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ABSTRACT

We investigate over-sampling and under-sampling sce-
narios under the formulation of a generalized sampling
model. Usually, these scenarios are described in the con-
text of the so-called Shannon’s sampling theorem. This can
be easily extended to more general settings. We first re-
visit a conventional definition of over-sampling and under-
sampling in a general setting, and point out that the defini-
tion consists of two conditions. To treat them separately, we
introduce the two notions of “perfect reconstruction” and ‘re-
dundant sampling.” We show that these concepts are geomet-
rically characterized by using sampling and reconstruction
spaces. Then, we show that there appear four types of sce-
narios, which includes the conventional over-sampling and
normal sampling, and further two types of under-sampling
scenarios. The second type is more counter intuitive be-
cause it satisfies both non-perfect reconstruction and redun-
dant sampling scenarios. We illustrate this last scenario by
a practical example that involves cyclic B-spline functions.

1. INTRODUCTION

Over-sampling and under-sampling are frequently appearing
terms in the field of signal/image processing. Over-sampling
is typically useful for noise reduction, while under-sampling
is a situation often encountered in real-world problems, since
nature has an infinite amount of information.

Over-sampling and under-sampling are usually described
within the following framework [1]: if a signal f, which con-
tains no frequencies higher than the frequency w¢/2, is sam-
pled at a frequency ws greater than or equal to wc, then the
signal can be reconstructed via the formula
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Over-sampling means that s is greater than @.. Normal
sampling (a.k.a., critical sampling) is a term sometimes used
for the case where ws = w;. On the other hand, under-
sampling means that s is less than @ and in this case, f
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is not generally reconstructed by Eq. (1) anymore. The latter
case causes the aliasing problem.

A recent trend for discussing the sampling theorem is not
restricted to the above formulation [2]~[9]. That is, the sig-
nal is reconstructed by not only the so-called sinc function,
but also general reconstruction functions like splines. Fur-
ther on, samples are not only the ideal samples f(n/ws), but
also generalized samples d,, which are modeled by the in-
ner product between the target signal f and general sampling
functions. The coefficients for the linear combination of the
reconstruction functions are obtained from samples by a cor-
rection filter.

When we look at over-sampling and under-sampling
from the viewpoint of this generalized formulation, we ar-
rive at the idea that the sampling frequency is not the essen-
tial point of these sampling scenarios. Instead, over-sampling
essentially means that samples are linearly dependent for any
bandlimited signal f, while under-sampling means that there
exists some bandlimited signal f which can not be perfectly
reconstructed from its samples.

Taking these perspectives into account, over-sampling
and under-sampling were defined in the generalized formula-
tion in [8]. This definition consists of two conditions, which
can be treated separately, but not so. Hence, for a more de-
tailed analysis, we introduce two concepts, perfect recon-
struction and redundant sampling. We characterize these
scenarios geometrically by using sampling and reconstruc-
tion spaces. Then, by combinations of the two concepts, we
derive four types of scenarios. Two of them directly corre-
spond to over-sampling and normal sampling scenarios in the
conventional sense. On the other hand, both of the rest two
scenarios correspond to conventional under-sampling sce-
nario. We call them under-sampling scenarios of the first
and the second types. Interestingly, the second type satisfies
both non-perfect reconstruction and redundant sampling (a
counter intuitive situation). By using examples of a cyclic
B-spline functions, we show that under-sampling scenario of
the second type may appear in practical situations.

1.1 Notationsand Mathematical Preliminaries

We will make use of the following notations. The mea-
surements of a signal are represented as a vector in the N-
dimensional unitary space CN. The reconstructed signal, on
the other hand, will be parameterized by a vector in CX. The



standard bases for CN and CX, are {eff"}N_, and {e 1K ,,

respectively. That is, eﬁN) (resp., el((K)) is the N-dimensional
(resp., K-dimensional) vector consisting of zero elements ex-
cept for the n-th (resp., k-th) element which is equal to 1.

The orthogonal complement of the subspace S is denoted
by St. %(T) and .4 (T) stand for the range and the null
space of the operator T, respectively. T * is the adjoint oper-
atorof T.

Let o and B be elements of two Hilbert spaces H; and
Ho, respectively. Let (o ® ) be an operator from H; to Hy
defined by

(@@ B)y=(y,Byo for any y€ Hy, )

where (-, -) is the inner product in Hy. This operator is called
the Neumann-Schatten product [10] and it satisfies the rela-
tion

(a®ﬁ)*:ﬁ®a. (3)

2. FORMULATION OF SAMPLING AND
RECONSTRUCTION PROBLEM

We start with the formulation of the sampling problem,
which is illustrated in Fig. 1. The original input signal f
is defined over a continuous domain 2 and is assumed to be-
long to a Hilbert space H = H(2). The measurements of f,
denoted by d, (n=1,2,...,N), are given by the inner prod-
uct in H of f with the sampling functions {y/n},ﬁ‘zl:

dn = (f, yi). (4)

The N-dimensional vector consisting of dy, is denoted by d.
Let As be the operator that maps f into d:

Asf =d. ®)

By using the Neumann-Schatten product, the operator As is
expressed without f as

N
As = z er(1N) ® Y.
n=1

The reconstructed signal f € H is given by a linear com-
bination of reconstruction functions { @y} ;:

—hy
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The K-dimensional vector of coefficients cy is denoted by c.
We introduce the (adjoint) reconstruction operator:

5 oK)
A=Y e @ 7
k=1
It follows from Egs. (6), (2), (3), and (7) that
f=Arc. (8)
Let X be the K x N matrix that maps d to c:

Xd=c. 9)

P

Figure 1: Schematic view of sampling and reconstruction.

Then, Egs. (8), (9), and (5) yield
f = AIXAf. (10)

With this formulation, the sampling problem becomes equiv-
alent to finding a suitable matrix X so that f satisfies some
optimality criterion, such as least squared error [2], consis-
tency [3]~[8], and minimax regret [9].

Let Vs and V; be subspaces in H spanned by {yn}N_, and
{(pk}szl, respectively. They are called the sampling space
and the reconstruction space, respectively. They play impor-
tant roles in this paper. It holds that

Vo = #(A),

3. CONVENTIONAL DEFINITION OF
OVER-SAMPLING AND UNDER-SAMPLING

As mentioned in Introduction, over-sampling and under-
sampling are usually defined with reference to Shannon’s
sampling theorem for band-limited signals. In that context,
over-sampling means sampling at a rate that is above the crit-
ical Nyquist rate, while under-sampling means sampling at
a lesser rate. It is obviously possible to reconstruct band-
limited signals perfectly in the former case but generally not
in the latter.

With the formulation in Section 2, these concepts are
translated as follows. First, the band-limited property is gen-
eralized to the fact that f belongs to the reconstruction space
V. Second, the over-sampling scenario corresponds to the
case where the sampled measurements {d,}\_; are linearly
dependent for any f in V. Third, the perfect reconstruction
property means that there exists X that satisfies

AXAT = f (11)

for any f in V. These considerations were summarized in
the following definition:

Definition 1 [8] With the formulation in Section 2, if there
exists some X that satisfies Eq. (11) for any f in V,, then



Table 1: Summary of sampling and reconstruction scenarios (see text).

Non-redundant sampling | Redundant sampling

Geometric characterization

{yn}N_; : Independent | {yn}N , : Dependent

Perfect reconstruction VrNVg- = {0}

Normal sampling Over-sampling

Non-perfect reconstruction VNVt # {0}

Under-sampling 1 Under-sampling 2

we have an over-sampling (resp. normal sampling) scenario
over V, depending on whether the sampled measurements
{dn}N_; are linearly dependent for any f in V, or not. If,
on the other hand, there is no X that satisfies Eq. (11) for
any f inV,, then we have an under-sampling scenario.

We can see from this definition that an under-sampling
scenario is defined by a single condition, the existency of the
operator X, while over-sampling and normal sampling sce-
narios are defined by two conditions, the linearly dependency
of samples in addition to the former condition. Note that we
can treat these conditions in a separate way. Hence, in the
following section, we define these two concepts explicitly,
and characterize them geometrically.

4. SAMPLING AND RECONSTRUCTION
SCENARIOS

In this section, we introduce two notions, perfect reconstruc-
tion and redundant sampling. After giving their geometric
characterizations, we show the relations of these notions to
Definition 1.

4.1 Perfect Reconstruction

The existence of the operator X that satisfies Eq. (11) for any
f inVy, originally means that we can perfectly reconstruct all
signals f in V; from the samples {dn}N_,. Hence, we define
the perfect reconstruction scenario as follows.

Definition 2 We have a perfect reconstruction scenario if
there exists an operator X that satisfies Eq. (11) for any f
in V.

By rephrasing Proposition 1 in [8], we can geometrically
characterize this scenario as follows:

Theorem 1 [8] We have a perfect reconstruction scenario if
and only if

Vy NV~ = {0}. (12)

That is, over-sampling and normal sampling scenarios
are covered by Eq. (12), while an under-sampling scenario
is characterized by

Vy V- £ {0}. (13)

Eq. (13) means that there exists some nonzero signals f in
V; which are mapped into 0 through the sampling operator:
Asf = 0. Hence, we can not reconstruct such signals by the
formula f = Ajc = A/ Xd.

In the context of the consistency sampling theorem,
Eq. (12) was assumed implicitly in [3] and explicitly in [6].
An under-sampling case of Eq. (13) was investigated in [8].

4.2 Redundant Sampling

Our next attention is focused on the linearly dependency con-
dition in Definition 1. We introduce the following concept:

Definition 3 We have a redundant sampling scenario if the
sampled measurements {dn},ﬁ‘:1 are linearly dependent for
any f inVy, i.e, if it holds for any f in V, and for some
nonzero coefficients {an}N_, that

N
n=1

Eq. (4) allows us to express Eq. (14) as

N
;lan<fawn> :07 (15)

in which f inV; is explicitly shown.
This scenario is geometrically characterized as follows.
Let yr, be the orthgonal projection of y;, onto V;:

Uh =Ry, yh. (16)

Theorem 2 We have a redundant sampling scenario if and
only if {%}r’}‘zl are linearly dependent, i.e., for some nonzero

coefficients {an}\_;, it holds that

N
z anyim = 0. 17)
n=1

(Proof) Eq. (15) implies that Eq. (14) is equivalent to

N
<f, zanll/n> :0
n=1

for any f inV,. This is further equivalent to

N
R, z anyh =0.
n=1

This is equivalent to Eq. (17) because of Eq. (16). |

Theorem 2 implies that a non-redundant sampling sce-
nario is characterized by the orthogonal projections of sam-
pling functions {y,}N_, onto the reconstruction space V.
Let us show some sufficient conditions for Eq. (17).

Corollary 1 We have a redundant sampling scenario if the
sampling functions {wn}ﬁzl are linearly dependent, i.e., for

some nonzero coefficients {a }}\_,, it holds that

N
n=1



Proof is abbreviated. Although Eq. (18) is an obvious
condition, we should note that this is a sufficient condition,
not a necessary and sufficient condition. This means that
there can be a case in which sampled measurements are lin-
early dependent even if sampling functions are linearly inde-
pendent. The following corollary suggest that such a situa-
tion really exists.

Corollary 2 We have a redundant sampling scenario if the
sampling and the reconstruction spaces satisfy the following
condition:

Vs NV # {0}. (19)

(Proof) Assume that Eq. (19) holds. Then, there exists a
nonzero element g in Vs NV,*. Since g belongs to Vs, it holds
for some nonzero coefficients {an}\_, that

N
g= z anVYh. (20)
n=1

Since g is orthogonal to Vy, it holds for any f in V, that

N
<f, zanl//n> :0
n=1

Then, Eq. (4) implies Eq. (14). [ |
Eqg. (19) is important because this equation shows that,
even if sampling functions are linearly independent, sam-
pled measurements can be linearly dependent. Interestingly,
Eq. (19) is similar to Eq. (13) with the role of V and Vs ex-
changed.
By taking a contraposition of Corollary 2, we have

Corollary 3 It holds that
VsNV!t = {0} (21)
if we have a non-redundant sampling scenario.

Orthogonal complement of Eq. (21) yields
Vi +VE =H, (22)

which is a condition assumed in [8] together with Eq. (13).
Hence, now we can see that the study in [8] covered not only
non-perfect reconstruction and non-redundant sampling sce-
narios, but also some part of non-perfect reconstruction and
redundant sampling scenarios.

4.3 Summary of Sampling Scenarios

Table 1 summarizes our investigations of sampling and re-
construction scenarios. This clearly shows the relations of
Definition 1 to Defintions 2 and 3. That is, over-sampling is
a scenario satisfying both perfect reconstruction and redun-
dant sampling scenarios. Similarly, normal sampling satis-
fies both perfect reconstruction and non-redundant sampling.

Interestingly, we can see in Table 1 that there are two
types of under-sampling scenarios. Under-sampling scenario
of type 1 is conventional. On the other hand, that of type 2
has never been pointed out explicitly. We show in the next
section by means of examples that under-sampling scenario
of type 2 may appear in practice.
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Figure 2: Under-sampling scenario of type 2. (a) Sampling
functions. (b) Reconstruction functions. (c) An example of
function in VsN V. (d) An example of function in V, NV,

5. EXAMPLES OF UNDER-SAMPLING OF TYPE 2

First, we show a toy example, which illustrates the geometric
intuition behind our discussion. We use the B-splines 3°(x)
and B1(x) of degree 0 and 1 defined by

ﬁO(X):{ é (OSX<1),

(x<0,x>1),
and . o o0
B(x) = (B"*B") (),
respectively, where x is the convolution operator. The details
of the B-spline functions can be found in [11].

Let H be L?[0,K], where K is the number of the recon-
struction functions. Functions f in H satisfy

K
| 1f00rdx <,
0

and the corresponding inner product is

K _
<ﬁ®=%%famwm.

We consider the case of N =K. Let {yn}N_; and {¢x }K_;
be functions given by

¥a(x) = Box—n+1),

o(X) = B (x—k+1),
respectively, where

Bi(x) = ¥, BH(x—kK).

kez

This corresponds to the periodized version of a system where
the sampling is performed by integrating the signal over the
sampling period (T = 1) and where the reconstruction is per-
formed using piecewise linear splines.



Figure 3: Geometric schema of the sampling and reconstruc-
tion scenarios in Section 5. We can see that y1 — v, and
@1 — ¢ are perpendicular to V, and Vs, respectively.

Now, in the case where N = K = 2, one can verify that f
in Eq. (8) with
c=(1,-1)

belongs to Vy NV-. That is, Eq. (13) is true. Further, it is
easily shown that g in Eq. (20) with

a=(1,-1)

belongs to Vs NV~ That is, Eqg. (19) holds. Hence, this sce-
nario indeed corresponds to the under-sampling of type 2.
These functions are shown in Fig. 2. Fig. 3 shows the geo-
metric representation of the scenario. We can clearly see that
y1 — yr and @1 — ¢, are perpendicular to V, and Vs, respec-
tively.

In a similar way, we show a more practical example. The
sampling functions are the same as in the above example.
The reconstruction functions are given by the B-spline of de-
gree 3. That is, by letting

BROX) = 3 B3 (x—kK),

kez
the reconstruction function is given by
o(X) = BE(x—k+1).

We assume that K is even, and N = K. In this case, similarly
to the example above, f in Eq. (8) with

c=(1,-1,...,1,-1)
belongs to Vy NVg-. Further, g in Eq. (20) with
a=(1,-1,...,1,—1)

belongs to Vs MV,-. Hence, this scenario also corresponds to
under-sampling of type 2.

6. CONCLUSION

In this paper, we investigated over-sampling and under-
sampling scenarios in the formulation of a generalized sam-

pling model. We first reviewed the conventional definitions
of over-sampling and under-sampling, and pointed out they

consist of two conditions. To treat them separately, we in-
troduced two concepts, perfect reconstruction and redundant
sampling. We showed that these scenarios are geometri-
cally characterized by means of sampling and reconstruction
spaces. Then, we showed four possible scenarios. Especially,
an interesting under-sampling scenario (called “of type 2”)
appeared. We showed by a practical example that it may be
encountered in real applications. The exploitation of its char-
acteristics in practical problems is a promising issue. We will
concentrate our future work on the way to deal with the situ-
ation where the measurements are corrupted by noise.
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