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We propose two new types of random patterns with R, G, B colors, which allow to design color filter
arrays (CFAs) with good spectral properties. Indeed, the chrominance channels have blue noise character-
istics, a property which maximizes the robustness of the acquisition system to aliasing. With these new
CFAs, the demosaicking artifacts appear as incoherent noise, which is less visually disturbing than the
moiré structures characteristic of CFAs with periodic patterns.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

At the heart of color imaging systems like digital cameras is a
sensor on which a color filter array (CFA) is overlaid [1]. The most
popular is the Bayer CFA [2], which consists in red (R), green (G),
and blue (B) filters arranged periodically. Given the mosaicked
image acquired by the sensor, some processing is required to
reconstruct a full color image with complete R, G, B components.
This operation, called demosaicking, is generally achieved through
interpolation techniques, see e.g. [1,3–7] and references therein.
While the optimization of the demosaicking process has been stud-
ied extensively, the design of new CFAs with improved perfor-
mances over the Bayer CFA has been ignored in the literature
until recently. Indeed, this CFA is known to yield moiré artifacts
in regions of the image with horizontally or vertically aligned
structures [3]. Using other periodic CFAs with R, G, B filters may
eliminate the presence of artifacts in some parts of the demosa-
icked image, while degrading the quality in other parts [8]. Recent
advances have shown that using colors other than R, G, B, CFAs
with much better robustness to aliasing can be designed [9,10].
However, the physical realizability of such CFAs may be
problematic.

In this work, we explore another strategy, which mimics the
human visual system: we consider CFAs with R, G, B filters, but
with random arrangements. Since the acquisition of a color image
through a CFA necessarily implies some lossy undersampling oper-
ation, aliasing issues are unavoidable. However, it is known, espe-
cially for printing [11] and computer graphics applications [12],
ll rights reserved.
that random sampling yields images where aliasing artifacts
appear as incoherent noise, which is more pleasing and less visible
than coherent moiré structures [13,14]. The necessary condition
for aliasing to appear as noise is to avoid low frequencies in the
sampling patterns associated to each of the R, G, B components
of the CFA. Based on the spectral characterization of the mosaick-
ing process [3,9], we justify in Section 2 the choice of CFAs whose
color channels have such blue noise characteristics—A 2-D blue
noise spectrum is characterized by a concentration of energy be-
yond some radius from the origin in the frequency domain. R, G,
B sampling with a random blue noise pattern is a good model of
how the information is captured by the human visual system
[15]. We propose in Section 3 two different approaches for the dif-
ficult problem of generating three mutually exclusive R, G, B ran-
dom patterns having the same desired spectral characteristics.
We evaluate their performances in Section 4 using three generic
demosaicking algorithms.
2. Spectral properties of CFAs

2.1. Mathematical preliminaries

In this article, boldface letters denote vectors, e.g. k ¼ ½k1; k2�T

2 Z2; 0 ¼ ½0;0�T; p ¼ ½p;p�T. A CFA with R, G, B filters is a color image
cfa ¼ ðcfa½k�Þk2Z2 , where cfa½k� 2 fR;G;Bg is the color of the filter at
location k 2 Z2 and R ¼ ½1; 0;0�T; G ¼ ½0;1;0�T; B ¼ ½0;0;1� T. The
mosaicked image v ¼ ðv½k�Þk2Z2 acquired by the sensor is such that
v½k� ¼ im½k�Tcfa½k� for every k 2 Z2, where the color image
im ¼ ðim½k�Þk2Z2 is the ground truth to be estimated by demosaick-
ing. That is, im½k� is the vector of the three R, G, B values that would
have been obtained if three measurements had been performed
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using R, G, B filters in front of the sensor at location k, We define the
Fourier transform of a signal g ¼ ðg½k�Þk2Z2 as ĝðxÞ ¼

P
k2Z2 g½k�e�jxTk.

� denotes the convolution.
It is well known that in natural images, the R, G, B components

are not independent [16,4,6,1,17]. Thus, we consider instead the
orthonormal basis corresponding to luminance, red–green (R–G)
and blue–yellow (B–Y) chrominance, defined as

L ¼ 1ffiffiffi
3
p ½1; 1; 1�T; C1 ¼

1ffiffiffi
2
p ½�1; 1; 0�T; C2 ¼

1ffiffiffi
6
p ½�1; �1; 2�: ð1Þ

We denote gL; gC1 , and gC2 the components of a color signal g in this
basis. These components can be considered statistically indepen-
dent for natural images [16].

In order to analyse the properties of the Bayer CFA, Alleysson
et al. showed that the mosaicked image v can be interpreted, in
the Fourier domain, as the sum of the luminance and chrominance
components of the color reference image im, moved at different
locations of the frequency plane [3]. This characterization can be
extended to every CFA. In our notations, from v ½k� ¼ imL½k�
cfaL½k� þ imC1 ½k� cfaC1 ½k� þ imC2 ½k�cfaC2 ½k� and cfaL½k� ¼ 1=

ffiffiffi
3
p

for
every k, we get:

v̂ðxÞ ¼ 1ffiffiffi
3
p dimLðxÞ þ

X
C2fC1 ;C2g

dimC ðxÞ � dcfaC ðxÞ; x 2 R2: ð2Þ
2.2. The goal of CFA design

Since the signals imL
; imC1 and imC2 are lowpass, the best way

for reducing the overlap between the chrominance and luminance
signals, which is the cause of most of the artifacts in the demosa-
icked image [3], is to reject the chrominance in the corners of the

Nyquist band, around the frequency p. But dcfaC1 and dcfaC2 can
not both be Dirac distributions at p: this configuration would
correspond spatially to a bi-colored checkerboard, with one of
the two chrominance information completely lost. For a periodic

CFA, dcfaC1 and dcfaC2 are sums of Dirac distributions, located on
the dual lattice of the spatial lattice underlying the periodicity of
the CFA [9]. This limitation does not hold for aperiodic patterns.
This observation formed the basis of our motivation for seeking a
CFA with a random pattern and chrominance having blue noise
characteristics; that is, minimal energy in the baseband and all

its energy concentrated around p. Thus, cfaC1 and cfaC2 should have
similar (but orthogonal) spectra, close but not equal to Dirac distri-
butions at p, so that the chrominance information is fairly encoded
in the mosaicked image without preferential color axis.
Fig. 1. Schematic representation of the spectrum of a mosaicked image sampled using th
the chrominance (in color) is modulated at the frequencies p; ½0;p�T; ½p; 0�T, and 0. In (b
In the case of the Bayer CFA, the chrominance is located in the
frequency plane at the frequencies p; ½0;p�T, ½p;0�T, and 0 [3], as
illustrated in Fig. 1a. The presence of chrominance energy at
½0;p� T and ½p;0�T is responsible for the moiré artifacts that appear
in areas of the image with horizontal or vertical high-frequency
content [3,9]. Aliasing between the high-frequency content of the
luminance and the chrominance around these two frequencies is
visible in the example of Fig. 1b. Moreover, a CFA without preferred
color axis (that is, with one third of R, of G, and of B filters) is better,
since the luminance imL is not corrupted by chrominance in the
baseband of v and can be optimally recovered during
demosaicking.
2.3. Blue noise patterns

A 2-D blue noise spectrum is characterized by a concentration
of energy beyond some radius from the origin in the frequency do-
main [11]. For example, a Poisson disk distribution is a blue noise
pattern that can be defined as the limit of a uniform sampling pro-
cess with a minimum-distance rejection criterion that cancels the
low-frequency content of the pattern [19,14]. In our context, we
look for patterns which are sub-domains of the regular square
lattice. So, to mimic the behavior of Poisson disk distributions,
we define the minimum-distance criterion as the property that
two adjacent CFA filters have different colors. This ensures that
the low-frequency content in the chrominance is canceled out. A
straightforward implementation that yields a Poisson disk distri-
bution, known as dart throwing [14,19], consists in adding pixels
one by one to the distribution; the location of a new pixel is chosen
randomly with a uniform distribution and the pixel is added if it is
not closer than the desired distance from all pixels already in the
set. However, as more and more pixels are added, the open area
where samples can be added becomes arbitrarily small and an
increasing large number of candidates are rejected before a new
pixel is added to the set. This makes dart throwing really ineffi-
cient. More problematic is the fact than in our context, where every
pixel of the pattern has to be affected a color, there are, after dart
throwing, free locations where no color could be affected, because
they already have neighbors with the three colors. Thus, dart
throwing fails to generate a tri-colored mosaic where any two
adjacent pixels have different colors.

To our knowledge, only the work of Zhu and Parker has ad-
dressed the problem of designing random R, G, B patterns with
blue noise characteristics, using blue noise masks thresholded at
different levels [20]. A blue noise mask is a greyscale pattern
which, when thresholded at any value T, provides a binary pattern
with mean value T and approximate blue noise spectrum [21].
e Bayer CFA (a), showing that the luminance (in gray) occupies the baseband while
), spectrum of the mosaicked Lighthouse image (figure borrowed from [18]).



1198 L. Condat / Image and Vision Computing 28 (2010) 1196–1202
However, these strong requirement prevents each given pattern, at
fixed T, to have optimal spectral characteristics. The small example
given in [20, Fig. 18b] clearly shows clusters of adjacent pixels with
the same color. Moreover, if the red and blue pattern have blue
noise characteristics, this is not clear that this also holds for the
green channel with their approach.
3. Two new methods generating random patterns with blue
noise characteristics

3.1. Method 1 – Improved tri-color dart throwing

The first method we propose is a modified dart throwing strat-
egy adapted to our context. It consists in three steps:

1. We first generate a random permutation over the set of all pos-
sible pixel locations. We run through the obtained sequence of
locations and add the pixels one by one. For each pixel, the color
is chosen randomly, under the constraint that it is different
from the colors of the already placed neighbors, whenever
possible.

2. After step 1, about one in every four pixels has a neighbor with
the same color. The second step, which is iterative, aims at cor-
recting these ‘‘bad” pixels. At each iteration, we run through a
random permutation over the set of all pixel locations. For each
considered pixel, if one or more of its neighbors has the same
color, we change its color. We do not have any guarantee that
this process converges, but we found out that the number of
bad pixels seems to decay logarithmically with the number of
iterations. Experimentally, we used 1000 iterations to generate
our mosaics, with still about 0.1% of remaining bad pixels.

3. The third step consists in changing some pixel values so that
local bi-colored checkerboards become tri-colored Bayer-like
patterns. We process the pixels in scanline order and change
the value of a pixel if its four neighbors have the same color
and three or more of its diagonal pixels have the same color.
The third color, different from the one of all these neighbors,
is assigned to the pixel.

This final step slightly improves the spectral characteristics of
the mosaic. Additionally, it ensures that in every 3 � 3 bloc of
the mosaic, there are at least one and at most four pixels for
each color. This may simplify the demosaicking process, since
there is no large area without information in one color band.
Fig. 2. Parts of the mosaic of size 100 � 100 generated by the algorithm described in Sec
B–Y chrominance of the mosaic after step 3 is depicted in (c).
3.2. Method 2 – Fast random tiling

Since the previous method is quite slow—although this is not
really an issue since the pattern has to be created once and for
all—we investigated another strategy for quickly generating mosa-
ics without any two adjacent pixels having the same color. This
second approach, described in [22], is very fast. It consists in filling
in the mosaic in scanline order, in two steps:

1. The first row of the mosaic is generated in scanline order, by
adding successively tiles of three pixels chosen among the fol-
lowing six tiles:

1 : ½R;G;B� 2 : ½R;B;G� 3 : ½G;B;R� ð3Þ
4 : ½G;R;B� 5 : ½B;R;G� 6 : ½B;G;R� ð4Þ

Each new tile is chosen randomly among two possible tiles,
depending on the tile at its left. The admissible adjacent combi-
nations are:

1! f2;4g; 2! f1;5g; 3! f4;6g; ð5Þ
4! f1;3g; 5! f2;6g; 6! f3;5g: ð6Þ

For example, at the right of a tile 1, we have the choice between
the tiles 2 and 4. The first column of the mosaic is generated the
same way, using vertical 3-tiles.

2. The mosaic is then filled in, in scanline order. Each pixel
receives a color different from the ones of its left and top neigh-
bors. If two colors are possible, we assign the color different
from the one of the top-left diagonal neighbor. So, this second
step is deterministic.

Using this method, we obtain an aperiodic tiling of the whole
image with tri-colored diamonds, as illustrated in Fig. 3a. The
choice of using 3-tiles is empirical, but has been found to yield
the best results among numerous other methods tried.
4. Performance analysis

4.1. Spectral analysis

Examples of the random mosaics obtained using the two algo-
rithms are depicted in Figs. 2 and 3, as well as the amplitude spec-
tra of their B–Y chrominance components. The spectra were
obtained by smoothing the amplitude of the FFT with a 5 � 5 box
tion 3.1, after step 1 (a) and step 3 (b). The (smoothed) magnitude of the FFT for the



Fig. 3. Part of the mosaic of size 100 � 100 generated by the algorithm described in Section 3.2 (a) and the (smoothed) magnitude of the FFT for the B–Y chrominance of the
mosaic (b).

Table 1
Mean square error for the demosaicking experiments using the different combinations of CFAs (Bayer, two proposed designs) and demosaicking methods (3 � 3 normalized
convolution denoted ‘‘bilinear”, methods of [5,23]). Image numbers are the same as in [7].

Image Bayer Proposed CFAs

Bilinear [5] [23] [24] [25] Type I Type II

Bilinear [5] [23] Bilinear [5] [23]

1 151.66 15.77 13.74 11.45 10.12 158.04 28.49 13.89 141.04 22.62 11.37
2 29.87 6.56 13.74 5.75 6.80 33.19 9.83 11.24 30.08 8.60 10.14
3 137.23 15.32 18.43 10.14 10.56 164.40 35.38 24.36 145.97 32.24 22.32
4 105.15 12.45 10.89 10.15 6.47 111.21 20.08 10.83 101.11 17.15 9.23
5 28.79 5.02 7.95 3.34 4.00 35.36 9.63 8.23 30.28 8.06 7.58
6 277.64 31.72 30.59 19.26 19.31 285.55 51.53 25.20 251.79 37.91 19.22
7 36.33 5.37 6.66 3.38 3.96 40.73 9.61 6.90 35.19 7.69 6.15
8 36.34 4.81 5.49 3.56 3.91 41.75 9.61 6.61 36.78 8.31 5.99
9 76.71 9.17 10.39 7.49 6.80 83.32 16.48 10.89 75.28 14.43 9.86
10 28.98 4.53 5.39 3.39 3.20 30.79 7.03 5.15 27.29 5.72 4.46
11 262.85 27.75 20.64 27.03 19.98 285.79 51.52 27.90 266.80 49.98 26.75
12 32.01 7.80 11.01 7.06 7.35 37.35 12.25 11.09 33.29 10.85 10.24
13 47.17 6.03 5.42 4.92 2.77 48.63 8.64 4.72 44.12 7.26 3.98
14 39.07 5.41 5.81 4.66 4.42 45.42 10.12 6.75 40.72 9.44 6.25
15 101.74 14.96 15.77 13.01 12.05 114.24 26.23 18.43 103.07 24.27 17.21
16 100.30 11.12 11.09 6.30 5.92 103.15 18.87 9.83 90.92 14.35 7.75
17 43.88 6.47 8.95 5.04 5.92 50.29 11.39 8.89 44.98 10.26 8.07
18 89.82 10.66 10.32 8.72 8.51 98.42 18.46 11.11 88.56 16.35 9.87
19 57.14 12.02 14.40 9.00 9.86 62.89 17.56 14.57 56.66 15.75 13.60
20 136.93 24.37 23.37 21.42 18.94 151.50 36.99 27.37 139.03 35.53 26.19
Average 90.98 11.87 12.50 9.25 8.54 94.60 20.49 13.20 89.15 17.84 11.81
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filter. The R–G chrominance channel has the same spectrum as the
B–Y one, up to random fluctuations. As expected, the first algo-
rithm provides spectra with blue noise characteristics. The energy
is well concentrated around p. The amount of energy in the low-
frequency part is not negligible, however.

The second algorithm yields mosaics with less chrominance en-
ergy around the origin and a high-frequency content spread in the
area ½�p;p�2 n ½�2p=3;2p=3�2. The mosaic is also more structured
and anisotropic than with the first approach.

We note that whatever the strategy used for generating a ran-
dom pattern, there seems to exist some balance between how well
the chrominance energy is concentrated around p and the amount
of chrominance energy around the zero frequency. This may be ex-
plained by the fact that energy at p correspond to local bi-colored
checkerboard patterns in the mosaic, which also have low-fre-
quency chrominance content. The effect of the step 3 of the first
algorithm is to decrease the energy of the chrominance around 0
and p and to increase the energy around ½0;p�T and ½p;0�T.

4.2. Practical demosaicking experiments

In order to validate our designs experimentally, we considered
the data set of 20 color images of size 768 � 512 used by many
authors to test their methods (e.g. [7,9]). These images were mosa-
icked using the proposed CFAs and the Bayer CFA, and demosa-
icked using three different methods:

1. We propose a simple linear scheme that consists in computing a
missing value for the color C 2 fR;G;Bg at location k, by averag-
ing the pixel values v ½l� for l in a 3 � 3 neighborhood surround-
ing k and for which h½l� ¼ C. This simple scheme reverts to
bilinear interpolation for the Bayer pattern.



Fig. 4. Part of the demosaicked image lighthouse (image 16 in Table 1), for different combinations of CFA (each column) and demosaicking method (each row).
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2. We implemented the non-linear demosaicking algorithm of
Lukac and Plataniotis [5] which is, to our knowledge, the only
advanced demosaicking algorithm proposed in the literature,
that can be used for every R, G, B CFA. The G plane is first inter-
polated incrementally using an edge-sensitive process. The B
and R planes are then reconstructed using the G plane, based
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on a model that takes into account the spectral correlations
between the R, G, B components. Finally, a post-processing step
updates the G plane from the computed B and R planes.

3. We developed a new linear demosaicking algorithm, that can be
applied to every CFA [23]. It is based on a variational frame-
work: the image with maximal smoothess interpolating the
data is computed. More precisely, the iterative process
converges to the image u which is consistent with the measure-
ments v½k� while minimizing the quadratic criterion
lkruLk2 þ kruC1k2 þ kruC2k2. The parameter l plays a key
role; it enforces the chrominance to be smoother than the lumi-
nance, a known property of natural images. l ¼ 0:04 turns out
to give the best results experimentally, for the proposed CFAs
and the Bayer CFA as well.

The numerical results for every combination of CFAs and dem-
osaicking methods are summarized in Table 1.1 We first observe
that the simple linear demosaicking method, which does not exploit
the cross-correlations between the color bands in natural images,
provides relatively poor results. Our random CFA outperforms the
Bayer CFA by a small margin. The demosaicking method of Lukac
yields a much better quality. The best performances are obtained
with the Bayer CFA, but there might be a bias if this method has
precisely been tuned to perform well with this CFA in particular.
The new demosaicking method developed in [23] performs globally
best, although the one of Lukac remains better for the Bayer CFA
only. Note that the first and third demosaicking methods are linear;
hence, their results are more reliable indications of the intrinsic
quality of the CFAs under test. As a result, the proposed CFA of type
2 slightly outperforms the Bayer CFA, while the proposed CFA of type
1 is slightly behind them.

We also included in Table 1 the results of the two methods pre-
sented in [24,25], which represent the state of the art of demosa-
icking for the Bayer CFA. These results show the improvements
achievable by methods sophisticated but specifically tuned for
the Bayer CFA over the three basic but generic methods described
above. It is probable that similar improvements could be obtained
for demosaicking with the new random CFAs, if efforts were
deployed to adapt the mechanisms of the best methods to them.

A visual inspection of the demosaicked images allows to bal-
ance the numerical results with the real disturbance of the alias-
ing artifacts characteristic to each CFA. In Fig. 4, we show the
fence in the lighthouse image, often used as benchmark for com-
paring demosaicking results. Due to the superposition of the
chrominance and luminance in the mosaicked image according
to Eq. (2), most of the visible artifacts come from an incorrect
assignment of information corresponding to high-frequency con-
tent of luminance to the chrominance during demosaicking. In
this respect, the artifacts present with the random CFA take the
form of chrominance noise, which is more visually pleasant than
the structured low-frequency color fringes characteristic to the
Bayer CFA. Even with the demosaicking method of [5], which pro-
vides a lower MSE for the Bayer pattern, the artifacts are less vis-
ible with the random CFAs.

We note that the type 2 random CFA is superior to the type 1,
both numerically and visually. This suggests that, in first place,
the energy of the CFA in the chrominance channels has to be min-
imal in the baseband, where the luminance information is located
in the frequency plane. This property seems to be more important
that a good concentration of the energy around p.
1 We do not take into account the first and last five rows and columns of the
demosaicked images for the computation of the MSE, since the initial images used for
the tests have been badly acquired at the boundaries.
5. Conclusion

We proposed two methods for generating R, G, B CFAs with ran-
dom patterns, such that two adjacent pixels have different colors.
This property ensures that the chrominance channels have reduced
energy in the low frequency area, a necessary property to minimize
aliasing. In comparison with the Bayer CFA, or every other periodic
R, G, B CFA, the new random CFAs yield less disturbing demosaick-
ing artifacts, which appear as incoherent chromatic noise. In prac-
tice, a small random pattern (e.g. of size 16 � 16) can be designed
with one of our two methods and periodically replicated to form
the pattern of a pseudo-random CFA. The physical realizability
would be made easier and the performances would be almost un-
changed. For reproducibility purpose, Matlab code generating the
proposed random patterns has been made available online.2

As future work, the development of random patterns with even
better spectral properties should be investigated. Indeed, we be-
lieve that there exists some margin of improvement over the two
designs presented in this paper, toward a random pattern with
an isotropic growth of the chrominance energy away from 0 and
a peak of energy around p. The design of demosaicking methods
able to exploit these patterns at best should be studied as well.

The proposed framework can be extended to multispectral
imaging, in which more than three bands are acquired, e.g., visible
and infrared bands in remote sensing systems. Also, there may be
other applications for random color patterns, like multitone dither-
ing in printing [26] and texture generation in computer graphics
[27]. Thus, we wish the present work to foster a renewed interest
for random color sampling.

Acknowledgments

This material is based upon work performed during the stay of
the author as postdoc in the Helmholtz Zentrum München, Neu-
herberg, Germany. This stay was supported by the Marie Curie
Excellence Team Grant MEXT-CT-2004-013477, Acronym MAME-
BIA, funded by the European Commission.

References

[1] B.K. Gunturk, J. Glotzbach, Y. Altunbasak, R.W. Schaffer, R.M. Mersereau,
Demosaicking: color filter array interpolation, IEEE Signal Process. Mag. 22 (1)
(2005) 44–54.

[2] B.E. Bayer, Color imaging array, US patent no. 3971065, July 1976.
[3] D. Alleysson, S. Süsstrunk, J. Hérault, Linear demosaicing inspired by the

human visual system, IEEE Trans. Image Process. 14 (4) (2005) 439–449.
[4] J. Portilla, D. Otaduy, C. Dorronsoro, Low-complexity linear demosaicing using

joint spatial–chromatic image statistics, in: Proceedings of IEEE ICIP, 2005.
[5] R. Lukac, K.N. Plataniotis, Universal demosaicking for imaging pipelines with a

RGB color filter array, Pattern Recogn. 38 (2005) 2208–2212.
[6] S.C. Pei, I.K. Tam, Effective color interpolation in CCD color filter arrays using

signal correlation, IEEE Trans. Circuits Syst. Video Technol. 13 (2003) 503–513.
[7] B.K. Gunturk, Y. Altunbasak, R.M. Mersereau, Color plane interpolation using

alternating projections, Proc. IEEE 11 (9) (2002) 997–1013.
[8] R. Lukac, K.N. Plataniotis, Color filter arrays: design and performance analysis,

IEEE Trans. Consum. Electron. 51 (4) (2005) 1260–1267.
[9] K. Hirakawa, P.J. Wolfe, Spatio-spectral color filter array design for optimal

image recovery, IEEE Trans. Image Process. 17 (10) (2008) 1876–1890.
[10] L. Condat, A new color filter array with optimal sensing properties, in:

Proceedings of IEEE ICIP, 2009.
[11] R.A. Ulichney, Dithering with blue noise, Proc. IEEE 76 (1) (1988) 56–79.
[12] A. Glassner, Principles of Digital Image Synthesis, Morgan Kaufman Publishers,

1995.
[13] M. Dippé, E. Wold, Antialiasing through stochastic sampling, in: Proceedings of

SIGGRAPH, 1985, pp. 69–78.
[14] D. Mitchell, Generating antialiased images at low sampling densities, in:

Proceedings of SIGGRAPH, 1987, pp. 65–72.
[15] J.I.J. Yellot, Spectral consequences of photoreceptor sampling in the rhesus

retina, Science (1983) 382–385.
[16] Y. Hel-Or, The canonical correlations of color images and their use for
2 See the homepage of the author: http://www.greyc.ensicaen.fr/~lcondat
publications.html.
/

http://www.greyc.ensicaen.fr/~lcondat/publications.html
http://www.greyc.ensicaen.fr/~lcondat/publications.html


1202 L. Condat / Image and Vision Computing 28 (2010) 1196–1202
demosaicing, Tech. Rep. HPL-2003-164R1, HP Laboratories Israel, February
2004.

[17] B.A. Wandell, Foundations of Vision, Sinauer Associates, Inc., 1995.
[18] D. Menon, Color image reconstruction for digital cameras, Ph.D. thesis,

University of Padova, Italy, 2009.
[19] M. McCool, E. Fiume, Hierarchical poisson disk sampling distributions, in:

Proceedings of Graphics Interface, 1992, pp. 94–105.
[20] W. Zhu, K. Parker, M.A. Kriss, Color filter arrays based on mutually

exclusive blue noise patterns, J. Vis. Commun. Image Represent. 10 (3)
(1999) 245–267.

[21] T. Mitsa, K. Parker, Digital halftoning technique using a blue-noise mask, J. Opt.
Soc. Am. 9 (11) (1992) 1920–1929.
[22] L. Condat, A new random color filter array with good spectral properties, in:
Proceedings of IEEE ICIP, 2009.

[23] L. Condat, A generic variational approach for demosaicking from an arbitrary
color filter array, in: Proceedings of IEEE ICIP, 2009.

[24] L. Nai-Xiang, C. Lanlan, T. Yap-Peng, V. Zagorodnov, Adaptive filtering for color
filter array demosaicking, IEEE Trans. Image Process. 16 (10) (2007) 2515–2525.

[25] E. Dubois, Frequency-domain methods for demosaicking of Bayer-sampled
color images, IEEE Signal Process. Lett. 12 (12) (2005) 847–850.

[26] J.B. Rodríguez, G.R. Arce, D.L. Lau, Blue-noise multitone dithering, IEEE Trans.
Image Process. 17 (8) (2008) 245–267.

[27] M.F. Cohen, J. Shade, S. Hiller, O. Deussen, Wang tiles for image and texture
generation, in: Proceedings of SIGGRAPH, 2003, pp. 287–294.


	Color filter array design using random patterns with blue noise chromatic spectra
	Introduction
	Spectral properties of CFAs
	Mathematical preliminaries
	The goal of CFA design
	Blue noise patterns

	Two new methods generating random patterns with blue noise characteristics
	Method 1 – Improved tri-color dart throwing
	Method 2 – Fast random tiling

	Performance analysis
	Spectral analysis
	Practical demosaicking experiments

	Conclusion
	Acknowledgments
	References


