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ABSTRACT

We propose a maximum likelihood estimation approach for
the recovery of continuously-defined sparse signals from
noisy measurements, in particular periodic sequences of
derivatives of Diracs and piecewise polynomials. The con-
ventional approach for this problem is based on total-least-
squares (a.k.a. annihilating filter method) and Cadzow de-
noising. It requires more measurements than the number of
unknown parameters and mistakenly splits the derivatives
of Diracs into several Diracs at different positions. Further
on, Cadzow denoising does not guarantee any optimality.
The proposed parametric approach solves all of these prob-
lems. Since the corresponding log-likelihood function is non-
convex, we exploit the stochastic method of particle swarm
optimization (PSO) to find the global solution. Simulation
results confirm the effectiveness of the proposed approach,
for a reasonable computational cost.

Index Terms— signals with finite rate of innovation,
derivative of Diracs, piecewise polynomials, maximum like-
lihood estimation, Cadzow denoising

1. INTRODUCTION

Sampling continuous or discrete sparse signals is attracting
great interest, as can be seen from the huge amount of pub-
lications on the topic, see e.g. [1, 2, 3, 4, 5, 6, 7]. The re-
construction of sequences of Dirac distributions (Diracs, in
short) lies at the heart of the theories formulated for analog
signals, because simple convolutions of such sequences with
particular kernels creates a wide variety of signals of practical
interest. An even larger class of signals is generated by con-
volutions from sequences of derivatives of Diracs, including
the important cases of piecewise polynomials and piecewise
sinusoids with discontinuities [1, 8].

Let δ(t) denote the Dirac mass distribution and τ be a
positive real. This paper focuses on a τ -periodic sequence of
derivatives of Diracs, expressed as s(t) =

∑
k′∈Z s0(t−k′τ),
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where

s0(t) =

K−1∑
k=0

Rk−1∑
r=0

ck,rδ
(r)(t− tk), (1)

for some known integers K ≥ 1 and {Rk}K−1
k=0 . This signal

has K degrees of freedom due to the time instants {tk}K−1
k=0

and K̃ =
∑K−1

k=0 Rk degrees of freedom due to the coeffi-
cients {ck,r}, per period τ . Thus, the rate of innovation of
the signal is ρ = (K + K̃)/τ < ∞. The signal s(t) is sam-
pled using an appropriate kernel, like the Dirichlet kernel [1]
or a sum-of-sincs [4]. Then, the sequence can be perfectly
reconstructed from the noiseless measurements using the an-
nihilating filter technique [1]. This technique, however, re-
quires at least 2K̃+1 measurements. This is much more than
the number of unknown parameters K + K̃. If the measure-
ments are corrupted by noise, the annihilating filter approach,
a.k.a. total least squares (TLS), whose detailed description is
in [3] and will not be repeated here by lack of place, yields K̃
instead of K locations. Also, this method does not give sat-
isfactory results, so that preprocessing is necessary. For that,
Cadzow denoising [9] is the standard approach [3]; it is easy
to implement but does not guarantee any optimality.

To solve these problems, we propose a method that re-
constructs the signal using maximum likelihood estimation.
The corresponding likelihood function is non-convex. Hence,
to find the global solution, we exploit a heuristic approach
called particle swarm optimization (PSO) [10]. The proposed
method can perfectly reconstruct the signal from less than
2K̃ + 1 measurements, whereas the conventional approach
is not applicable in this situation.

This paper is organized as follows. In Section 2 we de-
scribe the sampling setup using the sum-of-sincs kernel and
we formulate maximum likelihood reconstruction of the se-
quence of derivatives of Diracs. Section 3 extends our ap-
proach to periodic piecewise polynomials.

2. SEQUENCE OF DERIVATIVE OF DIRACS

The τ -periodic sequence of derivatives of Diracs s(t) is sam-
pled using a kernelψ(t) and yieldsN noiseless measurements
dn = ⟨s, ψn⟩ =

∫∞
−∞ f(t)ψ(t− nT )dt, for n = 0, . . . , N−1



and T = τ/N . We adopt for ψ(t) the sum of sincs (in the
Fourier domain) kernel [4], which is defined in time domain
by

ψ(t) =
rect(t/τ)

τ

P∑
p=−P

bpe
i2pπt/τ , (2)

where rect(t) = 1 if |t| ≤ 0.5 else 0 and P ≤ (N − 1)/2 is
an integer. By setting bp = 1 for all p, this kernel reduces to
the standard Dirichlet kernel. Let d̂p = 1

τ

∫ τ

0
s(t)e−i2pπt/τdt

be the Fourier coefficients of s. Then, it follows from (2) that

dn =
P∑

p=−P

bpd̂pe
i2pnπ/N . (3)

This admits the matrix representation d = F−1Bd̂, where B
is the diagonal matrix diag(b−P , . . . , bP ) and F is the dis-
crete Fourier transform (DFT) matrix, defined accordingly.

We can derive the Fourier coefficients from (1), as
d̂p =

∑K−1
k=0

∑Rk−1
r=0 c̃k,rpu

p
k, where uk = e−i2πtk/τ ,

c̃k,r = (i2π)rck,r/τ
r+1. Let Ut and c be the matrix and

the vector defined respectively as

Ut =


u−P
0 · · · (−P )Ru−P

K−1

u−P+1
0 · · · (−P + 1)Ru−P+1

K−1
...

. . .
...

uP0 · · · (P )RuPK−1

 ,

c = (c̃0,0 c̃0,1 · · · c̃K−1,R−1)
T .

Then, we have d̂ = Utc and therefore,

d = F−1BUtc. (4)

The clean measurements {dn}N−1
n=0 are corrupted by ad-

ditive noise, yielding the noisy measurements yn = dn +
en, for n = 0, . . . , N − 1. We have to estimate the un-
knowns {tk}K−1

k=0 and {ck,r}K−1
k=0,

Rk
r=0 in (1) as precisely as

possible from the data {yn}N−1
n=0 . To this end, we exploit

the formalism of maximum likelihood estimation. Let y and
e be vectors whose n-th elements are yn and en, respec-
tively: y = d + e. Assume that the probability density
function p(e) is known. Then using (4), we can define the
log-likelihood function as L(t, c) = log p(y − F−1BUtc),
where t = [t0 t1 · · · tK−1]

T. Assume that p(e) is the Gaus-
sian distribution with zero mean and covariance matrix σ2I ,
where σ is a known positive real and I is the identity matrix.
Then, the log-likelihood function reads

L(t, c) = −∥y − F−1BUtc∥2

2σ2
+Constant. (5)

This implies that the maximization of the log-likelihood
function is equivalent to the minimization of the norm
∥y − F−1BUtc∥2. Further on, F is unitary up to constant.
Hence, this minimization is equivalent to that of

fo(t, c) = ∥ŷ −BUtc∥2, (6)
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Fig. 1. Mean square errors (MSE) of estimated parameters
for t and c with respect to the number of measurements. The
solid and dashed lines show the MSE for 20dB and 10dB,
respectively. The red, blue and black lines show the results
by the proposed method, by TLS with and without Cadzow
denoising, respectively.

where ŷ = Fy. Thus, maximum likelihood estimation
amounts to estimating the vector BUtc, which is the closest
to ŷ in the least-squares sense, in Fourier domain.

Eqn. (6) is quadratic with respect to c, when t is fixed.
Therefore, the optimal c for a fixed t is obtained analytically
as c = (BUt)

†ŷ, where T † stands for the Moore-Penrose
generalized inverse of the bounded operator T [11]. Hence,
the minimizer of fo(t, c) is found by searching t that mini-
mizes

f(t) = fo(t, (BUt)
†ŷ) = ∥ŷ − (BUt)(BUt)

†ŷ∥2,

and then by computing c = (BUt)
†ŷ.

The criterion f(t) is non-convex and it is very difficult
to find the global minimum solution. We thus exploit the so-
called particle swarm optimization (PSO) algorithm [10]. The
particles model the parameter t to be optimized. For each
particle j = 1, ..., J , we first initialize the position tj and
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Fig. 2. MSE of estimated parameters for t and c with respect
to the SNR in dB. The legends are the same as in Fig. 1.

its velocity ṫj with uniformly distributed random vectors in
the domain. We use the particle’s and swarm’s best known
positions b

(p)
j and b(s), which are initialized by bj and the

best among the initial positions, respectively. Until a termi-
nation criterion is met, the particle’s velocity ṫj and position
tj are updated by wṫj + c1r1(b

(p)
j − tj) + c2r2(b

(s) − tj)

and tj + ṫj , respectively, where c1, c2 are pre-defined con-
stants near 1 and r1, r2 are uniform random variables within
0 and 1. If f(tj) < f(b

(p)
j ), then b

(p)
j is updated by tj . If

f(b
(p)
j ) < f(b(s)), then b(s) is replaced by b

(p)
j . Finally, b(s)

gives the best found solution. Because of its global and ran-
dom nature, PSO is more robust than gradient approaches,
against getting trapped in local minima. The downside is a
relatively high computational cost.

In simulations, the parameters are set as τ = 1, bp = 1,
K = 2, and R0 = R1 = 2. The unknown parameters are
t = (t0, t1) = (0.19, 0.63), and c = (c0,0, c0,1, c1,0, c1,1) =
(−0.80, 0.65,−1.50, 0.85). For PSO, we used J = 150
particles and (w, c1, c2) = (0.4, 0, 9, 0.4), (0.9, 0.4, 0.4) and
(0.4, 0.4, 0.9) for 75, 45 and 30 particles, respectively. The

proposed method requires a number of measurements more
than or equal to K + K̃ + 1 = 7, while the conventional
method needs at least 2K̃ + 1 = 9 measurements. To see
this difference, we reconstructed the sequence of derivative
of Diracs from various numbers of measurements, from 7, to
15. The noise level was chosen so that the SNR is 20dB and
10dB1. For each experiment, we computed estimates t̂ and ĉ
of t and c, for 1,000 different noise realizations. Accordingly,
the mean square errors (MSE) MSE(t) and MSE(c) were de-
fined as the average over the 1,000 trials of ∥t̂ − t∥2 and
∥ĉ − c∥2, respectively. The results are shown in Fig. 1, see
the caption for details. We can see that the proposed method
outperforms the conventional methods for every number of
measurements. Note that the TLS approach cannot be ap-
plied to the case of seven measurements, while the proposed
method performs the best in this case for the estimation of
c. In Fig. 2, we show the behavior of the MSE with respect
to the SNR; here, the number of measurements is fixed to
N = 13. Again, the proposed method performs better than
the conventional approaches, whatever the SNR.

3. PERIODIC PIECEWISE POLYNOMIALS

For every k = 0, . . . ,K − 2, let us define the function φk(t)
as

φk(t) =

{
vk(t) (tk < t < tk+1),
0 (otherwise),

and the function φK−1(t) as

φK−1(t) =

 vK−1(t+ τ) (0 ≤ t < t0),
vK−1(t) (tK−1 < t < τ),

0 (otherwise),

where vk(t) =
∑R

r=0 αk,rt
r. Then, a τ -periodic piece-

wise polynomial s(t) of degree R is defined by s(t) =∑
k′∈Z s0(t − k′τ), with s0(t) =

∑K−1
k=0 φk(t). The avail-

able samples are inner products ⟨s, ψn⟩ corrupted by noise.
Eqn. (3) still holds for this kind of signal.

The R+1th derivative of s(t) is a sequence of derivatives
of Diracs. Hence, the classical approach consists in first es-
timating this sequence and then reconstructing the piecewise
polynomial by integration. In this section, we show how to
directly estimate the piecewise polynomial, without recasting
the problem as the estimation of a sequence of derivatives of
Diracs. Let us introduce the vector α = [α0,0 · · · αK−1,R]

T

and the matrix Φt = BDVtWt, where

D =

 0

ωdiag
(

1
(−P )R+1 ,

1
(−P+1)R+1 , . . . ,

1
PR+1

)
1

0

 ,

Vt =

(
Ut 0
0T 1

)
,

1The SNR is defined by 10 log10
σ2N∑N
n=1 dn2 .
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Fig. 3. MSE of estimated parameters for t and α. The legends
are the same as in Fig. 1.

ω = (τ/i2π)R+1, 0 denotes the zero vector, and Wt is the
matrix defined, for instance when R = 1 and K = 2, as

Wt =


0 0 1 −1
1 −1 t0 −(t0 + τ)
0 0 −1 1
−1 1 −t1 t1

t1−t0
τ

t0+τ−t1
τ

t21−t20
2τ

(t0+τ)2−t21
2τ

 .

We refer [12] for further details on the matrix Wt. Note that
the relation of differentiation was implicitly used in these for-
mulas. We then have d = F−1Φtα. Therefore, the log-
likelihood function is defined similarly as in (5) and its max-
imization is equivalent to the minimization of ∥ŷ − Φtα∥2.
We find the minimizer of this term by searching t minimizing
∥ŷ − ΦtΦ

†
t ŷ∥2, and then calculating α = Φ†

t ŷ. The search
of the minimizer was again conducted by PSO.

The performance of the proposed method was evaluated
by simulations. The target signal is a τ = 1-periodic piece-
wise polynomial of degree R = 1 with K = 2 discontinu-
ities. The unknown parameters are t = (0.20, 0.65) and α =
(α0,0, α0,1, α1,0, α1,1) = (−1.00,−3.00, 2.00, 4.00). We re-
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Fig. 4. A simulation example with K = 4 and R = 2. The
black line shows the target signal and the red circles and black
dots are measurements with and without 20dB noise. The
red and blue lines are reconstructed signals by the proposed
method and TLS with Cadzow denoising, respectively. The
small figure in the top left corner shows the entire shape of
the blue line.

constructed the signal from 7, 9, . . ., 15 measurements with
20dB and 10dB noise. The estimation errors MSE(t) and
MSE(α) were obtained by averaging ∥t̂− t∥2 and ∥α̂−α∥2
over 1,000 noise realizations, respectively. The results are
shown in Fig. 3, with same legends as in Fig. 1. We can see
that the proposed method outperforms the conventional meth-
ods in all cases, except for the estimation of t when N = 9
and there is 10dB noise. A simulation example with K = 4,
R = 2, and N = 25 is shown in Fig. 4. We can see that the
proposed method gives much better results than the classical
approach. We should note that N = 25 is the minimum for
the classical approach and the proposed method can recon-
struct the signal from fewer samples. It took 19.12s for the
proposed method to reconstruct the signal, while TLS with
Cadzow denoising required 0.06s only, but Matlab is far from
optimal for the implemention of algorithms like PSO, whose
potential for parallelization is not exploited at all.

4. CONCLUSION

We proposed a maximum likelihood estimation method for
the recovery of periodic sequences of derivatives of Diracs
and piecewise polynomials. The method is able to recon-
struct the signals from a number of measurements equal to
the number of unknown parameters, while the conventional
approaches are not applicable in that case. Future work in-
cludes comparison with other stochastic optimization meth-
ods [13, 14] and the calculation of the Cramér-Rao bounds. A
Matlab implementation of the proposed method will be avail-
able online at http://sip.csse.yamaguchi-u.ac.jp.
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