = im[k]Tcfa[k] ∀k ∈ Z
2. (1)

Note that this model holds in the ideal noise free situation. In

practice, an additive random term modeling the effect of noise

has to be added in (1) [20]. We come back to the noisy case

in Sect. IV-C.

It is well known that in natural images, the R, G, B compo-

nents are not independent [7], [21]–[24]. Thus, we define the

orthonormal basis corresponding to luminance, green/magenta

and red/blue chrominance, as

L =
1√
3
[1, 1, 1]T,C1 =

1√
6
[−1, 2,−1],C2 =

1√
2
[1, 0,−1]T,

(2)

We denote uL, uC1 , and uC2 the components of a color

image u in this basis. The proposed basis is arbitrary but

convenient to describe the spectral properties of the Bayer

CFA [11]. Also, the components of natural images can

be considered as statistically independent in this basis,

in first approximation [21]. It is important to work with

an orthonormal basis, so that the image components are

maximally decorrelated. Anyway, the basis is used to

formulate the optimization problem, but the proposed CFA

is independent on the particular choice of chrominance axes.

Hirakawa et al. [2] work with the G, R − G, B − G

basis, which does not decorrelate the image channels at

best; also, the chrominance channels in this basis don’t have

minimum bandwidth, so that the analysis of aliasing is biased.

Alleysson et al. showed that the mosaicked image v can be

interpreted, in the Fourier domain, as the sum of the luminance

and chrominance components of the color reference image im,

moved at different locations of the frequency plane [11]. We

can extend this characterization to every CFA, by writing cfa

as the sum of its Fourier components:

cfaX [k] =

⌊N1

2
⌋∑

n1=⌊N1−1

2
⌋

⌊N2

2
⌋∑

n2=0

αX
n cos

(
2πn1

N1

k1 +
2πn2

N2

k2

)
+

βX
n

sin

(
2πn1

N1

k1 +
2πn2

N2

k2

)
(3)

for every X ∈ {L, C1, C2} and k ∈ Z
2, where ⌊·⌋ is the

rounding operator to the nearest smaller integer. So, designing

cfa amounts to choosing its 3N1N2 Fourier coefficients αX
n

and βX
n

appropriately. For this, we express the Fourier trans-

form v̂(ω) =
∑

k∈Z2 v[k]e−jω
T
k in function of the Fourier

transforms of the components of im:

v̂(ω) =
∑

X∈{L,C1,C2}

⌊N1

2
⌋∑

n1=⌊N1−1

2
⌋

⌊N2

2
⌋∑

n2=0

αX
n

2

(
îmX

(
ω+

[
2πn1

N1

, 2πn2

N2

]T )
+ îmX

(
ω−

[
2πn1

N1

, 2πn2

N2

]T ))
+

βX
n

2j

(
îmX

(
ω+

[
2πn1

N1

, 2πn2

N2

]T )
− îmX

(
ω−

[
2πn1

N1

, 2πn2

N2

]T ))

(4)

for every ω ∈ R
2. So, whatever the CFA, the Fourier transform

of the mosaicked image is the sum of the luminance and

chrominance components îmX , replicated at the sites of the

dual lattice induced by the periodicity of the pattern.

In the spatial domain, this corresponds to writing v as the

sum of the luminance and chrominance channels of im, each

one being modulated by some specific carrier wave: expanding

(1) in the L, C1, C2 basis, we get

v[k] =
∑

X∈{L,C1,C2}
imX [k]×

⌊N1

2
⌋∑

n1=⌊N1−1

2
⌋

⌊N2

2
⌋∑

n2=0

αX
n cos

(
2πn1

N1

k1 +
2πn2

N2

k2

)
+

βX
n sin

(
2πn1

N1

k1 +
2πn2

N2

k2

)
. (5)

The major contribution of Hirakawa et al. to the problem of

CFA design was the idea of directly designing the CFA in the

Fourier domain by optimizing the carrier waves, so that the

baseband luminance is at the origin and the chrominance is

modulated far away from it [2]. This constrains the degrees of

freedom N1, N2, α
X
n

, βX
n

to some extent, but the question of

further defining the many remaining parameters is left open.

The aim of this work is to tune the parameters to obtain a

CFA with optimal robustness to sensor noise.
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III. CFA DESIGN AS A CONSTRAINED OPTIMIZATION

PROBLEM AND ITS SOLUTION

A. A Class of CFAs Robust to Aliasing

We construct, step by step, the structure of a CFA with de-

sirable properties, enforced as design criteria in the frequency

domain. Thus, we obtain a class of CFAs parameterized by

a small set of variables. We discuss the optimization of these

remaining parameters in Sect. III-B.

The requirements we adopt are the following:

Condition on the luminance. For the CFA to be physically

realizable, the values cfaX [k] have to lie in [0, 1]. This implies

that the luminance channel imL appears in the baseband of v.

Further on, we impose that there is no replica of the luminance

at other frequencies than zero, in the spectrum of v; in other

words, the luminance sensitivity of each color filter is the

same:

cfaL[k] = αL
0 (6)

is a constant. Thereafter, we rewrite this value γL = αL
0 and

call it the luminance gain of the CFA. It lies in the interval

[0,
√

3] and characterizes the average light sensitivity of the

CFA. This crucial parameter directly controls the noise level

in the luminance of the demosaicked image, as explained in

Sect. IV-B. We impose this condition of constant luminance

sensitivity to make denoising practical. In fact, having a noise

variance which changes from pixel to pixel in the demosaicked

image, as is the case with the CFAs proposed in [3], [17],

makes subsequent denoising a much more difficult task. Also,

having a uniform quantum efficiency accross the image plane

reduces the issues of under- and over-saturation of the sensor

measurements; it is desirable to have a uniform dynamic range

and tone curve.

The Bayer CFA satisfies the condition, with

cfaR[k] + cfaG[k] + cfaB[k] = 1; hence, its luminance

gain is γL = 1/
√

3.

Conditions on the chrominance. Since the three lumi-

nance and chrominance channels of im are assumed mutually

independent, we require that their carrier waves in (5) are

orthogonal. So, we will be able to separate them optimally

during the demosaicking process. This implies that there is

no chrominance in the low-frequency part of v. Another

consequence is that the CFA let pass, in average, the same

amount of R, G, and B light through:

N1∑

k1=1

N2∑

k2=1

cfaR[k] =

N1∑

k1=1

N2∑

k2=1

cfaG[k] =

N1∑

k1=1

N2∑

k2=1

cfaB[k].

(7)

The Bayer CFA does not satisfy this requirement, with a

sensitivity to green two times higher than the one to blue and

red.

Thus, the chrominance of im appears in the high-frequency

content of v while the luminance is in the baseband. The

quality of the reconstruction process essentially depends on

the ability to correctly separate these frequency components

of v. In order to maximally reduce the overlap between the

luminance and chrominance channels in the spectrum of v,

we impose that there is only one replica of each chrominance

band, modulated in quadrature at the same frequency ±ω0.

Moreover, we require that the gain of the two chrominance

channels is the same, so that the color discrimination of

the CFA is the same for every color, without privileged

chrominance axis. Consequently, we can rewrite (3) as

cfaC1 [k] = γC

√
2 cos(ωT

0 k − ϕ) (8)

cfaC2 [k] = γC

√
2 sin(ωT

0 k− ϕ), (9)

for every k ∈ Z
2, where we introduce γC , the chrominance

gain of the CFA, and the phase ϕ is, at this point, a degree

of freedom. We will see in Sect. IV-B that the chrominance

gain is directly related to the noise level in the chrominance

of the demosaicked image. We remark that there is no overlap

between the two channels of chrominance, since they occupy

the same frequency band, but with phases in quadrature. In

comparison with designs where the chrominance is spread at

several frequencies, like in [2], the risk of inter-chrominance

aliasing is drastically reduced, see the example in Fig. 3. Also,

the CFA is independent on the choice of the green-magenta

and red-blue chrominance axes, only chosen to express the

formulas.

The Bayer CFA does not satisfy these conditions neither,

with the chrominance spread at the frequencies [π, 0]T, [0, π]T,

[π, π]T [11].

Further on, the modulation frequency ω0 for the

chrominance should be the farthest from 0, so that the

overlap between luminance and chrominance in the spectrum

of v is minimal. So, like in [2], we impose that ω0 lies

on the boundary of the Nyquist band [−π, π]2. Without

restriction, this amounts to have ω0 = [π, ω0]
T—the other

choice corresponds to rotating the CFA by 90o. Hence, we

have N1 = 2 and the CFA has a 2 × N2 periodicity.

We can now rewrite the generic expression of a CFA

satisfying the previous conditions as:

cfaL[k] = γL (10)

cfaC1 [k] = γC(−1)k1

√
2 cos(ω0k2 − ϕ) (11)

cfaC2 [k] = γC(−1)k1

√
2 sin(ω0k2 − ϕ), (12)

where ω0 = 2πn2/N2 for some integer n2 ∈ 1 . . . (N2 − 1)/2
relatively prime with N2, and N2, n2, γL, γC , ϕ are free

parameters. We note that N2 ≥ 3, since there is no 2×2 CFA

satisfying the previous criteria.

From the physical realizability constraint cfa[k] ∈ [0, 1]3,

we get γL ∈ [0,
√

3]. Moreover, if γL <
√

3/2, we can

replace each color filter value cfaX [k] by 1− cfaX [k], ∀X ∈
{R, G, B}, ∀k ∈ Z

2. This does not change the chrominance

carrier waves, up to a change of sign, and only the luminance

gain γL is turned into
√

3 − γL. Thus, γL should be in the

range [
√

3/2,
√

3], since there is no reason to prefer a darker

CFA over a brighter one, all other things being equal.

B. Optimizing the Left Parameters to Maximize the Sensitivity

of the CFA

We now optimize the parameters in the expressions (10)-

(12) to maximize the luminance and chrominance gains γC
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(a) Bayer (b) Hirakawa (c) Proposed

Fig. 1. The three CFAs compared in this work: (a) the Bayer pattern, (b) Hirakawa’s pattern with 4 colors [2], (c) the proposed 2× 3 pattern with 6 colors.

and γL. This way, the aliasing artifacts are reduced in the

demosaicked image (the chrominance information is less pol-

luted by the high frequency content of the luminance) and

the noise level in the demosaicked image is reduced as well.

After some calculations given in the Appendix, we obtain the

optimal CFA having the desired features, depicted in Fig. 1 (c).

It has a small 2 × 3 periodicity and a small number (six) of

distinct filters, with colors [1, 0, 1

2
], [1, 1

2
, 0], [0, 1, 1

2
], [0, 1

2
, 1],

[1
2
, 0, 1] and [ 1

2
, 1, 0]. Its modulation frequency

ω0 = [π, 2π/3]T (13)

is well placed: it is far from the origin, to minimize aliasing

between the luminance and chrominance information. Also,

it is far from the vertical and horizontal axes, where the

luminance power spectrum density is higher, due to the

predominance of vertical and horizontal structures in natural

scenes. The luminance and chrominance gains are γL =
√

3/2
and γC = 1/2, respectively.

IV. THE DEMOSAICKING STRATEGY AND ITS PROPERTIES

A. Demosaicking by Frequency Selection in the Noiseless

Case

The proposed CFA has a natural and simple demosaicking

algorithm associated to it, inspired by its characteristics in

the Fourier domain. This demosaicking process amounts to

separate the frequency content of the mosaicked image into

the luminance and chrominance channels of the reconstructed

image. Demosaicking by frequency selection was first

explained by Dubois, for the Bayer CFA [25]. Let us recall

his method, with our notations. Demosaicking by frequency

selection consists in the following steps, where we denote

by dem the demosaicked image, which aims at estimating im.

Demosaicking algorithm for the Bayer CFA

1) Compute the image v1 from v by modulation with the

carrier wave of the chrominance C1, which is modulated

at the frequency [π, π]T, with the gain γC1
=

√
6/4:

v1[k] = (−1)k1+k2+1/γC1
v[k]. (14)

2) Apply an appropriate low-pass filter h1: demC1 = v1 ∗
h1.

3) The red-blue chrominance C2 is present in two inde-

pendent replicas in the spectrum of v. So, first compute

the two modulated images v2,H and v2,V to shift in the

baseband the chrominance modulated at the frequencies

[π, 0]T and [0, π]T, respectively:

v2,H [k] = 2
√

2(−1)k1 v[k], (15)

v2,V [k] = 2
√

2(−1)k2 v[k]. (16)

4) Apply an appropriate low-pass filter h2: demC2

H = v2,H∗
h2 and demC2

V = v2,V ∗ (h2)
T, where (h2)

T is the filter

h2 rotated by 90o.

5) Average the two estimates of the red-blue chrominance

to yield demC2 =
(
demC2

H + demC2

V

)
/2.

6) Estimate the luminance as the residual information con-

tent of v by subtracting the re-modulated chrominance:

demL[k] =
(
v[k] + γC1

(−1)k1+k2demC1 [k] −
√

2

4

(
(−1)k1 + (−1)k2

)
demC2 [k]

)
/γL (17)

where γL = 1/
√

3.

7) Compute demR, demG, demB by pixelwise change of

basis from demC1 , demC2 , demL.

The proposed method for our new CFA is based on the

same principles, but the algorithm is even simpler because

we don’t have to deal with the redundancy of the red-blue

chrominance information, a characteristic of the Bayer

CFA [11].

Demosaicking algorithm for the proposed CFA

1) Compute the image v1 from v by modulation with the

carrier wave of the chrominance C1:

v1[k] = (−1)k1+1
√

2/γC sin(2πk2/3) v[k]. (18)

2) Apply an appropriate low-pass filter h: demC1 = v1 ∗h.

3) Compute the image v2 from v by modulation with the

carrier wave of the chrominance C2:

v2[k] = (−1)k1

√
2/γC cos(2πk2/3) v[k]. (19)

4) Apply the same low-pass filter h: demC2 = v2 ∗ h.

5) Estimate the luminance by subtraction of the remodu-

lated chrominance:

demL[k] =
(
v[k] + γC(−1)k1

√
2 sin(2πk2/3) demC1 [k]

− γC(−1)k1

√
2 cos(2πk2/3) demC2 [k]

)
/γL. (20)
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6) Compute demR, demG, demB by pixelwise change of

basis from demC1 , demC2 , demL.

We remark that if h is sufficiently lowpass, the step 5) is

equivalent to a convolution: demL = v ∗ g, where

g[k] =
(
δk,0 − (−1)k1 cos(2πk2/3)h[k]

)
/γL (21)

and the Kronecker symbol is defined by δx,y = {1 if x =
y, 0 else}. This can be interesting computationally if the

luminance is to be computed in parallel with the chrominance.

We refer to [25] for more details about demosaicking by

frequency selection. The proposed algorithm can be easily

adapted to handle other CFAs, simply by using the appropriate

carrier waves for the chrominance in steps 1), 3), 5). For the

2×4 CFA proposed by Hirakawa et al. [2], the method reverts

to the one detailed in [2], [26]. Note, however, that for the

Bayer and Hirakawa CFAs, the estimation of the luminance is

not equivalent to a convolution any more. With the proposed

CFA, the complexity of the demosaicking process is limited

to two convolutions. In addition, they use the same filter and

can be performed in parallel. By contrast, with the Bayer CFA,

three convolutions with distinct filters must be performed [25].

The choice of the filter h still has to be discussed. In this

work, for comparison purpose between the CFAs, we use,

for every CFA, the non-separable 13 × 13 filter(s) optimal

in the least-squares (LS) sense. This methodology has been

described for the Bayer CFA in [27]. That is, we minimize

the error ‖Ax − b‖2, where x is the vector containing the

169 coefficients, in lexicographic order, of the filter h we

are seeking; A is the matrix whose rows contain the 169

pixel values of every 13 × 13 patch present in the set of

learning images, after the images have been mosaicked and

re-modulated (that is, we take the patches of the images v1

and v2 given by (18) and (19)); b is the vector containing the

true chrominance values for the corresponding center pixel of

the patch.The solution of this standard linear algebra problem

has the form x = (AT
A)−1

A
T
b. So, the LS-optimal filters

are solutions of linear systems of size 169× 169, which have

to be solved off-line only once for every CFA. Each linear

system can be formed easily by reading the images in scanline,

without having to store the matrices A and b.

In the noiseless case, 9×9 filters are sufficient, but 13×13
filters give better results in the noisy case, analyzed in Sect. IV-

C. In practice, it is much more advantageous to use separable

filters. In that case, for our CFA, the vertical filter should have

zeros at ±2π/3 and the horizontal one at π. Moreover, IIR

recursive filters typically outperform FIR filters, for the same

complexity [28].

Hence, by using the same generic method of demosaicking

by frequency selection, combined with the LS-optimal lowpass

filter(s) for each CFA, we can fairly compare the perfor-

mances of different CFAs. For the Bayer CFA, non-linear

approaches to demosaicking can significantly outperform this

linear approach, by exploiting the redundancy of the red-blue

chrominance information in the mosaicked image [25]. With

our CFA, such an improvement cannot be expected, because

there is no such redundancy of the chrominance information.

B. Behavior in the Presence of Noise

Let us assume that the mosaicked image is corrupted by

zero mean additive white Gaussian noise (AWGN):

v[k] = im[k]Tcfa[k] + σ.ε[k], ∀k ∈ Z
2, (22)

where ε[k] ∼ N (0, 1) and σ is the noise standard deviation. In

practice, the AWGN assumption is not met; real noise is more

accurately modeled as the sum of Gaussian and Poissonian

noises [20]. Moreover, the pixel values are gamma corrected

with respect to the photon counts output by the sensor [29]

and this step of tone mapping modifies the noise character-

istics. However, homomorphic nonlinear transformations can

be efficiently employed for variance stabilization [30], so that

the problem can be recast in the AWGN setting.

Let us denote by D the demosaicking process described in

Sect IV-A and by v0 the noise free mosaicked image, so that

v = v0 + σ.ε. The linearity of D is an important property,

which allows to exactly characterize the behavior of noise

throughout demosaicking. Thus,

Dv = Dv0 + Dε (23)

and the demosaicked image is corrupted by the additive Gaus-

sian color noise image εεε = Dε. The demosaicking process

consists of modulation with pure sines and convolutions.

A pure sine is the sum of two complex exponentials and

multiplying by a complex exponential in the spatial domain is

equivalent to a shift in the Fourier domain, which leaves the

power spectrum density of the noise unchanged. Therefore,

we can easily characterize the demosaicked noise εεε: under the

assumption that the lowpass filter h is bandlimited with cutoff

frequency π/3,

• the three channels εL, εC1 , εC2 of εεε are statistically

independant.

• εC1 and εC2 have zero mean and power spectrum density

σ2|ĥ(ω)|2/γ2
C .

• εL has zero mean and power spectrum density

σ2|ĝ(ω)|2 = σ2|1− ĥ(ω −ω0)/2− ĥ(ω + ω0)/2|2/γ2
L.

Thus, we have established that the inverses of γC and γL

are the amplification factors of noise in the chrominance and

luminance channels of the demosaicked image, respectively.

That is why the maximization of the gains is so important and

we designed the proposed CFA along this line.

C. Joint Demosaicking and Denoising in the Noisy Case

The development and analysis of a generic strategy for joint

demosaicking and denoising is beyond the scope of this paper.

However, it is not difficult to modify the generic framework of

demosaicking by frequency selection to optimally handle the

presence of noise. We developed this strategy for the Bayer

CFA and obtained state-of-the-art results in [31]. Here, we

apply the same methodology to the proposed CFA.

From the analysis in the last section, we remark that

applying the proposed demosaicking process to noisy data

yields a noisy demosaicked image, where the noise has been

split into the luminance and chrominance channels during

reconstruction. We propose to modify the process so that the
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Fig. 2. The Luminance and chrominance gains of the Bayer, Hirakawa and
proposed CFAs, depicted in Fig. 1.

noise remains in the luminance of the demosaicked image.

This is achieved by denoising the chrominance channels before

estimating the luminance. For this, we keep the algorithm

unchanged but we seek the Wiener-like filter h that estimate

the denoised chrominance directly, optimally in the least-

squares sense for a given base of test images. With the same

notations as in Sect. IV-A, we now want to minimize the

expectation of the error E{‖Ãx − b‖2}, where Ã is equal

to A plus noise, since every re-modulated mosaicked patch is

contaminated by noise. We have:

E{ÃT
b} = A

T
b and E{ÃT

Ã} = A
T
A+σ2N/γ2

C I, (24)

where I is the identity matrix and N is the total number of

pixels in the image base (the number of rows of A). Therefore,

the coefficients of the 13× 13 filter h are given by the vector

x solution of the linear system of size 169 × 169:

( 1

N
A

T
A +

σ2

γ2
C

I

)
x =

1

N
A

T
b. (25)

After the denoised chrominance images demC1 and demC2

are re-modulated and subtracted from v to estimate the lumi-

nance, we have demL ≈ imL + ε/γL. Other said, the noise

lies almost completely in the luminance of the reconstructed

image. More precisely, the luminance noise has zero mean

and power spectrum density σ2/γ2
L |1− ĥ(ω−ω0)/2− ĥ(ω+

ω0/2)|2. Since h is very lowpass, the noise can be considered

to be white. Therefore, after demosaicking, we just have to

consider demL/
√

3 as a grayscale image corrupted by AWGN

of variance σ2/(
√

3 γL)2 = 4/9 σ2 and apply our favorite

denoising method to it. By comparison, the noise variance is

σ2 with the Bayer CFA [31].

V. PERFORMANCE ANALYSIS

In order to evaluate the performances of our new CFA, we

compare it to the Bayer CFA and to the 2×4 CFA proposed by

Hirakawa et al. [2], depicted in Fig. 1 (b), which represents

the state of the art with respect to noiseless demosaicking

simulations.

Let us summarize the spectral properties of these CFAs:

• The spatio-spectral properties of sampling with the Bayer

CFA are well established [11]. In our notations, the

(a) Original

(b) Hirakawa (c) Proposed

Fig. 3. Demosaicking results for the synthetic image (a), which consists in
a sine with pulsation π/5 oscillating between green and magenta. With the
CFA of Hirakawa et al., aliasing between the two chrominance bands appears
(b), while with our CFA, there is only aliasing between the chrominance and
the luminance (c).

luminance gain is γL = 1/
√

3. The green/magenta

chrominance is modulated at the frequency [π, π]T with

the chrominance gain γC1
=

√
6/4 and the red/blue

chrominance is modulated at [0, π]T and at [π, 0]T. The

chrominance gain γC2
can be defined as the inverse

of the noise amplification factor in this channel, when

demosaicking using the algorithm given in Sect. IV-A.

This yields γC2
= 1/2 [31].

• The pattern designed by Hirakawa et al. [2] consists

in filters with the colors [1
2
, 1, 0], [0, 1, 1

2
], [1, 0, 1

2
] and

[ 1
2
, 0, 1], arranged with a 2× 4 periodicity. Its luminance

gain is γL =
√

3/2. The green/magenta chrominance

is modulated at [π,±π/2]T with γC1
=

√
6/4 and

the red/blue chrominance is modulated at [π, π]T with

γC2
=

√
2/4.

• As detailed in Sect. III-B, the proposed 2× 3 CFA has a

luminance gain γL =
√

3/2. The two chrominance bands

are modulated at the same frequency [π,±2π/3]T with

the chrominance gain γC = 1/2.

The luminance and chrominance gains of the three compared

CFAs are summarized in Fig. 2. The Bayer CFA has high

chrominance gains, since it is made of filters with maximally

saturated (primary) colors. Hirakawa’s and the proposed CFAs

have a higher luminance gain; they are globally more sensitive

to light. They both capture the same amount of chrominance

information: (γC1
)
2

+ (γC2
)
2

= 1/2. But this is obtained for

Hirakawa’s CFA at the cost of a strong asymmetry between

the two color components: γC1
/γC2

=
√

3; this means that

noise is more amplified in the blue-red band than in the green-

magenta band during demosaicking.

A convenient way to illustrate the modulation of the chromi-
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TABLE I

CPSNR FOR THE DEMOSAICKING EXPERIMENTS USING DIFFERENT

CFAS, IN THE NOISELESS CASE.

Demosa. Non-linear Demosaicking by frequency selection
method [25] [32] with 13 × 13 LS-optimal filters

CFA Bayer Bayer Bayer Hirakawa Proposed

1 38.14 37.56 37.66 40.06 39.65
2 40.02 40.72 39.83 40.91 40.36
3 41.67 42.68 41.33 41.82 42.15
4 40.63 40.99 40.39 40.59 40.58
5 37.86 38.03 37.34 37.34 36.98
6 40.05 38.03 38.13 41.32 40.79
7 42.13 42.90 41.72 41.88 42.02
8 35.23 35.22 33.49 37.82 37.39
9 42.08 42.58 41.29 42.32 42.27

10 42.21 42.61 41.86 42.69 42.71
11 39.75 39.33 38.91 40.65 40.30
12 43.07 42.77 42.20 43.44 43.57
13 35.08 33.76 34.80 35.61 35.25
14 35.87 37.15 35.42 36.35 36.02
15 39.68 39.83 39.57 39.80 39.63
16 43.68 41.14 40.90 44.80 44.68
17 41.59 41.26 41.42 41.74 41.23
18 37.42 37.12 37.42 37.75 37.48
19 40.35 40.04 38.71 41.60 41.20
20 40.39 41.11 40.48 41.60 41.15
21 38.75 38.67 38.48 40.65 40.23
22 38.11 38.50 37.97 38.85 38.72
23 42.14 43.14 41.82 42.45 41.98
24 35.38 34.84 35.29 36.61 36.21

Mean 39.64 39.58 39.02 40.36 40.11

nance in the Fourier domain, induced by mosaicking with a

CFA, is to look at the demosaicked images when the initial

image im is a gray zoneplate (a radial chirp). The images,

given in Fig. 4 for the three considered CFAs, show how

the demosaicking method splits the frequency content of the

mosaicked image between the luminance and chrominance

bands of the reconstructed color image. Due to the particular

form of the zoneplate, the instantaneous frequency in the

image im[k] is proportional to k, so that the aliasing pattern in

the demosaicked image illustrates the modulation frequencies

in the upper-right quadrant of the Nyquist-band.

We can see in Fig. 4 (c) that Hirakawa’s CFA is sensitive

to inter-chrominance aliasing between the two chrominance

bands. This may be visible in demosaicked images at sharp

color transitions for horizontally aligned objects. This effect

is illustrated by a synthetic example in Fig. 3.

A. Evaluation in Noiseless Situations

For experimental validation purpose, we consider the clas-

sical Kodak test set of 24 color images of size 768×512. The

images were mosaicked using the considered CFAs and demo-

saicked using frequency selection, as discussed in Sect. IV-A.

To simulate an acquisition with a real camera having a fixed

sensor, all images were put in landscape mode; that is, the

vertical images were turned 90◦ left. The CPSNR1 obtained

1The CPSNR between the color images u1 and u2 is equal
to 10 log10(2552/MSE) with MSE =

P

X=R,G,B

P

k
(uX

1
[k] −

uX
2

[k])2/(3N.M) for images of size N ×M . A 10 pixel-wide band around
the border of the images was ignored when computing the CPSNR, since the
initial images used for the tests have been badly acquired at the boundaries.
The pixel values were rounded to integers in 0 . . . 255 before computing the
CPSNR.

are reported in Tab. I. We also provide the results obtained for

the Bayer CFA with two non-linear demosaicking methods

among the best in the literature2, to illustrate the achievable

improvement over linear demosaicking.

The best numerical results are obtained with Hirakawa’s

CFA, which slightly outperforms the proposed CFA in average.

The Bayer CFA is far behind, even when combined with

sophisticated non-linear demosaicking. In the illustrations of

Fig. 5, we can see that the typical color fringes (see the

fence) and zipper effects (see the red bow) that occur with the

Bayer CFAs disappear with the two modern CFAs. With the

proposed CFA, the aliasing artifacts take the form of rainbow

halos with low intensity around sharp transitions oriented at

± arctan(3/2) ≈ ±56◦ with respect to the horizontal axis.

Such artifacts are visible on the left part of the metal balustrade

in the bottom right image of Fig. 5. With Hirakawa’s CFA , the

artifacts are present around transitions with more orientations

than with our CFA, but with lower intensity, and they take the

form of bicolored instead of rainbow-like halos.

B. Evaluation in Noisy Situations

The ideal noiseless scenario is not representative of realistic

acquisition conditions. The sensor delivers data corrupted by

noise, whose level depends on the analog amplification gain

applied before A/D conversion and corresponding to the ISO

setting in the camera [20].

First, we illustrate in Fig. 6 the theoretical analysis of

Sect. IV-B: the demosaicking process splits the noise into

the luminance and chrominance channels of the reconstructed

image, with amplification equal to the inverse of the luminance

and chrominance gains of the CFA. With Hirakawa’s CFA,

there is more noise in the blue-red than in the green-magenta

chrominance channel, while the proposed CFA is free of

this asymmetry in the treatment of the color information.

Moreover, the total chrominance noise energy is amplified by

a factor 1/γ2
C1

+ 1/γ2
C2

and this value is 33% higher with

Hirakawa’s CFA than with the proposed CFA. The level of

luminance noise is higher with the Bayer CFA than with the

two other ones. These properties are true irrespective of the

noise variance σ2.

In Tab. II, we report the joint demosaicking and denoising

results obtained with the framework described in Sect. IV-C.

The images were mosaicked using the considered CFAs and

corrupted with two different noise levels3. The state-of-the-

art BM3D method [33] was used to denoise the luminance of

the demosaicked image. In addition to the results on the 24

Kodak images, we report in the last row of the table the mean

CPSNR over the 150 images of another database4. As a result,

2For the method of Dubois [25], we computed the MSE using the images
available online at
http://www.site.uottawa.ca/˜edubois/demosaicking/.

For the method of Nai-Xiang et al. [32], we performed the demosaicking
experiments using the Matlab code put available online by the authors at
http://www.ntu.edu.sg/home5/CHAN0069/AFdemosaick.zip

3We used the same noise realization for every method and every im-
age, using the Matlab command randn(’state’,0); before calling
noise=sigma*randn(height,width);

4Image base freely available at
http://www.greyc.ensicaen.fr/∼lcondat/imagebase.html.
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(a) Original (b) Bayer (c) Hirakawa (d) Proposed

Fig. 4. Results of demosaicking by frequency selection with the three CFAs depicted in Fig. 1, on a grayscale synthetic zoneplate pattern.

Original Bayer Hirakawa Proposed

Fig. 5. Results of demosaicking by frequency selection used with the three CFAs depicted in Fig. 1, on three parts of the Lighthouse image.

the proposed CFA slightly outperforms the CFA of Hirakawa

et al.. We found out that this superiority holds for a noise

level as low as σ = 4, in which case the mean CPSNR over

the 24 images is 37.60 vs. 37.58. Moreover, the improvement

over the Bayer CFA is very significant. We caution the reader

that the comparison of the CFAs may depend on the choice

of the reconstruction process, but the superiority of our CFA

should be guaranteed by its lowest noise amplification. In

Fig. 7, we illustrate the visual quality after demosaicking and

denoising; we chose a high noise level σ = 40 to emphasize

the differences in this example. The result with the Bayer CFA

is corrupted by many denoising artifacts. The details are much

better preserved with Hirakawa’s and the proposed CFAs. With

Hirakawa’s CFA, however, the man’s face is too bluish.

VI. CONCLUSION

In this work, we redefined the problem of CFA design as the

maximization of the energy of the color scene encoded in the

mosaicked image, through the choice of the gains of the CFA

in an orthonormal luminance and chrominance basis. In fact,

these gains are the inverse of the noise amplification factors in

the luminance and chrominance channels of the demosaicked

image. We derived the analytical solution to the optimization

of these gains, under the constraint that the chrominance is
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Original Bayer Hirakawa Proposed

Fig. 6. Results of demosaicking by frequency selection, as described in Sect. IV-A, with the three CFAs depicted in Fig. 1, on a part of the Lighthouse

image. The mosaicked image were corrupted by additive white Gaussian noise of standard deviation σ = 20 and no denoising process is applied.

TABLE II

CPSNR FOR THE JOINT DEMOSAICKING/DENOISING EXPERIMENTS USING

DIFFERENT CFAS, IN THE NOISY CASE.

CFA Bayer Hirakawa Proposed

σ 10 20 10 20 10 20

1 30.56 27.15 32.71 28.83 32.79 28.95
2 33.05 30.63 34.12 31.30 34.30 31.54
3 34.72 31.75 35.58 32.48 35.89 32.82
4 33.19 30.51 34.18 31.26 34.42 31.53
5 30.83 27.43 32.09 28.81 32.29 29.00
6 31.84 28.57 33.79 30.15 33.85 30.28
7 34.61 31.28 35.45 32.21 35.75 32.51
8 30.19 27.51 32.52 29.25 32.61 29.38
9 34.50 31.52 35.44 32.37 35.69 32.68
10 34.67 31.59 35.63 32.54 35.88 32.83
11 32.25 29.20 33.81 30.47 33.94 30.65
12 34.26 31.55 35.41 32.37 35.64 32.65
13 29.28 25.63 31.37 27.51 31.33 27.58
14 29.80 27.08 31.00 28.11 31.12 28.25
15 33.50 30.87 34.45 31.63 34.65 31.90
16 33.37 30.31 35.09 31.58 35.26 31.79
17 33.96 30.90 35.15 32.00 35.28 32.22
18 31.33 28.05 32.72 29.45 32.79 29.59
19 32.57 29.90 34.32 31.02 34.44 31.21
20 34.29 31.50 35.45 32.34 35.61 32.57
21 32.29 28.98 34.00 30.47 34.11 30.63
22 31.81 28.96 33.24 30.11 33.39 30.29
23 35.14 32.21 35.65 32.65 35.93 33.01
24 31.06 28.09 32.64 29.57 32.67 29.71

Mean 32.63 29.63 33.99 30.77 34.15 30.98

Mean 30.04 27.55 31.00 28.55 31.15 28.73

modulated far away from the luminance in the Fourier domain,

for robustness to aliasing. The proposed CFA has six colors

and a periodic pattern of size 2 × 3. A sensor equipped with

the proposed CFA instead of the standard Bayer CFA should

provide images with higher perceived resolution (because the

anti-alias filter can be removed from the sensor) and better

quality (the lower level of noise allows the use of a less

destructive denoising method).

In comparison with the recent design of Hirakawa et al. [2],

the chrominance noise is less amplified, which yielded slightly

better results in our experiments. Also, our CFA is less

sensitive to inter-chrominance aliasing and does not favor any

chrominance axis.

Moreover, the superiority of our CFA is obtained with the

simple, linear and computationally cheap approach to demo-

saicking by frequency selection. We extended our method-

ology of joint demosaicking and denoising [31] to the pro-

posed CFA. So, the combination of the new CFA and this

new reconstruction framework pushes the state of the art of

reconstruction from noisy sensor data to a higher level, at the

low cost of two convolutions and denoising a grayscale image,

for which real-time algorithms exist [34], [35].

All the numerical and visual results of this paper can be

reproduced using the Matlab code available on the homepage

of the author. In future work, we will investigate the choice

of the precise spectral sensitivity functions of the six colors

defining the new CFA, a difficult problem [36].

APPENDIX I

MAXIMIZATION OF THE LUMINANCE AND CHROMINANCE

GAINS

Let us write cfai, i = 0, 1, 2, instead of cfaX , X = R, G, B,

respectively. By expanding the equality cfa = cfaL
L +

cfaC1C1 + cfaC2C2, we obtain:

cfai[k] =
γL√

3
+

2 γC√
3

(−1)k1 sin
(2π

3
(1−i)+ω0k2−ϕ

)
. (26)

Let us define the set

Ω =

{∣∣∣∣sin
(2π

3
(1 − i) + ω0k2 − ϕ

)∣∣∣∣ ; i, k2 ∈ Z

}
(27)

=
{
| sin(ω1k − ϕ)| ; k ∈ Z

}
, (28)

where

ω1 = gcd
(
ω0,

2π

3

)
=

2π

lcm(3, N2)
, (29)

and gcd and lcm denote the greatest common divisor and the

least common multiple, respectively. The identity between (27)

and (28) is exactly Bézout’s identity.
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Original Bayer Hirakawa Proposed

Fig. 7. Results of joint demosaicking and denoising, as described in Sect. IV-C, with the three CFAs depicted in Fig. 1, on a part of the Kodak image no.
14. The mosaicked image were corrupted by additive white Gaussian noise of standard deviation σ = 40 and the BM3D denoising method was used.

Since γL >
√

3/2, the limiting factor for maximizing γC

is the set of constraints cfai[k] ≤ 1 for every i,k. Then,

maximizing γC under these constraints amounts to choose γC

such that

γL√
3

+
2γC√

3
max(Ω) = 1 ⇔ γC =

√
3 − γL

2 max(Ω)
. (30)

So, we have to choose ϕ so that max(Ω) is minimal. This is

the case if and only if

ϕ ∈ {±ϕ0 + mω1 ; m ∈ Z}, (31)

where

ϕ0 =

{
ω1/4 − π/2 if N2 is odd

ω1/2 − π/2 if N2 is even
. (32)

For such a ϕ, the value max(Ω) is

max(Ω) = sin(−ϕ0) = cos

(
π

lcm(6, N2)

)
. (33)

The different values of ϕ in (31) yield the same CFA, up to a

shift of the origin cfa[0], a mirror symmetry or a permutation

of the R, G, B channels. So we assume ϕ = ϕ0 in the

following.

From (33), γC is maximal if N2 = 3 (which yields n2 = 1
and ω0 = 2π/3). We ignore the second solution N2 = 6 (with

ω0 = π/3) because its modulation frequency is closer to 0

and all its other characteristics are the same as for N2 = 3.

The last parameter is γL. From (30), we see that γC and γL

are antagonist. For the minimal value γL =
√

3/2, we have

γC = 1/2 and increasing γL reduces γC further. So, we fix

γL =
√

3/2, since a higher value would yield a much higher

noise amplification in the chrominance channels than in the

luminance of the demosaicked image.
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